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SOME KNOT THEORY OF COMPLEX PLANE CURVES ')

by Lee RUDOLPH ?)

§1. ASPECTS OF THE “PLACEMENT PROBLEM”
FOR COMPLEX PLANE CURVES

How can a complex curve be placed in a complex surface?

The question is vague ; many different ways to make it more specific may be
imagined. The theory of deformations of complex structure, and their associated
moduli spaces, is one way. Differential geometry and function theory, curvatures
and currents, could be brought in. Even the generalized Nevanlinna theory of
value distribution, for analytic curves, can somehow be construed as an aspect of
the “placement problem”.

By “knot theory” I mean to connote those aspects of the situation that are
more immediately topological. I hope to show that there is something of interest
there.

§2. A TRIPTYCH

Here are three ways to interpret the phrase “knot theory of complex plane
curves”.

Globally: the “complex plane” is projective space CP? or affine space C?; a
“curve” i1s an algebraic curve (in projective space) or an algebraic or analytic
curve (in affine space); here, “knot theory” has historically been largely
concerned with studying the “knot group”, though there are also results on “knot
type”.

Locally: a “complex plane curve” is the germ of a plane curve (algebraic,
analytic, or formal) over C; this is the study of singularities, and “knot theory”
has been the classical knot theory of links in the 3-sphere, put to work in the
service of that study.

In between: a “complex plane curve” is an analytic curve in a reasonable
open set in a complex surface (chiefly, in the theory as so far developed, the

) This article has already been published vin Neeuds, tresses et singularités, Mono-
graphie de 'Enseignement Mathématique N° 31, Genéve 1983, p. 99-122.
%) Research partially supported by NSF Grant MCS 76-08230.

L’Enseignement mathém., t. XXIX, fasc. 3-4. 13



186 L. RUDOLPH

interior of a ball or a bidisk), well-behaved at the boundary; a knot-theorist can
study either of two codimension-2 situations—the complex curve in its ambient
space, or the boundary of this pair.

This middle panel of the triptych has been less studied than the other two,
though it is of obvious relevance to both.

§3. RESUME OF BASIC DEFINITIONS

By complex surface I mean a smooth manifold of 4 real dimensions, equipped
with a complex structure. A complex curve I in a complex surface M is a closed
subset which is locally of the form {(z, w)e U = C?: f(z, w) = 0} where f: U
— C1s a nonconstant complex analytic function. A Riemann surface is a smooth
manifold of 2 real dimensions, equipped with a complex structure.

It is a fundamental fact, to which is due the especial appositeness of classical
knot theory to the study of curves in surfaces, that any complex curve I' ¢ M
has a resolution of the following sort: There is a Riemann surface R, and a
holomorphic mapping r: R — M, so that n(R) = I'; in fact, there is a discrete
(possibly empty) subset #(I') < I, the singular locus of I" in M, so that the
regular locus A(I) = T — &(I')is a Riemann surface, and R is the union (with
what turns out to be a unique topology and complex structure) of Z(I"), on which
r is the identity, and a discrete set r~ '(#(I')) = R mapping finitely-to-one onto
F(I).

The singular locus is, of course, exactly the set of points of I'" at which, no
matter what the local representation of I' as the zeroes of an analytic function
f(z, w), the (complex) gradient vector V f vanishes.

If Pisapointof I',and Q € r " !(P) = R, then the germ at P of the r-image of a
small disk on R centered at Q is called a branch of I" at P. (Abusively, “branch”
may also be used below to refer to some representatives of this germ.) Naturally,
at a regular point there is only one branch ; but there may be only one branch at a
point, and the point still be singular.

References: [G-R], [Mi 2].

§4. LOCAL KNOT THEORY IN BRIEF
Using local coordinates in the resolution R and the ambient surface M, one

sees that each branch of a curve I" can be parametrized eitherbyz = t,w = Qor
(more interestingly) by some pair z =t", w =1t"+ ¢, " + ..
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+ cxt", t € C, with n > m. (In the original choice of coordinates, r might well
involve genuine power series; but it is not hard to make a formal change of
coordinates to one of the forms above, involving only polynomials; and it is not
much harder to prove a comparison theorem, the remote ancestor of that of M.
Artin, which shows that actually the formal change of coordinates can be taken
to be somewhere convergent.) Consider the “approximations” to such a branch,
gotten by dropping all terms of w from some degree on up: so the first
approximation is (¢, t"), and the (N —n+ 1)st is the branch we began with. Each
of these is itself a map onto a branch of some curve; generally not one-to-one.

Define integers g(1), ..., g(N —n+ 1) by saying that the k-th approximation is
g(k)-to-one in a punctured neighborhood of t = 0. Then g(1) = GCD(m, n), g(k
+1) divides g(k), and g(N—n+1) = 1. These integers can be calculated as
follows. Let C[[t]] be the algebra of formal power series, with unique maximal
ideal m = tC[[t]]. Let 4, be the m-adically closed subalgebra generated by 1
and the components of the k-th approximation. Then g(k) is the least integer g
such that 4, = C[[t*]] = C[[t]]. (One gets the same answer starting from the
algebra C{t} of somewhere-convergent power series.) A parametrization of the
branch covered by the k-th approximation is z = ™% y = ek 4
FoC, .y, LT RNEGER),

The knots in which we are interested arise when we intersect the branch
under investigation with the boundary of an infinitesimal 4-disk containing the
singular point. The 4-disk used may be either a round disk D} = {(z, w): | z |?
+ | w|* = ¢*} with boundary the round sphere S2, or a bidisk D(gy, €,)
= {(z,w):|z] < &, |w]| < &,}, with boundary comprised of two solid tori
01D(e1, €5) = {|z] = €1, | w| < &5} and 0,D(ey, ;) = {|z| < &y, | W] = €2}
which together make up a 3-sphere with corners. Whether one uses round disks
or bidisks, one obtains a knot of the same type. The bidisk boundary is more
convenient here, when we are studying the branch parametrically; from the
assumption that n > m we can see that, for sufficiently small ¢ > 0, the branch
intersects 0D(g, €) only along 0,D(, g).

The first approximation to the branch actually meets 0,D on the torus
{lz| = & |w| = &}, where it covers, g(1) to one, a torus knot of type
O{m/g(1), n/g(1)}. (Here is the notation I am using, cf. [Ru 4]. If K is any oriented
knotin an oriented 3-sphere, with closed tubular neighborhood N(K), let L be an
oriented simple closed curve on ON(K) which is not null-homologous on this
torus; then there are relatively prime integers p and g so that L has linking
number g with K and represents p times the class of K in H(N(K) ; Z). We then
call Lacableoftype (p,q) about K anddenoteit by K{p, q}. When cabling is
iterated, excess curly braces become semicolons. The unknot is denoted by O;a




188 L. RUDOLPH

cable about the unknot is also called a torus knot ; a cable about ... a cable about
the unknot is an iterated torus knot.) This knot type does not change when ¢ is
made smaller.

