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Remarque. Le choix d'un b e HomA(Uh Uf de la proposition 7 pour
obtenir une involution sur D, est en fait irrelevant : deux choix différents peuvent
donner lieu à des involutions non isomorphes mais aux mêmes groupes de Witt,
puisque tous deux sont isomorphes à W^Ae^) si i < s, à W_t(Aei) si s < i ^ r.

§ 3. Présentation du groupe de Witt hermitien
d'un corps gauche

Soit D un corps gauche muni d'une involution qui n'est pas forcément
l'identité sur le centre et WHe(D, ") le groupe de Witt des e-formes hermitiennes.

(Définition au § 2.)

Si a e De fx e D | x ex}, < a > désigne le D espace vectoriel à gauche
de dimension un De, muni de la forme s-hermitienne e * e a.

Au corollaire 6 nous avons montré que l'homomorphisme de groupes
abéliens cp défini par :

9 : Z[De]' -> WHe(D, ")

[a] h-> < a >

est surjectif. Z[£>E] désigne le groupe abélien libre sur les éléments de Dc, notés
alors entre crochets.

Théorème 4. Le noyau de (p est égal au sous groupe N de Z[D£]
engendré par

1) M — [xux], Ma e De, Vx e D

2) M + [ —u], Vu g £>e

3) M + M - [tf + h] - +
Ma, b e De avec a + b ^ 0

Ce théorème fournit donc une présentation par générateurs et relations de
WH£(D, -).

Nous allons d'abord montrer un résultat intermédiaire.
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Proposition 8. Le noyau de cp est égal au sous groupe P de Z[De]
engendré par

1) M — [xax], Va g De, Vx g D

2) M + [ — a], Va g De

3) M + M — M — M, Va, b,c,de De tels que

<a>±<fr>~<c>±<d>.
Puis nous verrons que P N, ce qui achèvera la preuve du théorème 4.

Il est clair que P c Ker (p : il suffit de remarquer que < a > ~ < xax >, et

que <a>_L<—a>est neutre.
Le fait que Ker cp c- P repose sur le lemme suivant :

Lemme. Soient au an g De et supposons que la forme e-hermitienne

< al > 1 _L < an > est isotrope (c'est-à-dire il existe un vecteur non nul x
avec x x 0).

Il existe alors cu cm g Z)e, m < n, tels que

n m

I M X [c,] mod
1 1

Preuve. Si l'on écrit x x, c, -h + x„ e„, où ei est la base de < at >,
x - x 0 se traduit par x1a1x1 + + xn an xn 0.

Eliminons les sommands nuls et renumérotons :

(*): x1 a1 x1 + + xk ak xk 0, avec k ^ 2 puisque x ^ 0.

Si k 2, on obtient

n

IM C«il - [>iai*i] + [xiaj.jCj] + [x2a2x2]
1

n

+ ~ + X M
3

n

Z moc*
3

et le lemme est démontré.

Supposons par récurrence que le lemme est vrai chaque fois que l'isotropie
nous fournit une relation (*) de longueur k — 1.

Nous avons x1 al Xi + + xk ak xk 0.
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Posons b1 xx al x1 + x2 a2 x2. Si b1 0, l'hypothèse de recurrence dit

que le lemme est vrai. Si b1 / 0, considérons la forme 8 hermitienne

< bx > 1 < a3 > 1 1 < an >

Elle est isotrope avec bx + x3 a3 x3 + + xk ak xk 0.
m

Par récurrence, [Pq] + [a3] + + [aj Y [<q] mod P, m < n — 1.

î

Or il existe b2 e Dz avec

<u1>±<u2>~<h1>±<h2>,
puisque < bx > est un sous espace vectoriel non dégénéré (engendré par x1 e%

+ x2 e2) de < a 1 > J_ < a2 >. Il suffit de prendre son orthogonal pour obtenir
< b2 >.

Donc n n

[ai] + M + I M Or] + [fc2] + E M mod
3 3

grâce aux générateurs de type 3) de P.

