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1. INTRODUCTION

Let k be a partition of n, x = (K4, ..., K,,), K; = = = K, = 0, Zx; = n. We
identify partitions (x4, ..., K,,) and (K, ..., K,,, 0, ..., 0). Quite a few classes of objects
in mathematics are of course classified by partitions and often inclusion,
specialization or degeneration relations between these objects are described by a
certain partial order on the set of partitions. This partial order on the set of all
partitions of n 1s defined as follows:

(K5 ooy Kpy) > (K7, ooy Kp)
(1.1)

r r
lﬁ Z K[ < Z Ki’ r = 1,...,m.
i=1 i=1

Thus, for example (2, 2, 1) > (3, 2). If k« > k' we say that k specializes to k’ or that
k is more general than x’. The reverse order has been variously called the
dominance order [2], the Snapper order [34, 41] or the natural order [35]. It
occurs naturally in several seemingly rather unrelated parts of mathematics.
Some of these occurrences are the ’

(1) Snapper, Liebler-Vitale, Lam, Young theorem (on the permutation
representations of the symmetric groups)
(i) Gale-Ryser theorem (on existence of (0, 1)-matrices)
(i) Muirhead’s inequality (a symmetric mean inequality)
(iv) Gerstenhaber-Hesselink theorem (on orbit closure properties of SL, acting

on nilpotent matrices)

(v) Kronecker indices (on the orbit closure, or degeneration, properties of
linear control systems acted on by the socalled feedback group)
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(vi) Double stochastic matrices (when is a partition “an average ” of another
partition)
(vii) Shatz’s theorem (on degeneration of vectorbundles over the Riemann

sphere)

These will be described in more detail in section 2 below. In addition the same
ordering, via the representation theory of the symmetric groups, plays a
considerable role in theoretical chemistry (in the theory of chiral molecules, 1.e.,
molecules that are optically active [10, 15, 17]. Finally the same order plays an
important role in thermodynamical considerations. Consider an (isolated)
system described by a probability vector p = (py, p,, ...), where p; is the
probability that a particle is in state i, evolving according to some “master
equation”. Then in [36, 37] it is shown that the system evolves in the direction of
increasingp = (py, p,, -..) (With respect to the specialization order), where p1s the
unique rearrangement of psuch thatp; > p, > ... Thisstatementis a good deal
stronger, in fact infinitely stronger [38], than the statement that the entropy
— > plnp; must always increase.

=1

Certain occurrences of the specialization order are known to be intimately
related. Thus (1), (11), (ii1) and (vi) are very much related [2, S5, 12], cf. also section 2
below, and so are (v) & (vii) [ 14] and section 8 below. This paper will show that
all these manifestations of this order are intimately related. Their common
meeting ground seems to be the ordering defined by closure relations of the
Schubert-cells (with respect to a standard basis) of a Grassmann manifold. L.e. a
Schubert-cell SC(A) is more general than SC(X'); in symbols: SC(A) > SC(L)), iff

SC(A) o SC(X). This order in turn is much related to the Bruhat ordering
(sometimes called Bernstein-Gelfand-Gelfand ordering) on the Weyl group S, It
is, in fact, the quotient ordering induced by the canonical map of the manifold of
all flags in R""™ to the Grassmann manifold of n-planes in (n+m)-space.
It should be said that in all probability there is much more to be said. The
~ diagram of interrelations between the manifestations of the specialization order
(cf. section 5.1 below) has overlap with another (functorial relationship) diagram
centering around the irreducible quotients of Verma modules for s/, the Jantzen
conjecture (now proved by A. Joseph) and the Bruhat ordering, and involving,
among others, work of Kazhdan-Lusztig, Gelfand-MacPherson (relations with
Schubert cells), Borho-Kraft and the same relation between orbits of nilpotent

matrices and permutation representations which plays a role in this paper. (We
owe these remarks to W. Borho).
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