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THE METHOD OF HADAMARD AND DE LA VALLEE-POUSSIN 91

presentation rather closely especially in the proof we give of The Main Lemma in
Part III. Most of this article was prepared while the author visited the IHES
(1979-80). The present version was presented in three seminars at the University
of Illinois in the Spring of 1981.

PART I: EXAMPLES

§1. THE ZETA FUNCTION OF THE PROJECTIVE LINE. Let F, be the finite
field of g elements and let A = F [x] be the ring of polynomials with coefficients
in F,. The set of closed points on the projective line P* can be identified with the

1
set of monic irreducible polynomials in A plus the rational function — which
X
corresponds to the point at infinity on P!, If Pis a polynomial in 4 of degree d, we
put

NP = ¢°.

The zeta function of the affine line A’ = P' — {co} is defined, for s a complex
number, by
Z(s,A') = Y Na~*,
where a runs over all monic polynomials in 4 including a = 1. Since
# {a € A|amonic, dega) = n} = ¢q",
it follows that
1

Z(s,A') = Z g " = PR et
n=0 1 — q

hence Z(s, A') is an absolutely convergent series for R(s) > 1. Furthermore,
since A 1s a unique factorization domain, we have an Euler product expansion

1
Zis, AY) = [ ————
S AY =15

where P runs over all monic irreducible polynomials in A of degree >1. I-f we
include in this Euler product the factor (1—¢ %)~ !, which corresponds to the

. . 1 .
rational function P_, = < we obtain the zeta function of the projective line
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1
=
1 . 1
l_q—s 1_q1—s'

Z(s, Pl =

To study Z(s, A') we can also proceed in a slightly different way. First we recall
that a fundamental lemma in the arithmetic of the ring 4 is Gauss’ result that for
any positive integer n > 1
X" — x = [[Ffx),
d|n
where F ,(x) is the product of all monic irreducible polynomials in A of degree d.
By comparing the degrees on both sides of this identity we obtain
qn = z de )

d|n

where N, is the number of monic irreducible polynomials in 4 of degree d. In the
Euler product for Z(s, A') we collect those polynomials P of degree d and use the

last equality to obtain
. % 1 Na
Z(s, AY) = —_—
a0 =M1 (=)

By taking the logarithm of both sides we get

0 0

log Z(s,A") = > N, > q "%k
=1 K=

|
= Y ZgmY dN
mZ1 m q d%‘,n d
|
— Z ﬂ(ql—s)m

m=1mM
1

= log ————;
e

this agrees with the expression obtained earlier for Z(s, A!). Three observations
~are in order at this point:

(1.1) Z(s, P')is meromorphic in the region R(s) > 1 and has a simple pole at s
= 1; this implies that

~ (1.2) The Euler product expansion of Z(s, P!) has an infinite number of local
| factors (Euler’s proof of the infinitude of primes!)

} (1.3) Z(1+it, PY) # O for all real values of t.

?

Ty
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§2. Gauss suMs. If x e C and if m is an integer > 1, we put

em(x) — eZni x/m‘

Let p denote a prime number. If x € Z, and p, denotes the group of p-th roots of
unity, then the map x — e,(x) defines by passage to the quotient an isomorphism
e, Z/pL — p,.

Let k = F, denote the finite field with ¢ = p“ elements. For x € F, we put

a— 1

Trx) = x + x» + ... + x¥

since Try(x) belongs to Z/pZ, the map
F,—u,

given by ,(x) = e,(Tr,(x)) is a non-trivial additive character of F,. Any other
additive character V' of F_ has the form {'(x) = \,(cx) for some c € F,. Let F}
= F, — {0} be the multiplicative group of F,. With each of the ¢ — 1 characters
x of F¥ there is associated a Gauss sum

g V) = Y xW(x) ;

xqu

The one corresponding to the trivial character x, = 1 has the value g(xq, V) =
— 1. A well known property of g(x, ) with x a non-trival character is | g(x, V) |
= q_
For a monic polynomial in the ring 4 = F [x]
a=x"+ax"" '+ . +a,
we put

Aa) = yla,)l(a,);

if b is another monic polynomial
b=x"+bx""1+..+5b,,
Then

ab=x""+ (a,+b)x"""" ' + .+ ab,;

from this it follows easily that
A(ab) = Aa)A(b).

