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340 D. FLATH

ac"ä)X"X + cY {cbä)Y'bX+dY (U>

g- XaYb (g- Xf{g • Y)h for g g SUC). (1.2)

Each Vm is an SL2(C) subrepresentation of V.

By sl2 we denote the Lie algebra of 2 x 2 complex matrices with trace 0.

The representation of SL2(C) on V gives rise, through differentiation, to a

representation of sl2 on V.

L — idt
exp(tL) - v for Le sl2, v e V (1.3)

1-0

Choose a basis E+, £_, H of sl2 as follows:

(o Ô)• E- ' (l o)' -0- (1'4)

An easy calculation establishes the following equalities of linear endo-

'morphisms of V.

E+ XdY, E_ Ydx, (1.5)

H Xôx - YÔy (1.6)

From (1.5) and (1.6) one easily deduces that each Vm is an irreducible

representation of sl2 (and of SL2(C)).
We define for integers m, n a representation x of sl2 on Homc(Fm, Vn) by

means of formula (1.7).

(t(L) • T)v L{Tv) - T(Lv)

for L g sl2, T g Hornc(Fm, Vn), v e Vm (1.7)

The principal result of this article is the explicit decomposition of the

^-representations Homc( Vm ,* V„).

2. The Weyl algebra $0

Let sé be the subalgebra of Endc(F) consisting of polynomial differential

operators on V C[A, 7]. The algebra sé is spanned by the elements

D(i,j,a,b) X'Pd/dy"(2.1)
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The Euler operator J, which acts as scalar multiplication by m on Vm, lies

in sä.

J Xdx + YdY (2.2)

The next lemma assures us that sä is large enough for the study of all

spaces Homc(Km, Vn).

Lemma 2.3. Let U be a finite dimensional vector subspace of V and

let T g Endc(C/). Then there exists an element of sä, whose restriction to U

equals T.

N

Proof : The element S XcYd(dx)a(ôY)b n (J-m) of sä maps XaYb to
m 0

m^a + b

a nonzero multiple of Xe Yd and kills all other monomials of degree at most N.
But by enlarging U we may assume that Endc(L) is spanned by restrictions
of elements of the form S.

We use the inclusion of sl2 in sä to define a representation p of sl2 on sä.

p(L)a [L, à] for L g sl2, a e sä (2.4)

For integers n let sän be the set of T in sä such that T(Vm) c= Vm + n for
all m.

This defines a grading of sä which is preserved by the action of sl2.
sä © sän9 säm • sän a säm + n, (2.5)

neZ

p(L)sän c sän for all L g sï2 (2.6)

The algebra sä and representation p have been defined just so that the next
lemma, which is an immediate consequence of Lemma 2.3, will be true.

Lemma 2.7. For each m, n the restriction map

res : s/" - Homc(Km, Vm+n)

is a surjective homomorphism of sl2 representations.

The method of this paper is to deduce the decomposition of the
representations Homc(Vm, Vm+n) from the decomposition of the representation p on
«s/ by means of Lemma 2.7.
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