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for n > 2, it follows that the resulting series has the form

e}

sy(x) = v1(x) + Z a,5,(x)

N+1
for suitable constants a,. Setting

E(x) = i ax ",

N+1

we can write the error term as
sy(x) — v4(x) = E(x) + E(x+1) + ...
Note that all of these series converge absolutely for x > 1. Evidently

E(x) = O(x~ V71
as x — oo, for any fixed N, so
sp(x) — v1(x) = O(x~")
as required. O
This argument yields similar asymptotic series for related functions such as
£ (%), v4(x), and y4(x). Such estimates work also for complex values of x, as long as
x stays well away from the negative real axis. '

APPENDIX 3
VOLUME AND THE DEHN INVARIANT IN HYPERBOLIC 3-SPACE

We will describe some constructions in hyperbolic space involving the
dilogarithm function %#,(z) and its Kubert identity (7). Further details may be
found in the paper “Scissors Congruences, II” by J. L. Dupont and C.-H. Sah (J.
Pure Appl. Algebra 25 (1982), 159-195).

Using the upper half-space model for hyperbolic 3-space, consider a totally
asymptotic 3-simplex A. In other words, we assume that the vertices a, b, ¢, d of A
all lie on the 2-sphere of points at infinity, which we identify with the extended
complex plane C U co. Then A is determined up to orientation preserving
isometry by the cross ratio

z=(ab;c,d) = (c—a)(d—b)/(c—b)(d—a).

[The semicolon is inserted in our cross ratio symbol as a remainder of its
symmetry properties, which are similar to those of the four index symbol R, ; in

Riemannian geometry.] In particular, the volume of A can be expressed as a
function of the cross ratio z.




316 J. MILNOR

THEOREM (S. Bloch and D. Wigner). If z belongs to the upper half-plane,
Im(z) > 0, then this volume V = V(z) is equal to the imaginary part of the
dilogarithm  ¥,(z) plus a correction term of log|z|arg(l—z). The
correspondence z+> V(z) for Im(z) > 0 extends to a function which is single
valued and real analytic throughout C — {0, 1}, and continuous throughout
Cu oo.

Here we use the branch — 7 < arg(1—z) < = of the many valued function
arg(l —z) in the region Im(z) > 0.

Proof. For the first assertion, it suffices to consider the simplex A with
vertices oo, 0, 1, z; where we assume that Im(z) > 0. The image of A under
vertical projection from the point oo to the boundary plane C is just the
Euclidean triangle with vertices 0, 1, z. Let

0, = arg(z), 0, = arg(1/(1—2)), 6; = arg((z—1)/z)

be the angles at these three vertices, equal to corresponding dihedral angles of the
hyperbolic simplex A. Note that 26, = n. We will assume the volume formula

(28) | V(z) = ZA@By),
to be summed from 1 to 3, where
A(B) = —jo log(2 sin 6)d0 .
This is proved for example in [21]. Using the law of sines
sin@,:sin0Q,:8in0; = |1 —z|:|z]|:1
and the equation X d6, = 0, we see that
dV(z) = —Z log(2 sin 6,)d6,
is equal to —log |1 — z|dB; — log|z|dB,; or in other words
(29) dV(z) = log|z|darg(l—z) — log|1 — z|d arg(z).
On the other hand dZ,(z) = —log(l —z)d log(z), hence,
dIm Z,(z) = —log|1 — z|d arg(z) — arg(l—z)d log | z]|.
The required formula
(30) V(z) = Im Z,(z) + log |z | arg(l —2z)

then follows since both sides of this equation have the same total differential, and
since both sides tend to the limit zero as z tends to any point of the real interval
(0, 1).
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As an example of this formula, note the identity
V(e*®) = Im Z,(e*®) = 2A(0) .

Since the right side of (29) is a well defined smooth closed 1-form, everywhere
on C — {0, 1}, we need only check that its integral in a loop around zero or one
vanishes, in order to check that V(z) extends as a single valued function. But the
expression (30) shows that V(z) extends to a single valued function near zero,
and also that V(z) tends to zero as z — 0. Using the identity

Viz) + V(1—2z) =0

which follows from (29), we see that the samg 1s true for z near 1.
Now consider the fractional linear automorphism of period three

z—> 1/(1—2)—>(z—1)/z+> 2
which carries the upper half-plane to itself. The expression (28) shows that

Viz) = V(1{1—2) = V(z—1)/z).