We can thus form the zeta function
Z(s, &,) =) AaNa~*

1
(P)NP~5’

:l;ll—A

where the product runs over all irreducible monic polynomials in 4. From the
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~ properties of Z(s, A') it follows easily that Z(s, %) 1s absolutely convergent for
R(s) > 1. The Dirichlet series Z(s, .#,) is also expressible in the form

0

Z(Sa gx) - 1 + Z q_dsSda

where

and the sum runs over all monic polynomials of degree d. As all monic
polynomials of degree 1 in A4 are of the form a = x + ¢ with c € F,, and since
A(x+c) = y(c)(c), we obtain for d = 1 the Gauss sum S; = g(x, V). Also all
irreducible monic polynomials in 4 of degree 2 have theforma = x* + bx + ¢,
b, c € F; for these we have

= Z A(x*+bx+c)
= 2. 2 xe)b)
b ¢
= L x(e) QUW(b) = 0
Cc
A similar argument shows that for all d > 3 we have S, = 0. Hence we obtain
(s, ) = 1+ g Vg °
st amamnns o rsam dors Sl ma an s i @ wises bt 7 (O AL AL ... DI\ < i PO, Ry [oR— g
1 lllb 1CpP1L CbCllLaUUll PLOVCCS Llal L5, <Z X)’ UCILIIICU 101 D) -~ 1 114ad 4 HU1VHIVT PIIL

1
it also follows that the zeros of Z(s, %, ) are all located on the line R(s) = 7 The

trivial fact | g(x, V) | < g would suffice to show that Z(1+it, &) # Ofor all real
values of .

§3. KLOOSTERMAN SUMS. Let ¢ be an additive character of F,. For a monic
polynomial in 4 of the form

a=x"+ax""'+ . +a,, a, # 0,
we define a function
Aa) = Vay)e(a,—,a,),  ad, =1,
with the proviso that
Alx+c) = Y(o)plc™ ).

If b € A is another polynomial of the form

b=x"+bx""1'+. +b,,
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we have
ab = X" + (ay+b)x"T" "+ o+ (aby 1+ bpa,-1)x + Dby,
By noting that (a,b,,_ ; + bna,—1)abm = bp_ b + a,_1a, we obtain
A(ab) = A(a)A(b) .
Thus we can define a new zeta function by putting
Z(s, Kl) = ) Al@)Na*

1
H . —g 2
+1 — A(P)NP

where the sum is taken over the set of monic polynomials a in 4 with non-zero
constant term including the polynomial a = 1, and the product is taken only
over the subset of those which are irreducible.

By grouping together terms in the Dirichlet series Z(s, K/) corresponding to
polynomials of the same degree we obtain

o0}

Z(s,K) = 1+ Y q~%S,,

where

and the sum runs over all monic polynomials a in 4 of degree d with non-zero
constant term. Let us look more closely at the sums S, for small d. Ford = 1 all
the monic polynomials in A are of the form x + ¢ with ce F,, and

Si = Y Alx+c)

ek
ceF}

= Y Yo)e(c™h;

ceF}
since @(x) = (bx) for some b € F¥, we obtain then that
Si = ) Wle+be™ ).
ceFy
If ¥, = Z/Z,, then S, reduces to the well known Kloosterman sum

2mi
Kl(p) — Z e (ac+bc™ 1) )
(’EF:
In the following we denote S, by — K(¢). All monic polynomials of degree 2 with

non-zero constant term are given bya = x? + c¢x + b, withc F,beF} and
hence |
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S, = Y A(x*+cx+b),

= ). 2 Woecb™)

ceFq beF?
= z Z \ljb(c) ’
beF} ceFq
where V,(c) = Y(c(1+bay)), and ©(c) = Y(aoc). Now Y,(c) = 1if and only if 1
+ ba, = 0and this occurs only once when b = —a,. For this particular value

of b, the inner sum is equal to #F, = q. If b # —a,, then \, is a non-trivial
additive character and the inner sum has the value zero. Therefore we have S,
= ¢q. For d = 3 we have from the definition of A that
S: =2 )Y Ax*+bx*+cx+d),
b ¢ d

with b, c,d e F,and d # 0, and hence
S3 = Z;@(af)bz V() = 0.