Now suppose that for all sufficiently small ¢ > 0, the k-th approximation to a
branch intersects 0D(g, €) in a knot of type O{p1, ¢, ; ---; P, q}- Considering how
we pass to the next approximation we see that there are relatively prime integers
Pr+1 and g,.,; so that, for all sufficiently small ¢ > 0, the (k+1)-st
approximation to the branch intersects 0D(g,g) in a knot of type
O{P1,q1; 3P Qi P+ 1> de+1)-  (The  difference  between  successive
approximations is 0 or a monomial ¢, t""* # 0, which contributes an
“epicycle” that for small enough € precisely creates a cabling.) In fact, p, . ,
= g(k)/g(k+1) (note that for any K and g, K{1, g} is the same knot type as K);
the formula for g, , ; is more complicated, and we won’t give it.

Consider a curve with a singular point at which there are two or more
branches. Coordinates in the ambient surface can be chosen so that each branch
differs only by a diagonal linear transformation in (z, w) from one of the form just
studied (including the non-singular case z = t,w = 0). Each branch
individually contributes an iterated torus knot to the link of the singularity,
I' n 0D(, €); and in fact they all fit together nicely. An elegant description of how
they dois given in [ E-N7]; see also, and for this section generally, [Lé] and [Mi 2]
and references cited therein.

After Burau, Zariski, et al., had established that any point of a curve in a (non-
singular) surface had local topology that was completely described by this link-
type invariant, the strictly topological investigation of singular points seems to
have languished for some decades. (The algebraic geometers, of course, had also
established that this link-type invariant—more precisely, the sequences of pairs
(pi» q;) for each branch, and the linking numbers between the iterated torus knots
of different branches, from which the whole link of the singularity can be
reconstructed—was equivalent to some numerical invariants which had long
been known and which could be detected purely algebraically, namely, the
Puiseux pairs of the various branches and the intersection multiplicity of the
pairs of branches. They also pressed forward with their investigations of
continuous invariants within the family of singularities of a given link type. But
that is another story.) However, in the late 1960’s, Milnor [ Mi 2] gave new life to
the subject when he showed that the link of a singularity was a “fibred”, or

Neuwirth-Stallings, link.
Milnor’s proof uses the round-sphere model. He shows that, if ' = C? s the

zero-locus of p(z, w) € C[z, w], p(0, 0) = 0, then for all sufficiently small ¢ > 0,
the restriction ¢ of the map arg p: C?> — I' = S : (z, w) > p(z, w)/| p(z, w) | to
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S3 — T["is the projection map of a fibration over S*. The fibre is diffeomorphic to
the interior of the surface F, = S2 n {(z, w) : p(z, w) is real and non-negative}.
(Note that the change in viewpoint from bidisk boundary to round sphere is
accompanied by a change from branch-as-parametrized-disk to branch-as-level-
set.)

We will see below that the link of a singularity is in a natural way a closed
strictly positive braid; I will give a geometric proof of the well-known fact that
such a closed braid is a fibred link.

Inspired by Milnor’s Fibration Theorem, a number of mathematicians began
investigations of knot-theoretical properties of the links of singularities. The
fibration ¢ determines an autodiffeomorphism of F, (fixed on the boundary),
unique up to isotopy relative to the boundary, which is variously called the
characteristic map, holonomy, or monodromy of the fibration; it induces an
automorphism (also called the monodromy) of the integral homology of F,,.
From the homology monodromy one can calculate the Alexander polynomial of
the link of the singularity; this was done in [L€&], where it was also shown that
two branches defined iterated torus knots in the same knot-cobordism class if
and only if they defined knots of the same knot type, the proof following from a
study of the roots of the Alexander polynomials.

I wondered how independent these distinct knot-cobordism classes might be,
in the knot-cobordism group; in particular, I asked [Ru 6] whether the equation

[Ko] = > [K;], in which [K;] represents the (non-trivial) knot-cobordism
i=1

class of the link of a singular branch, i = 0, ..., n, had any solutions other than
K, = Ky, n = 1. Litherland, using his calculations of the signatures of iterated
torus knots [Li], was able to show that there were only such trivial solutions. It
follows that, for instance, there is no family {I"}, | s'l < ¢, of (local) curves in a
small ball in C* so that I’y for s # 0 has two singular points each with a single
branch, while I'y has only one singularity, locally of the form z = t2, w = 5. Is
there another proof of the non-existence of such a deformation? (Multiplicities
would allow two cusps.)

Litherland’s formulas, of course, give all the various signatures of the links of
singularities (though the expression is in closed form only by the use of a
counting function involving “greatest integer in ...”, which makes them rather a
bore to calculate). If one lowers one’s sights, and asks only about the classical
signature (that corresponding to the root — 1 of unity), and then only about its
sign, an easy direct proof—again, using the representation of the link as a closed

positive braid—shows that the signature of the link of a singularity is positive,
[Ru 5].
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Finally, some conjectures on less algebraic knot invariants of links of
singularities should be mentioned. The Milnor number p of a singularity is the
rank of H,(F,; Z). Let us look at a single branch, for convenience. Then Milnor
conjectured [Mi 2] that p/2, which is the genus of F, and therefore (by a general
theorem about fibred links) the genus of the knot 0F ,, actually is the slice genus
of 0F,. One can make the weaker conjecture that at least p/2 is the ribbon
genus of 0F, Milnor also wondered if this integer equalled the Uber-
schneidungszahl, or gordian number, of 0F,; again the conjecture can be
weakened, if one introduces the concepts of “slice Uberschneidungszahl” and
“ribbon Uberschneidungszahl”, cf. [Ru 2]. The conjectures are true in various
cases where direct calculations can be made (e.g., the cusps z = t3, w = t3),
but I know of no general results.

§5. GLOBAL KNOT THEORY IN BRIEF—THE PROJECTIVE CASE

A curve I' = CP? can be given by its resolution r: R — T’ (a complex-
analytic map from a compact Riemann surface into CP? which is generically
one-to-one on R) or by its polynomial F(zy, z,, z,) € C[zq, 2z, z,] (the
homogeneous polynomial of least degree, not identically zero, which vanishes at
every point of I'). These suggest different kinds of knot-theoretical questions.
One can consider all curves with diffefomorphic resolutions (the requirement that
the curves have complex-analytically equivalent resolutions would be too
stringent, and is less topological), and ask how differently they can be placed in
the plane. Or one can consider families of curves, each cut out by a polynomial of
some fixed degree.

