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100 C. J. MORENO

When this estimate is substituted into the Erdds-Turan inequality with m

1
= [p4], we get .
8 1 1

1
Sup | (p—2)"tA(p, J) — | J || < + —mp 2 K p 4.
J m—+ 1 T

This establishes the result. A comparison of the estimate A(p,J) = p|J|
3
+ O(p#+) with some of the classical prime number theorems suggests that perhaps

the stronger result

1
Alp,J) = plJ| + O(pz™)
should be true.

PART II: STATEMENT OF THE THEOREM

§1.1. INTRODUCTION. In the statement of Deligne’s theorem there appear
certain Euler products which are generalizations of the Artin-Grothendieck L-
functions and which satisfy some rather natural growth conditions; these
conditions are stated below in §2 as Axioms A and B. In order to elucidate the
applicability of the theorem, to introduce some relevant concepts from
representation theory, and to prepare the notation that goes into the statement
of the theorem, we now give two examples one of a geometric nature, the other of
an arithmetic nature. The expert will realize that both examples are intimately
connected, say via the Selberg-trace Formula.

§1.2. GEOMETRIC EXAMPLE. As in Part I, let F, be the finite field of ¢
elements and let A = F [T] be the coordinate ring of the affine line A'. For
technical reasons and to simplify our presentation, we assume the characteristic
of F, is not 2 or 3. The closed points on the affine line A' are in one-to-one
correspondence with the irreducible monic polynomials in 4. Now if P = P, is
such an irreducible polynomial in A4, then the image of T under the reduction
map

A— A/P) =F
T —>t,,

qv

deg (P)

gives an element ¢, in the finite field F, withq, = ¢ elements. We can now

consider the elliptic family
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o ¢

where E, : y*> = x(x—1) (x—t,)is the fiber in E above the point P,. If we exclude
from A! the points corresponding to the polynomials P, = T, P, = T — 1,
then each fiber E, is an elliptic curve defined over the finite field F, . A well
known theorem of Hasse established in 1934 states that

#{x, ) eF )1y = x(x—1) (x—1,)} = q, — (%+B,) + 1,
where
0 = gie™, B, = gie ™,
where 0, € [0, 2n).
Let SU(2) be the group of special unitary matrices of size 2 x 2 and consider
the trivial extension

0-SUR) - G—Z —0

given by the direct product G = SU(2) x Z. Let X be the set of all irreducible
monic polynomials in 4 = F, [T]. For each v € Z we have an element in G

eiev O
0 e—iﬁv I deg H ;

denote by x, the conjugacy class of this element in G = SU(2) x Z. Let », be
the quasi-character
o,:Z >R,

which sends the integer n to w,(n) = ¢", and for s a complex number put o,
= o : Z — C*; this gives by composition with the projection map G - Z a
representation

o,: G- C*,

The finite dimensional representations of SU(2) are well known ; they have the
following structure: for each positive integer k, there is a representation

Sym* r: SU(2) —» GL(k+1, C).

For k = 0, this is the trivial representation of SU(2); for k. = 1 sym! r = r
is just the standard representation which sends an element in SU(2) into the
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: : 0
same element in GL(2, C). In general, if g = (g B> e SU(2) then sym* r(g)
is the diagonal matrix in GL(k+ 1, C) given by
Sym* r(g) = Diag [o*, o1 B, .., aff* "1, B¥] .

It can easily be shown that the set of all finite dimensional representations of the
locally compact group G are of the form

1 = (Sym"r) - o, ,

for some positive integer k and a complex number s; for such a representation, if
s = o + it, we call o the real part of t and write
R(t) = ©.

In particular if tis an arbitrary representation then R(t®w,) = R(t) + R(s). With
the above notations we now associate to each representation t of G the L-
function

1

Lo = gdet(l—r(xv));

an easy comparison of L(t) with the zeta function Z(s, A') of §1 of Part I shows
that L(t) converges absolutely if R(t) > 1. Itis a consequence of Grothendieck’s
Trace formula that L(t) has a holomorphic continuation to the region R(t) > 1
except for a simple pole at T = w,. Deligne’s generalization of the method of
Hadamard and de la Vallée-Poussin will imply that

L(t) # 0 forall T with R(tr) = 1.

