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GROUPE DE WITT 37

Remarque. Le choix d'un be Hom (U, U¥) de la proposition 7 pour
obtenir une involution sur D; est en fait irrelevant : deux choix différents peuvent
donner lieu a des involutions non isomorphes mais aux mémes groupes de Witt,
puisque tous deux sont isomorphes a W(Ae;)sii < s,a W_ (Ae;)sis < i <.

§ 3. PRESENTATION DU GROUPE DE WITT HERMITIEN
D'UN CORPS GAUCHE

Soit D un corps gauche muni d’une involution qui n’est pas forcément
I'identité sur le centre et WH (D, ) le groupe de Witt des e-formes hermitiennes.
(Définition au § 2.)

Siae D, = {xe D | X = ex}, < a > désigne le D espace vectoriel & gauche
de dimension un De, muni de la forme g-hermitienne e - e = a.

Au corollaire 6 nous avons montré que ’homomorphisme de groupes
abéliens ¢ défini par:

¢:Z[D;] > WH(D, )

[a]— < a >

est surjectif. Z[D,] désigne le groupe abélien libre sur les éléments de D_, notés
alors entre crochets. |

THEOREME 4. Le noyau de ¢ est égal au sous groupe N de Z[D;]
engendré par

1) [a] — [xa;], Vae D, VxeD
2) [a] + [—a]l, Vae D,

3) [a] + [b] — [a+b] — [a(a+b)~'b],
Va,be D, aveca + b # 0.

Ce theoréme fournit donc une présentation par générateurs et relations de
WH (D, 7).

Nous allons d’abord montrer un résultat intermédiaire.
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PROPOSITION 8. Le noyau de ¢ est égal au sous groupe P de Z[D,]
engendré par

1) [a] — [xa;], YVae D, Vxe D
2) [a] + [—al, Vae D,
3) [a] + [b] — [c] — [d], Va, b, ¢, d € D; tels que

<a>l<b>~<c>1<d>.

Puis nous verrons que P = N, ce qui achévera la preuve du théoréme 4.

Ilest clairque P < Ker @:ilsuffitde remarquerque < a > ~ < xax >,et
que < a > 1 < —a > est neutre.
Le fait que Ker @ = P repose sur le lemme suivant:

LEMME. Soient ay, .., a, € D, et supposons que la forme e-hermitienne
<a, > 1 .. 1 < a, > estisotrope (c’est-a-dire il existe un vecteur non nul x
avec x - x = 0).

Il existe alors ¢y, ..., ¢,, € D,, m < n, tels que

n m
Y [ad =) [c;] mod P.
1 1
Preuve. Silon écrit x = x,e, + ... + x, ¢, Ou ¢; est la base de < a; >,
x+x = 0 se traduit par x, a; x; + ... + x,a,x, = 0.
Eliminons les sommands nuls et renumérotons:

(*): x, a; _;1 + ... + X, a ;c_k = 0, avec k > 2 puisque x # 0.

Si k = 2, on obtient
Z [a;]] = [a;] — [x1a1;1] + [X1a1;1] + [Xza,z;z]
1

+ [a,] — [Xzaz;z] + 2::[611']

S [4;] mod P

et le lemme est démontre.
Supposons par récurrence que le lemme est vrai chaque fois que I'isotropie
nous fournit une relation (*) de longueur k — 1.

@ Nous avons x; a; x; + ... + x, a, x, = O.
;
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Posons b; = x, a, ;1 + x, a, ;2. Sib, = 0,T’hypothése de recurrence dit
que le lemme est vrai. Si b; # 0, considérons la forme € hermitienne

<b >l <ay>1L.1Ll<a,>.

Elle est isotrope avec b; + x3 a; ;3 + .. + X q ;k = 0.
Par récurrence, [b;] + [a3] + ... + [a,] = i::[cj] mod P,m < n — L.
Or 1l existe b, € D, avec

<a, >1l<ay,>>~<b, >1L<b,>,

puisque < b, > est un sous espace vectoriel non dégénéré (engendre par x, e,
+ x5 e,)de < a; > L < a, >.llsuffitde prendre son orthogonal pour obtenir
< b, >.