Since O — 1 — oo +— 0, it follows that V(z) also tends to zero as z » 0. .[J
Note that V(z) 1s strictly positive in the upper half-plane for geometrical
reasons. The identity

V(@) = = V()

shows that V(z) is negative on the lower half-plane and zero on R U oo0. Note also
the identities

(31) V(l—z) = V(1/z) = — V(2),

which are equivalent to the statement that the expression V(a, b; c, d) is skew
symmetric as a function of four variables.

This function V(z) satisfies the multiplicative Kubert identity
(32) V(z") = nX V(wz),

to be summed over all n-th roots of unity, w” = 1. This follows easily since both
Z,(z) and log | z | arg(l —z) satisfy this same identity for z near zero.
Another important property is the cocycle equation

(33) S (= 1) V(ag, oy Gy s ag) = 0,

for any five distinct points ay, .., a, in C U co. Geometrically, this is true since
the convex body in hyperbolic space spanned by five vertices can be expressed as
a union of simplices with disjoint interiors in two different ways. Analytically, it
can be proved using the Abel functional equation
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LAxxXyy) = Lyxy) + Loyx) + Lo(—xx) + Ly(—yy) + log’(x'/y)/2,

where x’ stands for 1/(1 —x). Still another proof will be sketched later.

Dupont and Sah show that the Kubert identity can be proved as a formal
consequence of this cocycle equation. Hence it has a geometric interpretation in
terms of cutting and pasting of simplices. As a geometric corollary, they prove
that the “scissors congruence group” for hyperbolic 3-space is divisible. That is
any hyperbolic polyhedron can be cut up and reassembled into n pieces which
are isometric to each other, for any n.

Another geometric invariant associated with a hyperbolic simplex is the
Dehn invariant. For a finite 3-simplex, this is defined to be the six fold sum

2 cages length @ (dihedral angle)

in the additive group R ® (R/2nZ), taking the tensor product over Z. For a
simplex with one or more vertices in C U o0, the definition is the same except
that we must first chop off a horospherical neighborhood of each infinite vertex
before measuring edge lengths. The result does not depend on the particular
choice of horospheres.

LEMMA (Dupont and Sah). For a totally asymptotic simplex, with dihedral

angles 0., 8,, 65 along the edges meeting at a vertex, this Dehn invariant is equal
to 2% log(2 sin 6,) ® 0,.

If we express this as a function of the associated cross ratio z, using the law of
sines as above, the formula becomes

1 .
EDehn(z) =log|l — z| ® arg(z) — log|z| @ arg(l—z).

This function also satisfies the Kubert identity (32), and it is clear from its
geometric definition that it satisfies the symmetry condition (31) and the cocycle
equation (33).

To prove this lemma, we first choose one particular horospherical
neighborhood of each vertex. It is convenient to choose that horosphere which is
tangent to the opposite face. Consider, for example, a simplex with vertices
0, V;, V,, V3. The preferred horosphere through v; can be described as a
Euclidean sphere, tangent to the boundary plane C at v;, and tangent to the
orthogonal plane which passes through the other two vertices v v,. The
Euclidean radius r; of this sphere is equal to the distance of v; from the line
through v, v,. In other words r; is equal to an altitude of the triangle vy, v,, vs.
Hence r; is inversely proportional to the edge length | v; — v, |, and inversely
proportional to sin 6;; say r; = c¢/sin 9;.

i
]
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This horosphere intersects the line from v; to co at Euclidean height h = 2r,
On the other hand, the preferred horosphere through the point co intersects each
vertical line at some constant height h = ¢'. If we integrate the hyperbolic length
element dh/h along the line from v; to co between these two intersection points,
we obtain

(34) truncated edge length = | dh/h = log(2 sin ;) + ¢”
2r;

where ¢” = log(c'/4c) is constant. (Here negative lengths must be allowed.) The
corresponding contribution to the Dehn invariant is

log2sin 6,)®6; + " ®H;.

