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THE CLEBSCH-GORDAN FORMULAS

by Daniel FLATH

0. INTRODUCTION

The explicit decomposition of tensor products of irreducible representations
is of fundamental importance in many applications of representation theory.
For finite dimensional representations of the Lie algebra sl, definitive results
are contained in the famous Clebsch-Gordan formulas which are constantly
and routinely used by physicists in applying the quantum theory of angular
momentum. We give in this article a presentation and derivation of equivalent
results, Theorems 5.1 and 5.4.

We shall base a study of the representations Hom(V, W) (rather than
V' ® W) for irreducible sl,-representations V and W on the analysis of a Weyl
algebra o/ of polynomial differential operators in two variables. This point of
view 1s one developed in a recent attack on the Clebsch-Gordan problem for
sly [2].

The usefulness of the Weyl algebra in the resolution of the Clebsch-Gordan
problem is well-known. For years physicists have worked with it under the
name “boson calculus” [1]. One mathematical reference is [3]. Nothing in the
present article 1s new except possibly the arrangement of the proofs which has
been made with the benefit of experience gained working with sl;. It seems to
me that this arrangement has a naturalness and simplicity to recommend it.

I would like to thank L. C. Biedenharn for interesting discussions on the
subject of this paper.

1. SOME REPRESENTATIONS OF sl,

Let V = C[X, Y], the vector space of polynomials in two variables X and
Y. For integers m let V,, be the subspace of homogeneous polynomials of
degree m, with V,, = (0) for negative m.

Let SL,(C) act linearly on V as follows:
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DY X —aX 4 oY 4Ny bx 4+ dy 11.
cd -4 ¢ cd - T (1)
g XY = (g- X)g- Y) for g e SL,(C). (1.2)

Each V,, is an SL,(C) subrepresentation of V.

By sl, we denote the Lie algebra of 2 x 2 complex matrices with trace 0.
The representation of SL,(C) on V gives rise, through differentiation, to a
representation of sl, on V.
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Lli=o

exp(tL) - v for Lesl,,veV. (1.3)

Choose a basis E ., E_, H of sl, as follows:

E_01 e _ (00 g (1 0 14
T \0 0)° "(1 0)’ _o—1>' (14)

An easy calculation establishes the following equalities of linear endo-
*morphisms of V.

E, = X0y, E_ = Yoy, (1.5)

H = X0y — Y0y. (1.6)

From (1.5) and (1.6) one easily deduces that each V,, is an irreducible
representation of sl, (and of SL,(C)).

We define for integers m, n a representation t of sl, on Homd(V,,, V,) by
means of formula (1.7).

(W(L)- T = L(Tv) — T(Lv)
for Lesl,, T e Homg(V,,, V,),veV,. * (1.7)

The principal result of this article is the explicit decomposition of the
sl,-representations Homc(V,,, V).

2. THE WEYL ALGEBRA &/

Let o/ be the subalgebra of End(V) consisting of polynomial differential
operators on V = C[X, Y]. The algebra o/ is spanned by the elements

i
| D(i,j,a,b) = X'Yid,0,° . (2.1)
}
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