From here on one takes the familiar road of analytic number theory and applies
criteria of the Weyl-type as well as Tauberian theorems to obtain
equidistribution results. ([9], [12].)

§1.3. ARITHMETIC EXAMPLE. Let us consider our favorite arithmetic
function: the Ramanujan function 1(n) which is defined by the formal expansion

b n]i (1—x"** = ni T(n)x" .

Let X denote the set of rational primes. For each prime p € X it follows from
Deligne’s proof of the Ramanujan conjecture that

(p) = (ei9p+e—i9p)p11/2 ’




THE METHOD OF HADAMARD AND DE LA VALLEE-POUSSIN 103

with 0, € [0, 2n). In this arithmetic situation we consider the trivial group

extension
0-SUR)-G—->R~-0

given by the direct product G = SU(2) x R. With each prime p we associate the

element
: s O ’

and denote by x, the conjugacy class in G which contains it. Let o, be the quasi-
character
®,:R - R%

r

r— o) =€

for each complex number s, let @, be the 1-dimensional complex representation
o,: G - C*

obtained by composing ®} with the projection map G — R. Again it is not very
difficult to show that all the finite dimensional representations of G are of the
form

T = (sym*r) - o,

for some positive integer k and a Complex number s. For such a representation t
withs = o + it, weput R(t) = o and callit the real part;itisclear that we have
R(t'w,) = R(t) + R(s). With the above notation, and with t a finite dimensional
representation of G, we define an L-function

1
Lo = ey’

a comparison of this L-function with the ordinary Riemann zeta function shows
that it 1s absolutely convergent for R(t) > 1. It is known that L(t) has a
holomorphic continuation to the region R(t) > 1 for t = (sym*r) - o, with k
= 1,2, 3 and possibly other values not known to the author. Clearly L(w,)
= ((s) and so it has a simple pole at s = 1. Ifit could be established that L(t) has
a holomorphic continuation to R(t) > 1 for all representationst = (sym*r) - o,
k = 1, then Deligne’s generalization of the method of Hadamard and de la
Vallée-Poussin would imply that

L(t) # 0 for all t with R(1) = 1.

By well known techniques in analytic number theory [9], it would then be
possible to prove
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The Sato-Tate Conjecture: for large x

T (0) ~ j (sin 6)2d8 - ——,

p<x log x

where 7 is the characteristic function of the subinterval J < [0, 2n).

§2. THE GENERAL SETTING: AxioMs A AND B. Deligne’s generalization
of the Hadamard and de la Vallée-Poussin method applies to a broad class of L-
functions which are subjected to two basic axioms. Before we give the statement
of the main result we introduce some notation and define the class of L-functions
that will be considered.

LetI" bea group whichisisomorphicto ZortoR. Letw, : I' - R* be anon-
trivial quasi-character. Let G be a locally compact group which is an extension of
I' by a compact group G : )

0-G->G->I->0.

2 will denote an infinite countable set, and (x,),.s Will be a family of conjugacy
classes in G indexed by X. The examples of the previous section motivate the
following restrictions on the above data.

Axiom A (1) If I is isomorphic to R, the extension G is trivial.

(11) If I" is isomorphic to Z, the center of G 1s mapped onto a subgroup
of finite index in Z.

It should be observed that since HAR, G) = {1} for any compact group G,
the condition A(j) is automatically satisfied, ie. G = G x R a direct product.
One of the many applications that Deligne makes of his main result is to the
proof of the Weil conjecture. In this situation it suffices to consider the case where
G is the direct product of I' = Z by a compact Lie group G, whose connected
component of the identity G is semisimple.