Let P, denote the projective space of the vector space of homogeneous
complex polynomials in (z,, z,, z,) of degree d. Because we never want to
consider curves with multiple components, we throw out of P, the algebraic
subset corresponding to reducible polynomials with a multiple factor; the
remaining Zariski-open subset Q, corresponds to the set of what we may call
curves of geometric degree d. If (the equivalence class of) F(z, z,, z,) belongs to
P, let Ty = {(zo: z,: 2z,) € CP?: F(zq, 24, 2,) = 0}; then F € Q, if and only if
there is an open dense set of lines in CP? which intersect I' transversely in d
distinct points.

The condition that I'; have a singular point is, of course, an algebraic
condition on F. Let S; < P, be the algebraic subset of singular curves without
multiple components, and R, = Q, — S; the Zariski-open subset of
polynomials of geometrically regular curves of geometric degree d. Any curve
I'p, F € R, 1sits own resolution (r = identity). By connecting any two F, G € R,
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with a path in R, one may construct an isotopy (which may be effected by an
ambient isotopy) between the curves I'y and I'; in CP?; so all these curves are
diffeomorphic, and of the same knot type in the plane. More generally, F € 0, lies
in a maximal connected subset of O, of polynomials G such that I'y and I'; are
ambient isotopic, through algebraic curves. These subsets form a stratification of
0, which is little understood. Zariski [Z] showed that two (singular) curves in Q,
homeomorphic and with the same type and number of singularities (cusps), were
not in the same stratum, by showing that the knot groups n,(CP*—TI';) and
m,(CP?—T';) were not isomorphic. In general, as we will see below, the knot
group cannot distinguish strata.

An interesting question (I do not know to whom it is due: I heard of it in
Dennis Sullivan’s problem seminar at M.L.T. in the summer of 1974) is whether
there are curves I'; and I'; which are ambient isotopic but not so through
algebraic curves. I know of no results here.

The incidence structure of this stratification of Q, by “algebraic ambient
isotopy types” is, especially, not understood : this is the theory of degenerations.
It can be proved that the knot group associated to a given stratum is the
homomorphic image of the knot group associated to any stratum incident to the
given stratum. Partly, it was the desire to apply this fact to the proof of the
Zariski Conjecture (see below) which led investigators for many years to the
study of some particular (unions of) strata to which we now turn.

First we recall the two simplest sorts of singularities. A cusp has a single
branch, locally given by z = t?, w = t°; the link of a cusp is a trefoil knot (of a
fixed handedness once one establishes conventions). A node has two branches,
each itself nonsingular, with distinct tangent lines; it can be locally given by the
equation zw = 0, and its link is a Hopf link of two components (linking number
+1). A curve I 1s a node curve if all its singularities (if any) are nodes, and a cusp
curve if all its singularities are either nodes or cusps.

We also recall, what we have not needed before, the notion of reducibility: a
curve I['1s reducible if its resolution is not connected ; alternatively I' . is reducible
if and only if F is reducible but square-free. A curve that is not reducible is
irreducible.

The extreme of reducibility is displayed by any F € Q, which is the product of
d linear factors. Then the curve Iz is the union of d projective lines, which we will
say (here) are in general positionif I is a node curve, that is, if no three of the lines
are concurrent. Let L, = Q, be the set of all such completely reducible curves.
Then L, is a single stratum. Let N, < Q, be the set of polynomials of node
curves; N, is a union of strata. What is now called the Severi Conjecture is the
statement that L, is incident to every stratum in N,; in other words, that every
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node curve can be degenerated to d lines in general position. We will compute the
knot group of d lines in general position below. It is, in particular, abelian.
Consequently, the truth of the Severi Conjecture would imply that the knot group
of any node curve is abelian—a statement long known as the Zariski Conjecture,
which has recently been proved true by quite other means [F-H, De]. Of course,
independent of the truth of the Severi Conjecture, one can study the union M,
< N,of those strata which actually are incident to L, Moishezon [Mo] calls M,
the mainstream of node curves in his investigation of “normal forms for braid
monodromies”. Such normal forms (when they exist) enrich the datum of the
knot group by giving it in a particularly nice presentation related to the algebraic

geometry.
Now let K,; = Q, correspond to the cusp curves. Here the knot groups need

no longer be abelian. In fact, for
F(zo, 2y, 2,) = 2323 + 42o(z5—23) + 628z,z, — 2725
in K,, a curve with three cusps and no nodes (which has resolution
riCPY = Tpi(ty: ty)— (L3t tT+2t3t, : 2t +12)),

the knot group can be computed (as by Zariski [Z] or, algebraically, by
Abhyankar [Ab]) to have the presentation (a, b : aba = bab, a* = 1, a* = b?),
making it non-abelian of order 12.

The knot groups of cusp curves have been studied because of their
application to the study and possible classification of complex (algebraic)
surfaces. In fact, if f : Y - CP? is a so-called stable finite morphism, £’ < Ythe
locus where fis not étale, ¥ = f(X’'), then X is a cusp curve.

Zariski commissioned van Kampen, in the early 1930’s, to calculate the knot
group of an arbitrary curve [vK]; van Kampen gave his solution in terms of a
certain presentation of the knot group. If I' has (geometric) degree d, then van
Kampen’s presentation has d generators xj, ..., X, which represent loops in a
fixed projective line CPL, transverse to I'; the intersection I' n CP!, contains d
points P, ..., P, and x; is a loop from a basepoint * € CP,, out to P;, around it
once counterclockwise, and back to *. One relation is then that x, ... x;, = 1. The
rest arise by carrying CPL around certain loops of lines. In fact, let CP>* be the
dual projective plane, each point of which is a line in CP?; and let I'* contain all
lines which are either tangent to I' or pass through one of its singular points.
Then I'* is a curve in CP?*. If x and CPL, are sufficiently general, then the pencil
of lines in CP? through *, which is itself a line in CP?*, will be transverse to I'*.
The (free) fundamental group of the complement of I'* in this pencil is naturally
represented in the automorphism group of the free group (x;, .., x;: x; ... X,
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— 1). The rest of the relations needed for the van Kampen presentation of
n,(CP?—T'; ¥) come, then, by declaring this representation trivial. One obtains a
finite presentation, of course, by choosing generators of the acting free group;
Moishezon’s problem of “normal forms™ is essentially the problem of making a
good choice. Several modernizations [Abe], [Che], [Cha] of van Kampen’s
proof have been published in recent years.

