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the point of G„(C + m) represented by Ker(K £(x)). This gives a holomorphic

map mE\M G„(Cn +
m) such that the pullback of t;m by means of is

isomorphic to E, m — E. It *s universality properties such as this one which

account for the importance of the bundles E,m and in differential and algebraic

topology [16], algebraic geometry and also system and control theory (cf. [22,

23] and the references therein for the last mentioned).
The bundle has a number of obvious holomorphic sections, viz. the

sections defined by 8t(x) et mod x where et is the i-th standard basis vector of
C" + m, i 1,..., n + m. And, as a matter of fact, it is not difficult to show that
T(^m, G„(Cn + m)) is (n + ra)-dimensional and that the el5..., en + m form a basis for
this space of holomorphic sections; cf. subsection 8.1 below.

4. Schubert Cells

4.1. Schubert Cells. Consider again the Grassmann manifold G„(Cm + n).

Let A (A l9..., An) be a sequence of n-subspaces of Cn + m such that 0 ^ A1

a A2 cz c: An with each containment strict. To each such sequence A we

associate the closed subset

(4.2) SC(A) ={xe G„(Cm + ") | dim(xnTt-) ^ z}

and call it the closed Schubert-cell of the sequence A. In particular if

0 < Yi < y2 < < y„ < n + m

is a strictly increasing sequence of natural numbers less than or equal to n + m

then we define (setting y a (y1?..., y„))

(4.3) SC(y) 5C(CTl,C7")

where C is viewed as the subspace of all vectors in C" + m whose last + m — r
coordinates are zero.

4.4 Flag Manifolds and the Bruhat Decomposition. A flag in Cn+m is a

sequence of subspaces F Fx c= c= Fn + m c= Cn+m such that dim Fi i.

Let Fl(Cn + m) denote the analytic manifold of all flags in Cn + m. There is a natural

holomorphic mapping Fl{Cn +
m) Gn(Cn+m) given by associating to a flag Ff its

n-th element Fn. The flag manifold can be seen as the space of all cosets

Bg, g e GL„ + m(C) where B is the Borel subgroup of all lower triangular matrices
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in GL„ + m(C). The mapping GL„ + m(C) - associates to a matrix g the

flag F{g) whose i-th element is the subspace of spanned by the first row

vectors of g.

Now view Sn + m, the symmetric group on n + m letters as a subgroup of

GLn + m(C) by letting it permute the basis vectors (a(ef) ea{i]). Then in

GL„ + JC) we have the so-called Bruhat decomposition.

(4.5) GLn + m(C) u B g B (disjoint union)

Where a runs through the Weyl group Sn + m of GL„ + m(C). An analogous

decomposition holds in a considerably more general setting (reductive groups, cf.

[24], section 28).

4.6. The Bruhat order (also sometimes called Bernstein-Gelfand-Gelfand, or
BGG order The closure of a double coset B g Bis necessarily a union of other
double cosets (by continuity). This defines an ordering on the Weyl group Sn + m

defined by

(4.7) g>T<^BGB^BTB
This ordering plays a considerable role in the study of cohomology of flag spaces

[1] and also in the theory of highest weight representations [25, 26].
Let H be the subgroup of Gn + m(C) consisting of all block lower triangular

m x n matrix. Then, using the remarks made in subsection 4.4 above, one sees

that Gn(Cn +
m) is the coset space {Hg \ g e GL„ + m(C)}. Now let g e Sn + m and let

Yi < < yn be the n natural numbers in increasing order determined by

Then one easily sees that the image of B g B under GL„ + m(C) - Gn(C" + m), i.e.

the set of all spaces spanned by matrices of the form h g b, h e H, b e B, is the

open Schubert cell of all elements in G„(Cn +
m) spanned by the rows of a matrix of

the form

CT

Sn e GL„(C), S22 6 GLm(C), an arbitrary
^22/

e {ei>-,?n},i 1, -, ft.

0... 0 0

* * Q

0

0

* 0...0
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where the last * in each row is nonzero. The closure of this open Schubert-cell is

the Schubert-cell SC{y) defined in (4.3) above.

One easily checks that

(4.8) SC(|i) cz SC(y)<- n,- ^ yhi 1,n
and this order on the Schubert cells SC(y), or the equivalent ordering on n-tuples
of natural numbers, is therefore a quotient of the Bruhat order on the Weyl group
Sn + m. It is the induced order on the set of cosets (Sn x SJcr, a e Sn + m. (Obviously
if X g Sn x Sm, then za(ey) e {eu en} if o(ey) e {el9..., en}.) (And inversely the

Bruhat order is determined by the associated orders of Schubert cells in the sense

that a > T in S„ iff for all k 1,..., n — 1 we have for the associated Schubert
cells in Gk(Cn) that SC(a) SC(x) ; this is a rather efficient way of calculating the

Bruhat order on the Weyl group Sn.)

5. Interrelations

Now that we have defined the concepts we need we can start to describe some
interrelations between the various manifestations of the specialization order we
discussed in section 2 above.

5.1. Overview of the Various Relations. A schematic overview of the

various interconnections is given by the following diagram. In this diagram we
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