Donc n n
[a;] + [a,] + Z [a;] = [b,] + [b,] + Z [a;] mod P,

grace aux genérateurs de type 3) de P.
~Mais

[b.] + [6,] + 3 [a] = [by] + 3 [¢;] mod P,

et m + 1 < n, puisque 'on avait m < n — 1. ]

Montrons maintenant Ker @ = P, ce qui prouve la proposition 8.
Si A = Y n;[a;] € Ker ¢, écrivons

i

)\':;[Uk] + 2 = [Vl = ;[Uk] + 2. [V (mod P).

1l suffit donc de montrer que si ) [a;] € Ker ¢, alors Y [a;] = 0 mod P.
T T

n

1 < a; > est neutre, en particulier isotrope. Le lemme dit que
) |

;[ai] = ). [¢;] (mod P)
1
et avec m < n.
Mais ) [c;] est aussi dans le noyau de o, puisque P < Ker ¢. Le procédé
1

peut €tre reccommencé, avec les longueurs des expressions diminuant vraiment a
chaque application.

D'od Y [4a;] = 0 (mod P). | 0
1
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Il nous reste a voir que N = P pour obtenir le théoréme 4.

Pour montrer que N < P, il suffit de voir que les générateurs de type 3) de N
sont dans P. En fait ce sont directement des générateurs de type 3) de P, c’est-a-
dire:

Assertion. <a> L1l <b>=>~<a+b>1 <ala+b)~'h>,

Va,be D, avec a + b # 0.

_ 1 bc i
Preuve. Soit A =< ), ou ¢ = (a+b)~* Son inverse est A’

-1 ac
ac —bc
= ( ) En effet,

1 1
A — ac + bc 0 _ 1 O.
0 bc + ac 0 1

A réalise donc une surjection entre deux D-espaces de dimension 2, A est donc
aussi injective et A'’A = Id. Vérifions le quand méme:

(ac + bc  bcac — acbc>

A'A =
0 bc + ac

Il est effectivement vrai que bca — acb = 0, pour tout a,be D aveca
+b#0etc = (a+b)™':
bca — acb = bca + bcb — beb — acb
= b(ca+cb) — (bc+ac)b
=b—b=0.

Cette matrice A4 réalise 'isomorphisme entre les deux formes e-hermitiennes:
4 a 0 Z _ a+b 0
0 b 0 acb

_ 1 ¢b .
Vérification. A = < { ‘ )puisque bc = cb = €*cb = cb.
- —1 ca

a+b acb—bca)

A'BA =
<bca — acb bcacb + acbca

b 0 |
En utilisant le fait que acb = bca, on obtient bien <a N ) . O ¢

0 ach
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[l s’agit maintenant de montrer que P N, probléme qui se réduit a montrer
que, si <a> 1 <b>=~<c> L1 <d>, lexpression [a] + [b] — [c]
— [d] est nulle modulo N.

Preuve. c est une valeur delaforme < a > 1 < b >.Ilexiste donc x et y

non simultanément nuls tels que ¢ = xax + y b y.

Cas 1. Six # Oety # 0. Nous avons que

<a>l<b>1l<—c>1l< —d>

est neutre. Donc
<a>1l<b>1lc< —xa;—yb;>i<—d>

est neutre. Mais

<a>~<xax > et <b> ~ <yb;>
Ainsi
(*): < xax > L < yb; > 1 < —xax — yb; > | < —d > est neutre.
D’autre part, I’assertion que nous venons prouver nous dit que

< xax > L < yb} > ~ < xax + yb} > 1 < xa;(xa;+yb;)‘1yb§ > .

(Ce dernier sommand orthogonal sera note < g >.)

En rajoutant < —xax — yb; > des deux cotés on obtient

<xa;>L<yb}>L<—xa;—yb}>:<xa;c_+yb;>L

<—xa;—yb;>L<g>

Or < xax + yb; > 1 < —xax — yb; > est neutre. Par la définition
méme de I’équivalence de WH (D, ~) on obtient

<xa;>J_<yb}>L<—xa;—yb}>~<g>.

En revenant maintenant a (*) on trouve: < g > L < —d > est neutre. Ce qui
veut dire qu’il existe un vecteur non nul ue; + ve, avec (ue, + ve,) - (ue; + ve,)
= 0, c’est-a-dire que

ugu — vdv = 0=>d = v 'uguv ' = sgs

pour s = v~ tu.