In a standard van Kampen presentation (where the generators of the acting
free group are free generators), each relation corresponds either to a singularity
of I or to a simple vertical tangent to I'; and (up to the action of the
corresponding free generator) each relation is of a certain canonical form, which
depends only on the closed braid type (§7) of the link of the branch(es) at the point
of T', through which the line in the pencil passes that gives the relation in
question, where this line itself is used to find the axis of the closed braid. In
particular, the knot group of a node curve always has a standard van Kampen
presentation in which each relation either sets conjugates of two x; equal (from
a simple vertical tangent) or says that two such conjugates commute (from a
node); if “conjugates” could be deleted, the Zariski Conjecture would be tri{lially
true.

There is also a great body of work on “knot groups” of curves in (compact,
smooth) complex surfaces other than CP? and on the related issue of
fundamental groups of surfaces; we cannot touch on these topics here.

§6. (GLOBAL KNOT THEORY IN BRIEF—THE AFFINE CASE

Little appears to be known about algebraic curves in affine space, from the
knot-theoretical viewpoint. The gross algebraic topology (even just homology
theory) of CP? is implicated with the quite rigid geometry; but affine space is
contractible, and on the other hand its geometry is “infinite” (for instance in the
sense that there are Lie groups of arbitrarily high dimension contained in the
group of biregular automorphisms of C?), so that the conspirators have fallen
out and neither can give away much about the other.

One might think, for example, to study the embedding of a curve I" in C? by
first embedding C? itself into CP2. Then the affine complement C2 — T becomes
the projective complement CP? — ('UCPL), where T U CPY, is a (reducible)
projective algebraic curve. The obstacle to this program is the unfortunate fact
that C?, just as an algebraic surface, without distinguished coordinates, is not
uniquely embedded as CP? — CP.. Any biregular automorphism of C? (in
particular, one of the vast majority which cannot be extended biregularly to CP?)
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will move I' around, and so the configuration of I' U CP} is not determined by
the embedding of I' in C2. (For instance, though the geometric number of points
at infinity on I' is determined by I', the algebraic intersection number of the
closure of I" with the line at infinity can be made arbitrarily large. Likewise the
local singularities at infinity are not determined by the affine curve.)

The main theorems known here have been proved by Abhyankar and his
collaborators [A-M, A-S]. They are unknotting theorems, in the sense that they
take this form: “Let I" be a certain curve in C? and let i: ' - C? be any
algebraic embedding; then there is a biregular automorphism of C? returning i
to the inclusion map”. Briefly, such a curve I' cannot be knotted in C2.

However, for most of the curves they deal with, these theorems are not
genuinely topological, for the reimbedding i is required to be an embedding of T’
with its given structure as a variety, and generally there might be moduli. Only in
the original theorem [A-M] (which had been stated, but not correctly proved, by
Segre) are there no conceivable moduli, when I' is a straight line. Then the
theorem 1is this. |

THEOREM. Let T < C? be an algebraic curve without singularities,
homeomorphic to C. Then there is a biregular change of coordinates A : C?
— C? so that AU is a straight (complex ) line.

A topological proof has been given in [Ru 4]. It goes like this. One shows
(Just as for a singular point) that the intersection of I' (which we can assume to be
parametrized by z = p(t), w = q(t), p,q e C[t]) with a very large bidisk
boundary is an iterated torus knot K = O{my, n;;..;mg,n,}, with m,
= m/GCD(m, n),n; = n/GCD(m, n)ym = deg p,n = deg q. By hypothesis, K is
a slice knot. This forces K = O, in particular, one of m, nis 1. Thereafter the
argument is as in [A-M]—if (say) m; = 1 and p and g are monic, then the
biregular change of coordinates (z, w) — (z, w—z™") carries I to another curve
satisfying the hypotheses, of lower bidegree ; and so we proceed until one of z, wis
linear and the other constant.

As to analytic curves in affine space, almost nothing is known. The obvious
analogue of the Theorem above is definitely false: for it is known that the unit
disk in C can be properly analytically embedded in C* [H] ; since the disk and the
line are analytically inequivalent, no analytic change of coordinates in C? could
unknot the disk to a line. It is, however, perfectly possible that every such disk is
smoothly unknotted. Presently [ am unable even to prove that an analytic line in
C? is smoothly unknotted. '
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§7. THE MIDDLE RANGE

We return, as at the beginning of §4, to the study of intersections of curves in
C2 with round disks D* and their boundaries S;, and bidisks D(r, r,) and their
boundaries. Now the (bi)radii are no longer required to be very small.

An embedding i: (S, S) — (D¥, S}) of a surface-with-boundary S into a
round disk is a ribbon embedding provided that N o i is a Morse function without
local maxima on Int S, where N(z,w) = | z|* + | w|?; and a surface-with-
boundary S = D#, with S = S} n S, is a ribbon surface if the inclusion (S, 0S)
< (D%, S?) is isotopic through embeddings of pairs to a ribbon embedding. To
demand that a surface be ribbon is to place genuine topological restrictions on
the embedding.

A theorem of Milnor [Mi 1], specialized to our dimensions, shows that if I
— C? is a nonsingular analytic curve then for almost all choices of origin and
radius, the inclusion of (D%, I'nS?) into (DY, S?) is a ribbon embedding. A
continuity argument easily shows that for no matter what choice of origin, N | I’
has critical points, possibly degenerate, of index no greater than 1. It is easy to see
thatif I has singularities, an analogous theorem holdsfor N o r: R — [0, co[ on
the resolution. All these results generalize the Maximum Modulus Principle.
Nothing much more seems to be known about big round disks and complex
plane curves.

Turning our attention to bidisks, we let the way that they separate the
variables z and w suggest an attitude to adopt towards our curves: consider one
variable (conventionally w) as an analytic but possibly multiple-valued function
of the other.

More precisely, let E, be the space of unordered n-tuples of points of C
(duplications allowed). Then E, inherits a topology, and a structure of algebraic
variety (affine, and singular if n = 2), from its description as C"/%,, where the
symmetric group &, acts by permuting coordinates. Let E, keep its topology,
but normalize and resolve its algebraic variety structure, by using the map C”
— E, which carries (cy, .., ¢,) to {ry, .., r,} such that (w—r,)..(w—r,) = w"
+ cw"™ ' + .. + ¢,. Now any function F: X — E, can be called an n-valued
(complex ) function on X. The graph of an n-valued function on X is the
obvious subset of X x C; adjectives like “continuous”, “analytic”, “algebraic”
apply to n-valued functions in the obvious way:.

We make the convention that (if X is not discrete) the entire image F(X)
should not lie in the subset A « E, of unordered n-tuples with at least one
duplication; A is an algebraic hypersurface (irreducible, and singularifn > 3)in
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the affine space E,, called the discriminant locus. Its complement E, — Ais called
the configuration space (of n distinct points in C).

To allow infinity as a value, we could replace C by CP!, E, by CP”, and so on.

