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340 D. FLATH

DY X —aX 4 oY 4Ny bx 4+ dy 11.
cd -4 ¢ cd - T (1)
g XY = (g- X)g- Y) for g e SL,(C). (1.2)

Each V,, is an SL,(C) subrepresentation of V.

By sl, we denote the Lie algebra of 2 x 2 complex matrices with trace 0.
The representation of SL,(C) on V gives rise, through differentiation, to a
representation of sl, on V.
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d

Lli=o

exp(tL) - v for Lesl,,veV. (1.3)

Choose a basis E ., E_, H of sl, as follows:

E_01 e _ (00 g (1 0 14
T \0 0)° "(1 0)’ _o—1>' (14)

An easy calculation establishes the following equalities of linear endo-
*morphisms of V.

E, = X0y, E_ = Yoy, (1.5)

H = X0y — Y0y. (1.6)

From (1.5) and (1.6) one easily deduces that each V,, is an irreducible
representation of sl, (and of SL,(C)).

We define for integers m, n a representation t of sl, on Homd(V,,, V,) by
means of formula (1.7).

(W(L)- T = L(Tv) — T(Lv)
for Lesl,, T e Homg(V,,, V,),veV,. * (1.7)

The principal result of this article is the explicit decomposition of the
sl,-representations Homc(V,,, V).

2. THE WEYL ALGEBRA &/

Let o/ be the subalgebra of End(V) consisting of polynomial differential
operators on V = C[X, Y]. The algebra o/ is spanned by the elements

i
| D(i,j,a,b) = X'Yid,0,° . (2.1)
}
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The Euler operator J, which acts as scalar multiplication by m on V,,, lies
n <.

J = X0y + Yoy. | (2.2)

The next lemma assures us that .« is large enough for the study of all
spaces Hom(V,,, V).

LEmMMA 2.3. Let U be a finite dimensional vector subspace of V and
let T e Endd(U). Then there exists an element of o/ whose restriction to U
equals T.

N
Proof: The element S = X°Y%0x)%0y)" [[ (J—m) of o maps X°Y” to .

m=0
m¥*a+b

a nonzero multiple of X“Y? and kills all other monomials of degree at most N.
But by enlarging U we may assume that End(U) is spanned by restrictions
of elements of the form S. | O

We use the inclusion of sl, in &/ to define a representation p of sl, on /.

p(L)a = [L, a] for Lesl,,ae o . (2.4)

For integers n let «/" be the set of T in & such that T(V,) = V, ., for
all m.

This defines a grading of ./ which is preserved by the action of sl,.
o = @ A", A" A = A" (2.5)

neZ

o(L)f" < " for all L e s, . (26)

The algebra o7 and representation p have been defined just so that the next
lemma, which is an immediate consequence of Lemma 2.3, will be true.

LEMMA 2.7. For each m, n the restriction map

res: /" - Homd(V,,, V,,4+,)

is a surjective homomorphism of sl, representations. O

The method of this paper is to deduce the decomposition of the repre-

sentations Homg(V,,, V,,+,) from the decomposition of the representation p on
o/ by means of Lemma 2.7.
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