The condition A(ii) is not really necessary in the proof of the main result;
what does seem to be needed is some sort of control on the growth of the matrix
coefficients p;(g) of a continuous finite dimensional representation p:G
— GL(V), for example the boundedness of the matrix coefficients p;{(g) will
guarantee that the representation p is unitarizable. Below we shall see that
actually polynomial growth as measured by a power of w;(g) will suffice. In the
proof of the Weil conjecture the group G admits a linear representation whose
restriction to G has a finite kernel ; for this type of group G it-can be shown that
A(ii) is automatically satisfied.
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With the non-trivial quasi-character o, : I’ - R*, we associate a family of
morphisms

0,:GBT - C*,
parametrized by complex numbers s € C:

wg) = o,(pr(g)) -

The norm of an element v € X is defined by N, = w_ ((x,). If I" is isomorphic to
Z, then {®,(y) : y € ['} is a discrete cyclic subgroup of R% and hence of the form
{q”}, where q is a positive real number > 1. This gives rise to an isomorphism

deg: ' - Z

whose sign we select so that m,(y) = g~ 9. We also denote by deg the
morphism
deg: G->T1 - Z

Obtained by composing the projectionmap G — I with deg. In the following
we define the degree of an element v € £ by deg(v) = deg(x,).

IncaseI’ ~ Z, Axiom A implies thereis an element g in the center of G whose
image in I" is non-trivial. Weyl’s unitary trick can be used to show that a complex
linear representation t: G — GL(V) is equivalent to a unitary representation if
and only if 1(g) 1s. In fact if  is a Hermitian structure on V which is invariant
under g, i.e.

U(tg) - v, Ug) - w) = Vv, w), vweV,

then integration over the compact group H = G/g% gives a G-invariant form

Vo, w) =[5 ¥(tlg) - v, 1g) - w)dg ,

which also defines a Hermitian structure on V. Hence 7 is equivalent to a unitary
representation.

Consider now the general situation. Let 1: G - GL(V) be an irreducible
complex linear representation. Let | define a Hermitian structure on V. If ¢
belongs to the center, then Schur’s Lemma implies t(g) is a scalar multiple of the
identity. Hence there is a complex number A such that

W(t(9) - v, 7(g) - w) = | A > Y(v, w).

Denote by o the real number such that | A | = ®,(g)° = w,(g) and observe that
the Hermitian form

V(T 0-49) v, T 0_9) W)
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is now invariant under the action of the center of G. Integration over the quotient,
of G by its center gives a G-invariant Hermitian form. Therefore the
representation to _, is equivalent to a unitary representation. The number o will
be called the real part of the representation t and is denoted R(t). If T is unitary,
then R(t) = 0 and also R(tw,) = R(1t) + R(s).

The irreducible representations of G of the form 1 - @, with t unitary will be
called quasi-unitary. We denote by G the family of isomorphism classes of
irreducible quasi-unitary representations of G ; we let G be the subfamily of those
which are unitary. On G we consider the equivalence relation: 1,7 € G are
equivalent if t is in the class of v' - o, for some s € C. Under this equivalence
relation G is partitioned into a disjoint union

G=u{t-olseC}.
eCG

By introducing the parameter s, we may now view an equivalence class of
quasi-unitary representations as a Riemann surface. In fact the map s — t- o,
identifies the set {t- o, | s € C} with

i) The complex plane Cif ' ~ R or

1) with the strip C/—— Z, if ' ~ Z and q is the real number with o,(y)

21
log g

— 4 degy

As is well known, by viewing G as a collection of Riemann surfaces, it makes
sense to talk about the regularity of a function of quasi-unitary representations
at a point or in a region, or about its singularities. The question of analytic
continuation, when considered on each connected surface, also makes sense.

Remark. 1t is in the above spirit that the zeros of an L-function should be
considered as a discrete set of quasi-unitary representations on the same
connected component, and the explicit formulas of number theory should be
considered as generalized trace formulas.

Axiom B (i) For every v e X, one has Nv > 1.

(ii) The infinite product [] (1—Nv™°)~' converges absolutely for

vel

R(s) > 1.

For I' isomorphic to Z, the first relation means: deg(v) > 0; B(ii)) means that
© ]
_ dN —ms )
Sainet
where

N, = # {ve X |deg) = m},
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which is the logarithm of the infinite product, converges absolutely for R(s) > 1,

that is to say for every € > 0
Ny = 0(g*om).

The condition B(ii) assures that for every 1 € G, the infinite product

1
Lo = G ==y

converges absolutely for R(t) > 1. Also each factor is holomorphic in 1 for R(7)
> 0, and the function L(t) is holomorphic for R(t) > 1 and does not vanish in
this region. In the following we put L(s, 1) = L(t - ).