Let f(z, w) = fo(z)w" + fiz)w"~ ! + ... + f(2) € C[z, w]. Historically [Bl],
the equation f(z, w) = 0 (or equivalently the curve it defines) was said to give w
as an algebraic function of z, provided only that f(z, w) was without repeated
factors and without factors of the form z — c. (Also, of course, fo(z) # 0.) Then,
in fact, on the complement in C of the zero-locus of f,(z), the assignment
z+> {w:f(z, w) = 0}isan algebraic n-valued complex function. A zero of f,(z) is
called a pole of the algebraic function, and can be accounted for by letting infinity
be a value.

If fo(z) = 1, so that there are no poles at all, the algebraic function is entire.
More generally, if f(2), ..., f,(z) are allowed to be entire functions of z (in the usual
sense), then f(z, w) = 0 gives w as an n-valued meromorphic function ; and if also
folz) = 1, w is an entire analytic n-valued function. The graph of an n-valued
entire function is a curve (algebraic or analytic as the case may be); when there
are poles, the graph must be closed up to provide fibres over them.

Conversely, any algebraic curve in C? becomes, after almost any linear
change of coordinates, such a graph for some n. (This is not so for analytic curves,
in general.) Thus we can study plane curves by studying certain curves in E,,.

Lety < C be a simple closed curve, R the compact simply-connected region
it bounds, F : R — E, a continuous n-valued function analytic on Int R with
F(y) n A = @.Thenthereissomeradius M > Osothatthe graphof F | yliesin
the opensolid torusy x {we C:|w| < M};and this graph is a (not necessarily
connected) n-sheeted covering space of y. An application of one version of the
Maximum Modulus Principle [ G-R ] shows that actually the graph of F itself is
contained in D = R x {w:|w| < M} = C? a topological 4-ball (with
boundary 3-sphere piecewise as smooth as y). Now, F(R) n A must be finite; let
F~Y(A) < R be called the branch locus, and denoted B. One can casily see that
the graph of F in D is a 2-dimensional pseudomanifold-with-boundary (ie.,
geometric relative cycle), with any singularities lying in B x {w:|w| < M}
— Int D; its boundary in 0D is exactly the link Lwhich is the graph of F | y.
Furthermore, the graph of F is naturally oriented (by its complex structure at the
regular points), so L has a natural orientation, and the projection L— vy

preserves orientations.
At this point it is convenient to introduce braids ; a general reference is [Bi].

The braid group on n strings is the fundamental group B, = m,(E,—A; *) of
the configuration space. Let [:[0,2n] — E, — A, [0) = [2n), be a
parametrization of a loop in the configuration space. Then the graph of [ in
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[0, 2n] x Cisa geometric braid, that is, the union of disjoint arcs, on which pr, 1s
a covering projection to [0, 2r], and such that the unordered n-tuples of top and
bottom endpoints are identical; each arc is called a string. Under the map
[0,2n] x C = S! x C: (8, w)— (e, w), a geometric braid is carried to a closed
braid in the open solid torus. When S' x C is identified with the tubular
neighborhood of an unknotted circle in S3, in such a way that distinct circles S*
x {zo}and St x {z,} are (algebraically, and therefore geometrically) unlinked,
then any closed braid becomes a knot or link in S3, and it is naturally oriented.
For B e B,, any closed braid constructed in this way from a loop which
represents B is denoted P. If, conversely, L= S' x Cisan oriented link on which
pr; 1s an orientation-preserving n-sheeted covering map, then any choice of a
basepoint ¢ € S* yields a loop in E, — A, based at * = {we C:(e" w)e L},
and thus a braid Le B, = n,(E,—A; %), with (L)” = L.

Since A is irreducible, the abelianization of B, is infinite cyclic, and in fact B, is
normally generated by one element, that is, generated by a single conjugacy class.
Choose for the basepoint * of E, — A the (real) n-tuple {1, ..., n}. Let

gz, w) = <w2 — Qi+ w + (iz + 1+ i(l——Z)))‘ nﬁl (w—j)e C[z, w],

j=1
jFii+1
fori = 1,..,n — 1;andlet G;: C — E, be the n-valued function corresponding
togz,w) = 0.If R = {z:|z| < 1}, theneach G, | Ris an embedding of R as a
normal disk to A (at a regular point), with center

G(0) = {1, e b — 1,1 + %,i + %,i + 2,...,n}

on A, and basepoint G(1) = *. Giving JR its positive (counterclockwise)
orientation, we get oriented loopsin E, — A, and the homotopy class of G(JR) is
denoted by o; and called the i-th standard generator of B,.(The geometric
braids corresponding to the given construction are the standard pictures of the
o;.) The set of standard generators does, in fact, generate B,, cf. [Bi]. Each o, is
conjugate to o,. Following [Ru 2], let any braid in B, conjugate to o, be called a
positive band in B,; aloop in the configuration space represents a positive band
if and only if it is the oriented boundary of an oriented disk in E, which meets the
discriminant locus transversely in a single positive (regular) point. The inverse of
a positive band is a negative band.

An ordered k-tuple b = (b(1), ..., b(k)) of bands in B, is a band representation
of length k of the braid B(b) = b(l) - b(k). (A braid word is a band
representation where each band is a standard generator or the inverse of a
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standard generator.) Each braid has many band representations, corresponding
to the various null-homotopies, transverse to A, of a loop representing the braid
in E, — Atoapointin E,. (See [Ru 2] for a precise statement and proof.) Such a
null-homotopy gives a map of a disk into E,, transverse to A—the length of any
corresponding band representation is the geometric number of intersections of
the disk with A, and the number of positive (resp., negative) bands is the number
of positive (resp., negative) intersections with A. In particular, suppose each such
intersection is positive, so each band b(s) is positive. Then b, B(b), and the closed
braid B(b) are all called (in [Ru 1-4]) quasipositive. The closed braid L, associated
to an analytic n-valued function F and a simple closed curve y which bounds a
simply-connected region in the domain of F, is quasipositive. (If F as given is not
transverse to Ain R, almost any small translation of F in E, will become so, while
the braid type of L won’t change; and complex analytic intersections are
positive.)

Conversely, it is shown in [Ru 1] that for every quasipositive band
representation bin B,, there are an algebraic n-valued function and simple closed
curve yielding the given band representation in the manner just exposed. It is also
shown (and this is why we have excluded poles) that any type of closed braid
whatever can occur as the graph over S! of a meromorphic (algebraic) n-valued
function on C. (But note that when poles actually do occur inside the simple
closed curve, the closed braid is never the complete boundary of the piece of
analytic curveinside a bidisk ; a typical example is given by f(z, w) = zw — i ,1n
D(1, 1),y = St)

Lete: B, — Z be abelianization. Thus e(P) is the exponent sum of B, when [ is
written as a braid word in the standard generators; or more generally it is the
number of positive bands in b, minus the number of negative bands in b, when
B(b) = B. Geometrically, e() is the linking number of (any loop representing)
with A, in E,. Analytically, e(p) can be given by an integral formula, as by Laufer
[Lau], where it is called self-winding (and is generalized to links that aren’t
necessarily given as closed braids).