Mais
n m

Oi] + Oz] + E M 02] + E Oj] mod p '
3 3

et m + 1 < n, puisque l'on avait m < n — 1.

Montrons maintenant Ker (p c P, ce qui prouve la proposition 8.

Si X Ym Lai] e Ker cp, écrivons
i

x e tu] + e - ra i lui + Et-m (mod F).
j k j

n n

Il suffit donc de montrer que si E M e Ker cp, alors E M 0 mod
i i

n

1 < a{ > est neutre, en particulier isotrope. Le lemme dit que
i

n m

E M E Oj] (mod
1 1

et avec m < n.
m

Mais E [c;] est aussi dans le noyau de cp, puisque c Ker cp. Le procédé

peut être recommencé, avec les longueurs des expressions diminuant vraiment à

chaque application.
n

D'où Y lai] 0 (mod P). [—I
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Il nous reste à voir que N P pour obtenir le théorème 4.

Pour montrer que N c P, il suffit de voir que les générateurs de type 3) de N
sont dans P. En fait ce sont directement des générateurs de type 3) de P, c'est-à-

dire:

Assertion. < a > 1 < b > ~ < a + 6 > ± < a(a + 6)~ *6 >
Va, b e Z)e, avec a + b + 0.

Preuve. Soit A
* ^

où c — (a + b) h Son inverse est A
-1 ac

ac —bc

1 1
En effet,

AA'
ac + bc 0 \ /1 0

0 bc + ac) \0 1

A réalise donc une surjection entre deux D-espaces de dimension 2, A est donc

aussi injective et AA là. Vérifions le quand même:

(ac + bc bcac — acbc\

0 bc + ac
AA

Il est effectivement vrai que bca — acb 0, pour tout a,beD' avec a

+ b =A 0 et c (a -h b) ~1 :

bca — acb bca + beb — beb — acb

b{ca + cb) — (bc + ac)b

6-6 0.

Cette matrice A réalise l'isomorphisme entre les deux formes 8-hermitiennes :

A,(a°)A(a + b 0

\0 b) V 0 acb

Vérification. A — [
* C

puisque bc c b s2 cb cb.
-1 ca

A B A «
a + b acb — bca \

6ca — acù 6cac6 + acbcaj

(a + b 0\
En utilisant le fait que ac6 bca, on obtient bien I I.

V 0 ac6/
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Il s'agit maintenant de montrer que P c= N, problème qui se réduit à montrer

que, si <a>l<b>~<c>±<d>, l'expression [a] + [b] - [c]
— [d] est nulle modulo N.

Preuve, e est une valeur de la forme <a>JL<b>.Il existe donc x et y

non simultanément nuls tels que c x a x + y b y.

Cas 1. Si x / 0 et y # 0. Nous avons que

<a>_L<b>_L< — c > 1 < — d >
est neutre. Donc

<a>_L<b>l< — xax — yby > 1 < —d >
est neutre. Mais

< a > ~ < xax > et < b > ~ < yby >
Ainsi

(*): < xax > 1 < yby > 1 < -xax - yby > 1 < -d > est neutre.

D'autre part, l'assertion que nous venons prouver nous dit que

< xax > 1 < yby > ~ < xax + yby > 1 < xax (xax-y yby)'1 yby >

(Ce dernier sommand orthogonal sera noté < g >.)
En rajoutant < —xax — yby > des deux côtés on obtient

< xax > _L < yby > _L < —xax — yby > ~ < xax + yby > _L

< —xax — yby > _L < g >

Or < xax + yby > 1 < —xax — yby > est neutre. Par la définition
même de l'équivalence de WHZ(D, ~) on obtient

< xax > _L < yby > _L < —xax — yby > — < g >

En revenant maintenant à (*) on trouve : < g > 1 < — d > est neutre. Ce qui
veut dire qu'il existe un vecteur non nul ue1 4- ve2 avec (ue1 + ve2) ' (ue1 + ve2)

0, c'est-à-dire que

ugu — vdv 0 => d v~ 1uguv~ 1

sgs

pour s v~ xa.