EFq

For similar reasons we also obtain S, = 0 for d > 3. We can now write

1
U1 — A(P)NP*

=1—-K(@)q*+q"~*.

Z(s, Kl) =

This shows that the function Z(s, Kl) is holomorphic for all complex values of s.
It is clear that Z(s, KI) # 0 for R(s) > 1; the simple observation | K(¢p)| < ¢
would also give that

Z(1+it, Kl) # 0

for all real values of t. Let us pretend for a moment that we do not know this fact
and show how it can be derived, in an unnecessarily complicated way, from the
method of Hadamard and de la Vallée-Poussin. Suppose then that 1 + ityis a
zero of multiplicity m. For ¢ > 1 and Z(s, KI) = Z(s, A) we have

_ —Z-Z—(c;+it, A) = Y (log NPNP~"(NP~*A(P))'.
P

n>0

If we put Ap = NP A(P), then clearly Ap-Xp = 1 and

z A 7
R{—6—Z—(o, 1) = 8 (0 +ite, A) — 25 (0+2ito, Az)}

= Y (log NP)NP™™ {2 + M3 + A3}2 > 0.
P
n>0




THE METHOD OF HADAMARD AND DE LA VALLEE-POUSSIN 97

On the other hand for o > 1 and close to 1 we have

VA 1
- (o) = —— + filo),
Z’
~ (ot A) = —— + f(0),

where f; remains finite as ¢ — 1. We thus obtain

But this is false for o sufficiently close to 1 unless m = 0 in which case Z(s, K/)
does not vanish on the line of absolute convergence. It is a simple matter to
obtain, say via a Tauberian argument, that

> A(P) = 8,x + o(x),

NP <

where 8, = 0, unless A = 1in which case 6, = . This circle of ideas has

log ¢
been introduced by Kornblum (Math. Zeitschr. Vol. 5(1919), p. 100) in order to

establish an analogue of Dirichlet’s Theorem on arithmetic progressions for the
ring A = F [x]; they were later developed more fully and systematically by
Artin in the second part of his thesis ([ 1], IT). It is a consequence of Weil’s proof of
the Riemann Hypothesis for curves over finite fields that the zeros of Z(s, A) are

. . i . .
all located on the critical line R(s) = 7 This gives the much sharper estimate

1
8,x + O(x2)for the above sum. The equality Z(s, KI) = 1 — K(g)g * + q* **
1
also implies | K(p) | < 2g2, an estimate which is best possible.

§4. EQUIDISTRIBUTION OF THE ARGUMENTS OF GAUSS suMs. Let F, be the
finite field of p elements; let { : F, — C* be a fixed non-trivial additive character
of F,asin §2. With each of the p — 1 characters y, of the multiplicative group F}
= F, — {0} we define a Gauss sum

g ) = > xW(x).

*
xeF}

If % 1s one of the p — 2 non-trivial multiplicative characters of F3, we have
1

| g(x, ¥) | = p2, and hence 1
g(x, V) = p§e2"i9p(x) ’

L’Enseignement mathém., t. XXIX, fasc. [-2. 7
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with 0,(x) € [0, 1). For each prime p, and for a fixed choice of additive character s
we consider the sequence of p — 2 angles

0, = {ep(Xj)}lsjsp—z )

which result from all the non-trivial characters of F}. As p ranges over the primes
in increasing order we obtain a triangular array

® = {®,|p a prime}

of pointsin [0, 1). For a prime p and a subinterval J in [0, 1), we denote by A(p, J)
the number of angles 0,(y;),1 < j < p — 2whichbelongto J,| J |is the length of
J. The sequence @ is uniformly distributed in [0, 1); in fact it can be shown that
(Smith [10]),

1

Sgplur—%‘lAunJ)——IJI|<<p‘Z-
In particular one obtains the estimate
Ap.J) = |7 1p + 0.
To establish these results we put, for h a non-zero integer,

1 .
S h — ’ ethep(x)’
Ah) )22
where the sum runs over the non-trivial characters of F}. The Erdos-Turan
inequality ') gives, for any integer m > 1

4 m 1
S —2)T AP, ) — | T < — Y —|S,h].
3m@ ) tA(p, J) — | || m+1+ngwl4”

1
To get an estimate for S ,(h), we observe that since g(x, V) = p2e*™°*™, we have

Z/ g(x’ \I’)h — ph/2 Z/ eZnihOp(x)
X X

= p"*(p—2)S,(h) .