§3. THEOREM (Deligne). With the assumptions and notations as above,
suppose that L1(t) as a function of t has a meromorphic continuation to
R(t) = 1, and thatin thisregion R(t) = 1 itis holomorphic except for a simple
pole at ®,. Then the function L(t) does not vanish for R(1) = 1, except
possibly for at most one representation 1, of dimension 1 and defined by a
character & with € of order 2.

§4. THE MAIN LEMMA. For a complex linear representation t:G
— GL(V), of dimension d, not necessarily irreducible, we have associated the zeta
function

L(T) = H Lv(r) 3
where
1 d 1
- det(I — 1(x,)) N 111 1 — i)’

L(v)

and Py(v), .., Bu(v) are the eigenvalues of a matrix in the conjugacy class of t(x,).
Now for s a complex number we put

L(t, s) = L(to,)
and define
d

L) = 2= Loy |,

In particular, in the domain of absolute convergence for the product

4 1
L(ro) = [] [1

vt i=1 1 — Bv)Nv™s’
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that is to say for R(tw,) > 1, we can take the logarithmic derivative with respect
to the complex variable s and obtain
L _
— 7ty = 2, (log Nv)- No™*" . (x}) .
veXl

n>0

If we let s = 0 in the above formula, we obtain for R(t) > 1

L
=7 ® = 2, (log Noj(x).

n>0

In order to deal with L-functions of arbitrary representations we now observe
that the above definitions can be extended by linearity to all virtual
representations. Let

©
M
9%

be an element of the Grothendieck group of the category of representations of G ;
the n(p) are integers and all but a finite number are zero. We put

L(r) = [ L(py"®

peG
and similarly
L L
z(T) = pEZG ”(P)Z(P)-

Let p be a measure on the group G, which we can also consider as a measure
on the space of conjugacy classes of G. For every virtual unitary representation

T =) nlpp, np) = 0 for almost all p,
peG
we put

i(7) = f¢ xlg)dp,

where 7, is the trace of the representation 1. Since Y, is bounded, the integral
converges if the total mass of | p | is finite. The function T — [i(t) will be called the
Fourier transform of the measure p. In analogy with the Harmonic analysis on
the group R*, it is useful to consider the integrals [i(t) for T not necessarily
unitary; we then refer to T — [i(t) as the Fourier-Laplace transform of p.

Definition. A not necessarily continuous function f:G — C is called
positive definite if for every choice of ¢y, .., c, € C and g4, ..., g, € G we have

Z_ ¢i¢if(gig; ') = 0.
LJ
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A measure p on the group G is positive, denoted p > 0, if for every non-
negative function f : G — R, we have [, f(g)dp = 0.
If p is a positive measure of finite total mass, then we have for every virtual
unitary representation p
ip®p) =20 (forp = 0).

In fact, since Y,05 = | %, |2 (see Part III, §1) we have

p®p) = fo Yowp(g)dp = jG | %p(9) |dp = 0.

More generally, if ¢y,..,c,eC and py, .. p, are virtual unitary
representations, then we have for any positive measure p on G with finite total
mass

Y. cifi(pi®p) = fg| ‘Zl ctpg) [P dn = 0.
1, ] 1=

For a real number s = o > 1 and a virtual unitary representation t, we have

’

that the expression A,(t) = — 7 (tw,) is the Fourier Transform of the positive

measure of finite total mass

e = Y, (log Nv)- Nv™" - 3[x}]
veXl
n>0

defined on G, where d8[ a] denotes the Dirac measure concentrated at a. Therefore
we have, for every virtual unitary representation p of G and o > 1

As(p®P) = fi(p®p) = 0.

Let T € G and let v(t) denote the order of the pole of L at tw,, that is to say we
write

Ltw)

L(to) = ——~,
( ) (S B I)V(T)
where I[(to,) remains bounded and non-zero as s — 1. Since

o) = Oy ),

’

1.e. V(1) is the residue of — T at tw,, we can extend the definition of v(t) by

additivity to the Grothendieck group of the category of unitary representations
of G. For these we have
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v(t) = lim (0—1)(— %’(rmc,) + f(w)c,)>

c—1t
= lim (c—1)A,1).
c—>1+*
Hence from the inequality A (p®p) = 0 which holds true for o > 1, we obtain,
since c — 1 > 0, that

v(p®p) = 0

for every virtual unitary representation p of G. More generally ifc, .., ¢, € C and
Pi, - Pn are virtual unitary representations, then we have

Z Ckc-jV(Pi@)ﬁj) =0,
L, J

l.e. the symmetric matrix {v(p;®p;)} is positive semi-definite.