Nous pouvons maintenant prouver que

[a] + [b] — [c] — [*/] 0 mod N :

M + M ~ [c] - M s [xax] + [yby] - [xax + yby] - [d]
s [gr] - M [gf] - [sgfs] 0 (mod N).
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Cas 2. Si y 0. De toute façon < a > 1 < b > 1 < — c> _L

< —d> est neutre, donc

<a>±<b>±< —xax > JL < —d >

est neutre. Or < a > 1 < —xax > est neutre, donc < b > 1 < —d>est
neutre et nous venons de voir que dans ce cas il existe s avec d sbs. D'où

[a] + [h] — [c] — [ù] 0 (mod N).

Cas 3. Si x 0, qui se traite comme le cas 2.

Exemple. Soit D l'algèbre de quaternions sur un corps k de caractéristique
différente de deux, engendré par les éléments I et j vérifiant i2 a, j2 ß,

ij —ji où a et ß sont des éléments de k qui ne sont pas des carrés,

D s* k © ki © kj © kij

Nous voulons de plus que D soit un corps gauche, c'est-à-dire que la forme
bilinéaire de matrice diagonale < 1, — oc, — ß, aß > ne représente pas 0.

Soit ~ l'involution standard de D : i —i,j —j. Cette involution est

d'ailleurs définie sans référence à la base de quaternions de D choisie: soit I
(z g D | z2 e k et z ^ /c}, l'ensemble des imaginaires purs. L'involution

standard change le signe des imaginaires purs et laisse fixe k.

Il est facile de voir que toute autre involution s'obtient de la façon suivante :

soit a e / et complétons le en une base de quaternions, c'est-à-dire en un bel
avec ab —ba. L'involution est donnée par â —a,b h. Deux involutions
ainsi construites avec azta'el sont isomorphes si et seulement si les sous corps
commutatifs maximaux k + ka et k -h ka' sont isomorphes.

Comme le remarque D. W. Lewis, A note on hermitian and quadratic forms,
Bull. Lond. Math. Soc., 11 (1979), les formes hermitiennes sur D pour

~
sont en

bijection avec les formes antihermitiennes sur D pour l'involution standard. (La
bijection est donnée par la multiplication par a.) Cela fournit un isomorphisme
WH_1{D, ~) - WH + l{D, "). De même WH + l{D, ~) ~ WH-^D, ').

La présentation de WHJJ), ~) peut être précisée pour D un corps de

quaternions :

WH+l(D, -) Z[/c']/Nj

où N1 est le sous groupe de Z[fc ] engendré par
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1) M ~ [axx], Va g k\ Vx g D

2) M + [ — a], Va g k'

3) M + M - [a + b] - [afc(a + fc)]

Va, b e k' avec a + b ^ 0

WHU^D, -) ZM/iV^
où N_! est le sous groupe de Z[/] engendré par

1) [a] - [xax], Va g /, Vx g D

2) [a] + [ —a], Va g /
3) M -fi [f>] - [a -b fc] - [a(a -f

Va, bel avec a + b ^ 0

Lorsque D H le corps des quaternions sur les réels, (/c - R, /'2 j2
— 1), il est clair que WH+1(H, Z. (La relation 2 identifie les deux

générateurs de Z[R'/R'2].)

Pour obtenir WH_1(H, ~) il suflit de remarquer que xix décrit tous les

imaginaires purs lorsque x parcourt H. Un calcul simple montre que cela revient
à trouver deux nombres complexes dont la différence des normes et le produit
sont fixés, ce qui est toujours possible.

Ainsi le nombre de générateurs de ~) est réduit à un, et la relation 2)

dit qu'il est d'ordre 2. WH-^H, ") Z/2Z.

Si maintenant k est un corps local de caractéristique différente de deux, il est

connu qu'il existe un seul corps de quaternions D sur k et que {xx, x e D } k'.

Nous en tirons immédiatement que WH + 1(D, ~) Z/2Z.

Reçu le 3 juin 1982

Claude Cibils
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Université de Genève
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