On the other hand we have the combinatorial identity

@) Y g0n W) = (=14 (= 1) T Wy 3,

1) H. Montgomery has obtained a conceptually simple proof of this inequality along
the lines of his article in Bull. A.M.S. vol. 84 (1978), 546-567.

i
1
i
!
|
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where the sum on the right hand side is taken over all the h-tuples
(X1, - Xp) € (F,)" which satisfy x, - x, - .. - x, = 1. The sum

= Y Y(xy+...+Xp)

is usually called a hyper Kloosterman sum. As a generalization of the function
Z(s, KI) considered in §3 it is natural to consider a function Z(s, KI,) defined by
the following Euler product

1

Z(s, KLy~ V" = —,
’ Pell_Xlol 1 — A(P)NP *

where X, is the affine variety defined over F, by x; ... x, = 1,| X, | is the set of
closed points-on X, and A:| X, | — C* is a function which takes the value

AP) = Y(a; +..+a,),

when P i1s the closed point (ay, ..., a,) € X((F,) defined by the maximal ideal
(x;—ay, .. x,—a,) in F[x,, .. x,]. The function Z(s, KI;) can be shown to
be a polynomial of degree h in p° where the coefficient of p™° is the
hyper Kloosterman sum KI/(p). It is a consequence of Deligne’s proof

of the Weil conjecture that the zeros of Z(s, KI,) are all located on the line

h—1
R(s) = —5 This implies in particular that

(4.2) | KIy(p) | < hp"~ P2

h
The weaker result | KI,(p) | < hp2 % forsome d > 0would follow from the non-

L. . h .
vanishing of Z(s, K/,) on the line R(s) = 5; this would be enough to establish the

equidistribution of the angles of the Gauss sums.
From Deligne’s estimate (4.2) and the combinatorial identity we obtain that

Sy = Ly
- X
1

N|=~

T2 gy, b

— (=27 I {(— 1 + (= DKL) |
and hence

—

| S(h)| < 2hp~Z.
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When this estimate is substituted into the Erdds-Turan inequality with m

1
= [p4], we get .
8 1 1

1
Sup | (p—2)"tA(p, J) — | J || < + —mp 2 K p 4.
J m—+ 1 T

This establishes the result. A comparison of the estimate A(p,J) = p|J|
3
+ O(p#+) with some of the classical prime number theorems suggests that perhaps

the stronger result

1
Alp,J) = plJ| + O(pz™)
should be true.

PART II: STATEMENT OF THE THEOREM

§1.1. INTRODUCTION. In the statement of Deligne’s theorem there appear
certain Euler products which are generalizations of the Artin-Grothendieck L-
functions and which satisfy some rather natural growth conditions; these
conditions are stated below in §2 as Axioms A and B. In order to elucidate the
applicability of the theorem, to introduce some relevant concepts from
representation theory, and to prepare the notation that goes into the statement
of the theorem, we now give two examples one of a geometric nature, the other of
an arithmetic nature. The expert will realize that both examples are intimately
connected, say via the Selberg-trace Formula.

§1.2. GEOMETRIC EXAMPLE. As in Part I, let F, be the finite field of ¢
elements and let A = F [T] be the coordinate ring of the affine line A'. For
technical reasons and to simplify our presentation, we assume the characteristic
of F, is not 2 or 3. The closed points on the affine line A' are in one-to-one
correspondence with the irreducible monic polynomials in 4. Now if P = P, is
such an irreducible polynomial in A4, then the image of T under the reduction
map

A— A/P) =F
T —>t,,

qv

deg (P)

gives an element ¢, in the finite field F, withq, = ¢ elements. We can now

consider the elliptic family
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