The assumptions in the Main Theorem can now be translated into properties
about the integer valued function v(t). First of all the fact that L(t) has an analytic
continuation to the region R(t) > 1 and that L(t) is holomorphic in this region
except for L(w,) which has a simple pole at s = 1 implies that v(t) < O for all
1 # land V(1) = 1. If L(tw,) has a zero at s = 1, then by conjugating the Euler
product that defines L(tw,) for o a real number, we see that L(Tw,) also has a zero
at s = 1 of the same order as L(tw,); hence v(t) = V(7). This then reduces the
proof of Deligne’s Theorem to the following:

MAIN LEMMA. Let G be alocally compact group; let G be the space of
irreducible unitary representations of G, consider a function

v:iG > Z
that satisfies the following conditions:
a) for the trivial representation 1, v(1) = 1
b) v(t) = v(T)
c) v(r) <0 for t©# 1
d) v(téA) = v(t) + v(h)
e) V(p®p) = 0 for every unitary representation p, i.e. Vv is positive semi-

definite.

Then v(t) = 0 forall T # 1 except possibly for at most one t of dimension
1 and defined by a character of order two.

| A

14

M
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§5. REDUCTION TO THE COMPACT CASE: REFORMULATION OF THE MAIN
LEMMA. In outline the proof of the Main Lemma is an adaptation to locally
compact groups of the following argument which works for any finite group. The
Plancherel theorem for a finite group G gives the decomposition of the regular
representation r¢ into its irreducible constituents; if x, is the character of r; and
v, runs over the characters of the irreducible representation 1 of G, then we have

% = 2, (dim )y,
G

Now we recall that the support of , is concentrated at the identity e of G, in fact
v, = | G| 8[e]. If we now use that 0 < 7, and evaluate the function v which
appears in the Lemma at y, and use the property €) we obtain

0 < ) (dim 7)v(1).

1€G

Properties a) and ¢) imply that all the terms in the above sum except v(1) = 1are
non-positive and therefore at most one other term can have v(t) = —1 and for
this representation dim t = 1 and t = 7. Hence such a t is defined by a
character of order 2. In particular, if G admits no subgroup of index two, then
there is no exceptional representation.

The adaptation of the above idea consists in obtaining uniform
approximations to the character of the regular representation of G by a finite
linear combination with positive integer coeflicients of the characters of finite
dimensional irreducible unitary representations. The approximation should be
fairly good so that the character of the corresponding representation is still a
non-negative function. As is well known, the proper framework for the study of
this type of approximation is the theory of almost periodic functions on the
group G. Rather than using the full theory we shall work with an intermediary
object, the Bohr Compactification G® of G, which is a compact group. This will
simplify the analysis, since on G we can use the full strength of the Peter-Weyl
Theorem. In fact, for our purposes, even the Stone-Weierstrass approximation
Theorem would suffice.

In the following we recall the basic facts about the Bohr Compactification.
The reader can find an exposition of the theory in Weil [11], Chap. VIL

If t: G - GL(H,) 1s an irreducible unitary linear representation, then the
image of G under 71 is contained in a unitary subgroup U(H,) of GL(H); since
each U(H,) is a compact group, their product | | U(H,) is also a compact group.

t€G

n:G - H U(H,
G

g = (19))eq -

We thus obtain a map
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The Bohr compactification of the group G, which we denote by G is the closure

in ]_[ U(H,) of the image of G under the map n. The main reason for introducing
TEG

the group G® is that it is compact and that any irreducible unitary finite
dimensional representation 1 : G — U(H,) factors through a finite dimensional
unitary representation of G°: '

pr,
G- G'->J]UH)-> UH,).
TEG
Now since G has a dense image in G°, any representation of G° is irreducible if
and only if its restriction to G is irreducible. The group G’ is uniquely defined up
to isomorphism by G. By projection, any unitary representation of G can be
extended to G”:

1:G - UH,).

