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of U(n) is not trivial, and U{n) is not solvable. The group V is dense in U(n):

skew adjoints elements of D are dense in the skew adjoint matrices in M(n, C),

and the Cayley transform t
^

is an homeomorphism from the space of

skew-adjoint matrices in M(n, C) to an open dense subset of U(n), carrying
skew adjoint elements of D into T. From this density, it results that, if n > 1,

the linear group T is not solvable. By [Tits], it contains a non abelian free

subgroup.
It remains to construct pairs (Z), *). A division algebra D with center k'

admits an anti-involution * inducing on k' the non trivial element Gal(/cy/c), if
and only if its class cl(D) in the Brauer group Br(k') of k' has a trivial image

by the norm map Nk*fk : Br(k') -» Br(/c)—see Appendix B. Class field theory
provides an explicit computation of Br(/c), and of Nk>Jk, and tells which elements

of Br(/c') come from division algebras. From the explicit description it provides,
existence of such D follows. A direct construction is given in Appendix C. When
we choose an isomorphism of D ®k R with M(n, C), the involution * becomes

adjunction with respect to some hermitian form <j> on C", not necessarily positive
definite : §(ax, y) cj)(x, a*y). If h is self adjoint in D, int(/i~x) ° * is adjunction,
with respect to the form $h(x, y) cj)(/zx, y). For suitable h, §h is positive definite
and (D, int(/i_1) ° *) is of the type sought.

Appendix A

Consider cj) : S' u S" -> S — E as in the introduction, with S' and S" two
copies of the sphere S, and \|/ : S Sf the obvious bijection. Consider as in the
Schröder-Bernstein theorem the set Se of points p in S with an even number
of ancestors, namely for which there exists an integer n ^ 0 with p e Im((j)o\J/)"
and p £ Im(\|/ o ((j)o\|/)n). Consider also the set S0 of those p in S for which there
exists n ^ 0 with p e Im(\|/ o (cM/)") and p £ Im(^ox|/)"+ \ and finally the set
of those p such that p e Imffx)/)" for any n ^ 0. Consider similarly

5' u S" (S'uS")e u (S'uS'% u (S'u5")^

Then v|/ induces a bijection from Se u Sx onto {S'uS")0 u (S'uS")«, and c))-1
from S0 onto (S'uS")e. Combining these two we have a bijection S S' u S"
and a partition of S into finitely many pieces, the restriction of % to each of
these being a rotation.
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