When b is quasipositive, e((b)) is the length of b, a fact with the following
geometric meaning. When F : R — E, is smooth and transverse to A, then the
graph of F is a smooth surface in R x C; the intersections with A correspond to
“simple vertical tangents” to the graph, and projection from the graph of F back
to R is a branched covering, with only two sheets coming together over each
branch point in R. Thus the Euler characteristic y(graph F)equals ny(R) — 1, if |
is the number of branch points. When R is a disk and F corresponds to a
quasipositive band representation b, then [ is the length of b and we recover a
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genus formula for the graph of F in terms of n, the number of components of the
boundary of the graph, and the exponent sum of the boundary. More generally,
when F is analytic, even if it is not transverse to A it will have a well-defined
positive intersection multiplicity at each point of intersection, which will equal
the number of geometric intersections of almost any small (analytic)
perturbation of F; thus its graph, which will now be a singular curve, will have
well-defined multiplicities for each singular point, and again a genus formula can
be recovered, this time involving also these multiplicities: cf. [Lau].

A very interesting subclass of the quasipositive braids consists of the positive
braids. A braid in B, is positive if it can be written as a word in the standard
generators without using their inverses, strictly positive if each of oy, .., 5,_;
actually occurs. Positive braids play an important algebraic role in the braid
group (cf. [Bi]). Closed positive braids enjoy various nice knot-theoretical
properties (cf. [St], [Ru 5]), and have turned up in diverse contexts—as knotted
orbits of some special dynamical systems [Bi-W]; and, what is relevant here, as
the links of singular points of plane curves.

Let f(z, w) € C[z, w] be squarefree, not divisible by z, and satisfy f(0, 0) = 0.
Then for ¢ > O sufficiently small, f(z, w) = 0 defines an n-valued analytic
function F: {z:]|z| < ¢} —» E, with F~1(A) = {0}. Let w,(2), ..., w,(z) be the n
numbers in F(z); then it is readily seen that the assignment z— {wyz)
—wiz): 1 <i,j<ni#j}isan n(n—1)-valued analytic function. Without
loss of generality, we may take nand e so that w,(0) = ... = w,(0) = 0,and w,(z)
— wiz) # Oforz # 0,] z| < & Now a straightforward calculation shows that
for z # 0,| z | < &, we have d(arg (w;—w,))/d(arg z) > 0. Consider the closed
braid L which is the graph of F | {z:| z| = ¢}, and the link of the singularity of
{/ = 0} at (0,0). A braid diagram for L may be obtained by projecting its
ambient solid torus S' x C onto S* x ¢®R orthogonally; for almost all  this
will be a braid diagram in general position, from which a braid word may be read
offin the usual way ; and the signs of the crossings are precisely determined as the
signs at the appropriate points of d(arg (w; —w)))/d6. Since 8 = arg z, the link of
asingularity is a positive closed braid. In fact, it can be seen to be strictly positive ;
for if it were not, it would be a split link, in particular it would have components
with zero algebraic linking—but the linking number of two components of the
link of a singularity is the intersection number of the corresponding branches,
and s strictly positive.

It is known that a strictly positive closed braid is a fibred link, cf. [St], [Bi-
W], which provides another proof (in this dimension) of Milnor’s Fibration
Theorem (that the link of a singularity is fibred—Milnor, of course, gives an
actual analytic formula for the fibration). Here is a simple proof which
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FIGURE 1| (n=4)

geometrically constructs a fibration of the complement of a strictly positive
closed braid. Let p: X — C be the n-sheeted branched covering with branch
locus {1, .., n — 1}, where the permutation at j is the transposition (j j+1).
Then X is homeomorphic to C again. For concreteness, we realize p as in
Figure 1:cuts C; = {w:Rew = j,Imw = 0} are made in the base space; we
coordinate X so that the singular point of p~1(j) is j, and so that {z : Re z = j} is

-1
one component of p~ *(C;); then the components of p~ (C— U C)) are the sets
=1

J

X, ={z:Rez< 1}, X, ={z:1 <Rez<2},.,.X,={z:n—-1< Rez}‘,

known in the classical style as sheets of the branched cover. Now if we consider
E, — A to be the configuration space of X, the inverse of the covering map
defines a continuous function from C — {1,..,n — 1} into E, — A, inducing a
homomorphism from the free group n,(C — {1, .., n — 1}; 0)to the braid group
m(E, — A; p~*(0)). One readily .checks that this homomorphism is onto,
carrying the obvious free generator x; of the free group (Figure 2) to the standard
generator o; € B,. Let v = xj, ... X;4y be any strictly positive word in

Xis oy Xg— 1p B = Gji1) " Ojwy = (p_l)*(v)

FIGURE 2 (n=4)

2 1) x(x2) = O3
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its strictly positive image in B,. We use v to construct an auxiliary closed braid
in S' x C, the closure of v = A, jq)-. Ay jay € Bus1, Where A ;
= (04 .. 0;_1)03(0 ... 0;_4) " lis one of the standard generators 4, ; of the pure
braid group (cf. [ Bi] or see below). Now, v’ can be realized as a geometric braid in
two special ways: the first string can be made to wind in and out among the
others, which are all straight ; or the first string may be made straight, while the
others wind around it in a succession of loops (Figure 3). On the first

Y ==

J

]
A\

jl

. FIGURE 3 (n=4)

v = Xlexl.X3

interpretation, identifying the straight strings with [0, 2n] x {1, ., n — 1}, the
winding first string becomes the graph of a loop

I+ ([0, 2], {0, 2n}) — (C — {1, .., n — 1},0})

in the homotopy class v; and its inverse image under the branched covering idg:
x p:S' x X - S x Cis a geometric braid representing B. On the second
interpretation, identifying the single straight string with [0, 2r] x {0}, and
taking care that each other string winds monotonically around this axis, the
fibration of S' x (C — {0}) over S by (e”, w) — arg w lifts back through the
branched covering to a fibration of (S! x X) — P over S. (The strictness is used
at this point, to ensure that in fact there is a non-zero winding number for each
string. Positivity, however, could be weakened to “homogeneity” in the sense of
[St].) There is no trouble “at infinity”, so that the fibration can be extended over
allof S* — PB. Note that the fibre surface for B is the union of n disks with a surface
that is the cover of an annulus branched at e(B) points, so it has Euler

L’Enseignement mathém., t. XXIX, fasc. 3-4. 14
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characteristic n — ¢(P) and hence (being connected) genusg = 1 — %(n — e(P)
+ ¢ if B has ¢ components. This is the same genus formula as before when the
link of a singularity is considered.