!
Gb

This then establishes an equivalence between the category of finite dimensional
unitary representations of G” and the category of finite dimensional unitary
representations of G under which irreducible representations correspond.

More to the point at hand, which is that of obtaining good uniform
approximations to the character of the regular representation of G, is the fact
that the continuous functions on G” are in one-to-one correspondence with the
almost periodic functions on the locally compact group G in the sense of von
Neumann.

For alocally compact abelian group G, Pontrjagin’s duality theory gives very
precise information about the group G°. In fact in this case all irreducible
representations of G are of dimension 1. The Pontrjagin dual of G is the group of
all continuous homomorphisms

G = Hom/(G, T),

where T = {ze C:|z| = 1} is the circle group; furthermore G = G and the
dual of a compact group is a discrete group and vice versa. Now G” is a compact
abelian group and its character group is

A

G’ = Hom/(G?, T)
= Hom/(G, T)
=G.

e 2
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Hence GP is the Pontrjagin dual of G viewed as a discrete group, i.c. the group of
not necessarily continuous homomorphisms

G’ = Hom,,(G, T).

Example 1. If G = R, then G* = Hom,,(R, T), i.e. G® is the group of all
exponential functions f(x) = ™. The Weierstrass Approximation Theorem
describes the relation between the almost periodic functions on R and the
continuous functions on G®.

Example 2. If G = Z, then G* = Hom, (T, T). The almost periodic '
functions on G are closely related with the trigonometric sums

Y,  LldM] < oo,

A

where x(n) — ¢ with real frequencies A.

Example 3. An example relevant to the theorem at hand is G = K x R,
the direct product of a compact group K and the group of real numbers. The

Bohr compactification of G is
G* = Kb x R®.

In this situation the general theory shows that the class of central functions f on
G with the property thatif ¢ > 0, there exist a finite set of characters of unitary
representations y, ..., ¥y of K and almost periodic functions a4, ..., ay on R such
that forallg = (k, x) in G

N
| fg) — Z xikla(x) | < ¢,

i=1

coincides with the class of central continuous functions on G°.

Remark. After this brief interlude into the realm of almost periodic
functions on the group G, the reader should keep in mind that it is quite
immaterial whether we work with G or with its Bohr compactification. What is
really at the heart of the argument is the family of functions F on the group G
which can be uniformly approximated by finite linear combinations of the
characters of irreducible unitary representations of G with complex coefficients ;
the structure of F can in turn be described by the Stone-Weierstrass
approximation theorem.

In order to establish the Main Lemma we may then assume that G is
compact. Most of Part III is devoted to the proof of the following lemma.

L’Enseignement mathém., t. XXIX, fasc. 1-2. 8



114 C. J. MORENO

MaIN LEmMMA (Reformulation). Let G beacompact group;let G be the
space of irreducible unitary representations of G, consider a function
v:G - Z
that satisfies the following conditions
~a) for the trivial representation 1, v(1) = 1
b) v(t) = v(7)
) V(t) <0 for T # 1
d) v(t@®A) = v(1) + v(})
) V(p®p) = O for every unitary representation p, ie. Vv is positive semi-

definite.

Then v(t) = 0 forall t© # 1 except possibly for at most one 1, of dimension
1 and defined by a character of order two.

Part III: PROOF OF THE MAIN LEMMA

§1. REVIEW OF THE REPRESENTATION THEORY OF COMPACT GROUPS. We start
by recalling some known facts which are standard results from the
representation theory of compact groups. Some of these results are elementary,
others arise in the proof or are consequences of the Peter-Weyl Theorem.

G will denote a compact topological group; G is endowed with an invariant
~ measure dy which we normalize so that ; du = 1. Animportant set of functions
on G is the space of square integrable functions:

IG) = {f:G->Clfg| f?dn < o0}.

In the following we shall also consider the space of central square integrable
~ functions on G:

‘ LXG) = {f e (G)]| flaga™") = f(g)  forallaeG}.
Both I%(G) and L(G) are Hilbert spaces with the inner product
(i h) = fo'ﬁle-

1 By G we denote the set of isomorphism classes of irreducible unitary L

| representations of G. To avoid complicated notation, we shall not distinguish
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