Nous pouvons maintenant prouver que
[a] + [b] — [c] — [d] = 0 mod N:

[a] + [b] — [c] — [d] = [xax] + [yby] — [xax + yby] — [d]
= [g] — [d] = [g] — [s95] = 0 (mod N).
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Cas 2. S1 y=0. De toute fagon <a> 1l <b>1 < —c> 1
< —d > est neutre, donc

<a>1l<b>1l< —xax>1 < —d>

est neutre. Or < a > 1 < —xax > est neutre, donc < b > 1 < —d > est

neutre et nous venons de voir que dans ce cas il existe s avec d = sbs. D’ou
la] + [b] — [c] — [d] = 0 (mod N).

Cas 3. St x = 0, qui se traite comme le cas 2. ]

Exemple. Soit D I'algébre de quaternions sur un corps k de caractéristique
differente de deux, engendré par les éléments i et j vérifiant i* = o, j2 = B,
Ij = —jiou a et P sont des éléments de k qui ne sont pas des carrés,

D=k®ki®kjPkij.

Nous voulons de plus que D soit un corps gauche, c’est-a-dire que la forme
bilinéaire de matrice diagonale < 1, —a, — B, aff > ne représente pas 0.

Soit ~ Iinvolution standard de D: i = —i, j = —j. Cette involution est
d’ailleurs definie sans référence a la base de quaternions de D choisie: soit I
= {zeD |z*eket z¢k}, I’'ensemble des imaginaires purs. L’involution
standard change le signe des imaginaires purs et laisse fixe k.

Il est facile de voir que toute autre involution ~ s’obtient de la fagon suivante::
soit a € I et complétons le en une base de quaternions, c’est-a-dire en un b € [
avecab = —ba. L’involution estdonnée pard = —a,b = b. Deux involutions
ainsi construites avec a et a’ € I sont isomorphes si et seulement si les sous corps
commutatifs maximaux k + ka et k + ka’ sont isomorphes.

Comme le remarque D. W. LEwIs, A note on hermitian and quadratic forms,
Bull. Iond. Math. Soc., 11 (1979), les formes hermitiennes sur D pour ~ sont en
bijection avec les formes antihermitiennes sur D pour I'involution standard. (La
bijection est donnée par la multiplication par a.) Cela fournit un isomorphisme
WH_ (D, ) ~ WH, (D, ). De méme WH (D, ) ~ WH_,(D, 7).

La présentation de WH (D, =) peut étre précisée pour D un corps de
quaternions: '

WH . (D, ") = Z[k']/N,

ou N, est le sous groupe de Z[k'] engendré par
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1) [a] — [axx],Vaek,VxeD

2) [a]l + [—al,Vaek

3) [a] + [b] — [a + b] — [abla+b)],
Va,bek avec a+ b # 0.

WH_ (D, ") = Z[I]/N -,
ou N _, est le sous groupe de Z[I] engendre par

1) [a] — [xax],Yael,VxeD

2) [a]l + [—al,Vael

3) [a] + [b] — [a + b] — [ala+Db)"'h],
Va,bel avec a+ b #0.

Lorsque D = H le corps des quaternions sur les réels, (k = R, i* = j2 =

—1), il est clair que WH_ (H, ") = Z. (La relation 2 identifie les deux
générateurs de Z[R'/R?].)

Pour obtenir WH _,(H, ~) il suffit de remarquer que xix décrit tous les
imaginaires purs lorsque x parcourt H. Un calcul simple montre que cela revient
a trouver deux nombres complexes dont la difference des normes et le produit
sont fixeés, ce qui est toujours possible.

Ainsile nombre de générateurs de WH _ | (H, ~)est réduit a un, et la relation 2)
dit qu’il est d’ordre 2. WH_,(H, ~) = Z/2Z.

S1 maintenant k est un corps local de caractéristique différente de deux, il est

connu qu’il existe un seul corps de quaternions D sur k et que {x;, xeD} = k.
Nous en tirons immeédiatement que WH . (D, ~) = Z/2Z.

( Regu le 3 juin 1982 )

Claude Cibils

Section de Mathématique
Université de Genéve
Case 124

CH-1211 Geneve 24
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