- Besides exponent sum, there are other representations of B, with applications
here. First recall the permutation representation n: B, — &, which takes o; to
G j+1),j = 1,..,n — 1. The kernel ker = is the group of pure braids; it is the

fundamental group of the space of ordered n-tuples of distinct complex
numbers. Let S, be the free abelian group of rank En(n—l) consisting of

symmetric n-by-n integer matrices with 0 diagonal. Now, in general, a cycle in
n(B) corresponds to a component of B; and in particular the closure of a pure
braid consists of n (unknotted) components which are naturally ordered 1, ..., n.
Define A : ker n — S, by setting A(B); ;equal to twice the linking number of the i-
th and j-th components of B, for B pure. These representations are combined in
o: B, - S, x &, wherein the semidirect product %, acts on S, by conjugation
with the standard permutation matrices, and

o(c;) = ([Bi,i+1 + 6;4 1, (i i+1))>i =1,.,n—1.

Let &, act diagonally on {1, .., n}?, and let | x | - (i, j) denote the orbit of (the
cyclic subgroup generated by) x € &, on (i, j). Then for

i # J,BeB, of) = ([apq]’ x) J

the sum > a,, 1s an integer invariant of 3, and appropriate sums of such
(P, @)lx| @, J)
invariants are conjugacy class invariants. In particular, when n(B) is an n-cycle

(so that B is a knot), such a conjugacy class invariant arises by summing over
pairs (i, j) with a fixed constant difference modulo n: and this may be seen to be
precisely twice one of the self-windings sw; introduced by Laufer [Lau]. Laufer
showed that the sw,(i = 1, ..., n) suffice to distinguish the knot types of links of
unibranch singularities; in fact, he showed that the Puiseux pairs of a branch
could be reconstructed from the self-windings. Simple examples show that sw

= e and the sw; (and even their slight generalizations just given) can’t tell apart
all quasipositive, or even all positive, closed braids. It is interesting to speculate
that there might be reasonable representations A, of ker A, A, ofker A,, ..., which
could somehow be combined into a (faithful?) representation of B, in which
quasipositivity might show up more clearly than it does in B, itself. (Is there any
relation to Laufer’s other numerical link invariants [Lau 2]? Perhaps A, can be
constructed out of linking numbers in branched covers of §°, branched over one
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of the—unknotted!'— components of a pure link in which every linking number
is 0; and so on.)

As a final topic, we return to “knot groups” of plane curves and related
matters, from a braid-theoretical point of view.

As before, let R be the compact region of C bounded by a simple closed curve
v. Let S be a compact oriented surface-with-boundary. Then amap f: S — R
x C, or its image f(S), is a braided surface of degree n = 1 provided that
pri < f:S — R is a branched covering of degree n: f is a smooth, analytic, or
algebraic braided surface if f(S) is smooth, complex analytic, or (complex)
algebraic. Let V', < S and V, < R denote the branch sets of pr; o f, finite sets
avoiding @S and vy; and let W, V, = W, = R, be the set {zeR:({z}
x C) 0 f(S) contains fewer than n points}. One can interpret f ~' as a map, as
smooth as f, from R into E,. As remarked earlier, when f ! is transverse to A,
then W, = V,and f is a smooth braided surface; but f can be smooth without
7! being transverse to A. (Consider non-generic “vertical” tangencies.) Nor
need W, be finite, but we will always assume that it is, even when f~1is not
transverse to A. With this proviso, every braided surface f isatopological (even
p.l.) immersion, though not necessarily locally flat. To see this, define the local
braid of f at ze R, denoted B, , e B,, to be the homotopy class of the loop 6
— [T z+¢€®),0 £ 0 < 2r, for any sufficiently small € > 0. (Since the
basepoints of the various copies of B, vary with z, B, . is really only defined up to
conjugacy.) This is well-defined when W, is finite (or even as long as z is not an
accumulation point of W); of course B, , = 1if and only if ze R — W,. For
ze W, B .- has strictly fewer than n components, which will be grouped into
possibly yet fewer unsplittable links. Then f(S), above z, is embedded in R x C
like disjoint cones (with distinct vertices) on the unsplittable sublinks of Bf, .. For
example, if z € V} lies under only a simple vertical tangent, then B, , is a band
(positive or negative), which might as well be taken to be 6{! € B,, and B, ,is a
split link of n — 1 unknotted components.

Recall (cf. [Bi]) that B, acts (faithfully) as a group of automorphisms of the
free group F, of rank n. Explicitly, if F, = n,(C — {wy, .., W,}; W), the acting B,
is realized as my(E, — A; {w,, .., w,}); on standard free generators x,, .., x, of F,
(positively oriented meridians around wy, ..., w,), the action is

_ -1
XiO0p = XiXi11X; 5 Xi410; = X, X;0; = X;

forj # i,i + 1. Pick a basepoint z, € R — W, and paths from z, to the points
Zy, - 2 Of W, By these paths, all the local braids can be taken to lie in one and

the same brald group, namely, n,(E, — A; pry(({z,} x C)n f(S ))}—denote by
B’ . these braids. (Simple vertical tangents, for instance, will now give braids B, ,
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which are bands that cannot all at once be taken to be o 1.) It may now be seen
that

(X15 e X2 XiBy ., = X0 = 1, .,n, 2 W))

is a presentation of the “knot group” m,((R x C) — f(S); *). When f is algebraic
and y1is a very large circle this is really van Kampen’s presentation (except for the
relation “at infinity” to which we will return shortly).

A finite presentation of a group, in which each relation sets one generator
equal to some conjugate of another generator, is a Wirtinger presentation; a
group with a Wirtinger presentation is a Wirtinger group. Any Wirtinger group
has a simple Wirtinger presentation, in which each relation is of the form x;x ;x; *
= X, for not necessarily distinct generators x;, x;, x,. After possibly adding more
generators, and renumbering them, one can assume that each relation is of one of
the two forms x; = x;,; or x; = x;x;,,x; ', i < j. These two relations are
contributed, respectively, by the action on F, of

(0iCi4+1 .. 05-1)0(0,0;41 .. 05_;) e = +1lor —1.

So every Wirtinger group has a simple Wirtinger presentation which is the van
Kampen presentation of the fundamental group m;({(z, w)e C*:|z| < 1}
— f(S); *) for some smooth braided surface f(S) with boundary the closure of a

quasipositive braid (the product of the bands used to achieve the desired
relations); and actually f(S) can be taken to be non-singular complex analytic.