There is an identical contribution from the opposite edge v;, v,. In fact the
symmetry property ‘

(a,b;c,d) = (c,d; a, b)

of the cross ratio implies that there is an isometry of A carrying ny given edge to
the opposite edge. Now, summing over all six edges, since the ¢’ ® 0; terms
cancel, we obtain the required formula

(35) Dehn(A) = 233 log(2 sin 0) ® 0, . ]

Remark. The curious similarity between the two equations (28) and (35) can
be explained by a theorem of Schlafli. For a family of simplices A in the n-
dimensional spherical space of constant curvature K > 0, Schlidfli’s equation
can be written as

(n—1K dV,(A) = X V,_,(F)db,

to be summed over all (n—2)-dimensional faces F, where V,_,(F) is the (n— 2)- |
dimensional volume and 6 1s the dihedral angle along F. In other words, we
have

(n—1)K 0V,/00r = V,_,(F).

For a proof, also in the case K < 0, see Kneser, “Der Simplexinhalt in der
nichteuklidischen Geometrie”, Deutsche Math. 1 (1936), 337-340. In the case n
= 3, K = —1, the Schlifli equation takes the form

—2dV3(4) = Eedges Vi(E)dOg .

For a family of 3-simplices with one or more vertices at infinity, this equation
remains valid providing that we cut off a horospherical neighborhood of each
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infinite vertex before measuring edge lengths. It follows that we can prove
equation (34) simply by differentiating (28), or conversely that we can prove (28)
by integrating (34), using the identity A(0) = A(r) = 0 to fix the constant of
integration.

Although the cocycle equation for the Dehn invariant is an immediate
consequence of its geometric definition, it may be of interest to give an analytic
proof. Let us introduce the skew-symmetric bimultiplicative symbol

(x|y) = log | x| ® arg(y) — log | y| ® arg(x),

for x and y in the multiplicative group C’, with values in the additive group
R ® (R/2rZ). Then

1 1
7 Dehn(z) = 3 Dehn(a, b; ¢, d)

is equal to (1 —z|z). Expressingzand 1 — z = (a, c; b, d) as 4-fold products and
using the bimultiplicative property, we can expand (1 —z|z) as a sum of sixteen
terms, of which four cancel. The remaining twelve can be grouped as

(I1—zlz) = f(b,c,d) — fla,¢,d) + f(a, b, d) — f(a, b, ¢),
where f stands for the skew function
fla, b,c) = (a—blb—c) + (b—c|lc—a) + (¢c—ala—D).

This proves that the function Dehn(a, b; c, d) is a coboundary, and hence a
cocycle.

We can define a sharpened Dehn invariant by this same formalism, using the
expression

log(x) A log(y),

with values in A 2(C/2riZ) in place of our symbol (x|y). If we split this exterior
power into eigenspaces under the action of complex conjugation, then the
component of

log(x) A log(y)

in the — 1 eigenspace can be identified with (x|y).

The cocycle equation for the volume function V(a, b; ¢, d) can also be proved
by this formalism. We must simply replace (x|y) by the differential form valued
symbol

log | x | d arg(y) — log | y| d arg(x).

Details will be omitted.
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Dupont and Sah show that the volume function and the sharpened Dehn
invariant can be incorporated into a single function p, as follows. Let

p(z) = 1 A L(z) — 1 A L(1—2) 4+ (z) A I(1—2),
with values in A 2C, where (z) = log(z)/2ni and

Lz) = Z,(z)/4n? = [ 11—2)dl(z).

This expression is certainly well defined in the strip 0 < Re(z) < 1, and satisfies
n(z) + p(1—z) = 0.If we analytically continue each of its constituent functions
in a loop around zero or one, then the expression p(z) remains unchanged. Hence
p is well defined as a mapping from C — {0, 1} to A*C. They show that p
also satisfies the symmetry condition (31), the Kubert identity (32), and the
cocycle equation (33).
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