So we see that the class of knot groups of complex analytic curves in a bidisk is
exactly the class of Wirtinger groups, a refinement [Ru 2] of results of Yajima
[Ya] and Johnson [Jo] (who weren’t concerned with complex analytic
structures).

If one wishes to investigate knot groups for smooth braided surfaces of fixed
topological type, one still loses nothing by demanding that the surfaces be
complex curves: if f(S)is smooth, by slight jiggling f ~! becomes transverse to A
while f(S) moves by an isotopy; then the braids 8/, , are all bands, positive or
negative ; changing all the signs to positive reimbeds S as a quasipositive braided
surface, and therefore, up to isotopy, a complex analytic curve; but it does not
change the knot group at all, since xB~! = x is the same relation as x = xB.

So far, everything has been phrased for braided surfaces over a compact
(simply-connected) region R. If we replace R by all of C, much stays the same ; itis
now appropriate to let W, be infinite, but discrete. It ceases to be clear, however,
(at least to this author at the present time) that a quasipositive “infinite band
representation” can always be realized by an entire n-valued analytic function.
Also, as observed in [Ru 1], for compact R, at least as far as the boundary closed
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braid is concerned, every n-valued analytic function can be assumed to be the
restriction of an entire n-valued algebraic function ; this is certainly not true for
R = C, because the “local braid at infinity” B, , of an algebraic braided surface
over C—i.e., the braid over a simple closed curve large enough to enclose V;
entirely—is severely restricted. Its closure, for instance, is an iterated torus link
(as we saw in the proof of the theorem of Abhyankar and Moh, § 6). And if the
projective completion of the algebraic braided surface (algebraic curve), in CP?,
meets the line at infinitely transversely, one actually has B 7. the union of n
circles of the Hopf fibration S* — CP'—the braid B, . is the generator of the
(infinite cyclic) center of B,(n> 3), which bears the name A* (unfortunately, in this
context), cf. [Bi]. Any knot group of a projective plane curve, then, can be
presented by starting with an expression of A? as a product B(I) -~ B(k) in B,
where each B(i) is conjugate in B, to some local braid associated to the link of a
singularity (including non-trivial local braids which are associated to the
unknotted link of a regular point!), then forming the presentation

(X150 Xyt XXX, = 1, x;B() = xp i =1,.,nj=1,.,k.

Forinstance, a quasipositive band representation of A% (each B(i) a positive band,
that is, conjugate to the nontrivial local braid o, associated to a simple vertical
tangent) corresponds to a non-singular curve of degree n, and presents Z/nZ. A
quasipositive nodal band representation, where each B(i) is either a pesitive band
or the square of a positive band, corresponds to a node curve; if some B(i) are
cubes of positive bands, others squares or first powers, we have a cuspidal band
representation; and so on. There is a mapping from the set of strata of Q, (§ 5)
into a hierarchy of “types of expressions” of A? e B, as products B(]) - B(k);
Moishezon’s problem of normal forms is a first step in the study of this mapping,
about which little seems to be known. Is it onto? An affirmative answer would be
a strong generalization of Riemann’s Existence Theorem. (Again, cf. [Mo].)

We conclude with three examples. First recall some formulas for A2 in B, (cf.
[Bi] or [Mo]): A* = (6,0,0,_)"; also, A? is pure, and in terms of the
standard generators

Ajj = (67705 1) 0,;(0';'"'0'1‘—1)_1.,1 <i<jsn—1,
of the pure braid group,
2
A=Ay Aypz A Ag -1 Agp Ap—1n—1-

Example 1. Write A> = B(I) = B(n*—n), B()) = Bi moa n— 1, @S just given. It is
easy to see that this expression for A% does in fact correspond to a non-singular
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curve of degree n. The corresponding presentation of the knot group of the curve
includes among its relations x;x, - x, = 1 and each equality x; = x;,, i
= 1, .., n—1. 5o the knot group is a quotient of Z/nZ ; but a simple homological
argument shows that Z/nZ is the abelianization of the knot group, so the two
groups are equal.

Example 2. Write A*> = B(I) - B((n*—n)/2), where B(i) = 4,,
Each pair (p, q) arises. The relations in the corresponding presentation say that
for each pair p, g the generators x,, x,, , commute. (For instance, the action of

as above.

_ A2 ; 2 _ ~1 _ —1,-1
Apy = oy on F,is x;07 = (X(X5X{ )0y = X XoX1X; Xi

2 = § .
X2O-1 = x10'1 — xlxle ) xk01 == xk, k ?é-' 1,2,

and the relations x; = x;x,x;x; 'x; ! and x, = x;x,x;! both say x,
commutes with x,.) The group is free abelian of rank n— 1. Moishezon sketches a
proof that this presentation does arise geometrically; another proof could be
given by the method of [Ru 1].

Example 3. For n = 4, A> = 6,0,0,6,6,0;6,6,0;0,0,0;. Let us
suppress the symbol o, raise subscripts (so k denotes &,), and write, for instance,
234 to mean 6,05 '5,6,0; *. Then, by dogged manipulation, A2 € B, can be
worked into the form (3-3:3) (321) (1-1-1) (2) (1-1-1) (321), the product of three
positive bands and three “cusps” (cubes of positive bands). The corresponding
presentation, before adjoining the relation at infinity, presents the group of the 5-
twist spun trefoil (as has been remarked by Dewitt Sumners) ; with that relation,
X1X,X3X, = 1, the group becomes the non-abelian group of order 12, (a, b: aba
=bab, a* =1, a* = b?). This is the correct group [Z] for a tricuspidal cubic curve,
and presumably the given “quasipositive cuspidal band representation” really
arises geometrically, but I have not had the courage to check this.—Similarly, for

n=6,A = 123451234123121, which can be written as (1-1-1) (T"'l) (3-3-3) (343)
(5:5-5) (_13—32) (ﬁ4) (?3) (*5); the presentation for the square of this, with the
relation at infinity, is at an intermediate stage (x,, X,, X3, X4, X5, Xg: X1 =X3= X5,
Xy =X4=Xg X XoX; =X,X1X, X;X,X3X4XsXc=1) which becomes (a, b: a*=b>
= 1), the group given in [Z] for a sextic with six cusps on a conic. On the other
hand, a less symmetrical way to write A% € By is as (2223) (4) (5) (2:2:2)! (2:2-2) (32)
(4312) (1-1-1) (*321) (445) - (**23) (4-44) (1-1-1) (*123)2 (1-1-1) (**1) (2), which
presents the abelian group Z/6Z which [Z] gives for a sextic with six cusps not all
on the same conic.
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