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300 J. MILNOR

The proof that these elements generate over Z, proceeds as above for p # g,
and proceeds as in the proof of Lemma 9 when p = q. Details are easily supplied.

]

§6. ON Q-LINEAR RELATIONS

S. Chowla and P. Chowla have suggested the following conjecture in a
private communication to the author. Let a,, a,, ... be a sequence of integers
which is periodic, a, = a,. ,, for some prime p. Then
(11) : Y P a,/n* #0
except in the special case

al - .. = ap_l = ap/(l'—pz) .
If we use the Hurwitz function

Calk/p) = p*(k™ 2 + (k+p)~% + ..),.

then the inequality (11) can be written as

2% a Cok/p) # 0

and the exceptional case corresponds to the Kubert relation

C(1) = p™2 2% Calk/p) -

Thus the Chowlas’ conjecture is true if and only if the real numbers

Ca(1/p), -, Cal(p—1)/p)

are linearly independent over the rational numbers. More generally, foranym > 2
one might conjecture that the ¢(m) real numbers {,(k/m), where k varies over all
relatively prime integers between 1 and m — 1, are Q-linearly independent.
Using Lemma 9, a completely equivalent statement would be the following.

Conjecture: Every Q-linear relation between the real numbers {,(x), where
x is rational with 0 < x < 1 is a consequence of the Kubert relations (*_,).

In fact, since {,(x+1) = {,(x) mod Q for positive rational x, it might be
more natural to sharpen this conjecture by taking the values of {, modulo Q. In
other words, it is conjectured that the mapping

Q/Z - R/Q

induced by (, isa “universal” function satisfying (*_,). It follows easily from
Theorem 3 below that the corresponding conjecture for the even part,

C2(x) + Co(1—x) = n?/sin® mx,
of {, is indeed true; but the odd part of {, seems difficult to work with.
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One can make analogous and equally plausible conjectures for the Hurwitz
functions (s, Cg, - . In Appendix 2 we will describe analogous conjectures for
certain functions closely related to the gamma function.

Bass [2], studying multiplicative relations between cyclotomic units, has
proved the following result. Let

folx) = log |1 — ™| = log(2 sin nx)
for 0 < x < 1. Note that fo(1—x) = fo(x).

THEOREM OF BaAss. Every Q-linear relation between the numbers fo(x) for
rational x € (0, 1) is a consequence of the Kubert relations (%), together with
CVenness.

A proof will be indicated at the end of this section. _

Note that this is the exceptional case in which Lemma 7 does not apply, so
that f,(0) cannot be defined.

Bass’ theorem is equivalent, using the results of §5, to the following classical
statement. Fixing some integer m > 3, let & = ™™ and let V,, be the
multiplicative group generated by the elements

| — g1 — 82 1 —¢gm!

in the cyclotomic field Q[&]. Elements of the intersection V,, n Z[£] are called
circular units (or cyclotomic units).

COROLLARY. Thisgroup V, n Z[E] of circular units has finite index in the
group Z[E] consisting of all units of the cyclotomic field.

Compare Hilbert [8], as well as Sinnott [25].

Proof. Let m = g, ... g, be the factorization of m into powers of distinct
primes. By Lemmas 8 and 10, Bass’ theorem is equivalent to the statement
that the additive group generated by the elements

folk/m) = log |1 — &F|

has rank @(m)/2 + n — 1. Since each generator of V,, is equal to a real number
multiplied by a root of unity, this is equivalent to the statement that V. has rank
o(m)/2 + n — 1. However it 1s not difficult to check that V,, splits as the direct
sum of the group of circular units and a free abelian group genefated by the
elements 1 — e>™/4j, Hence Bass’ theorem is also equivalent to the statement that
the group of circular units has rank @(m)/2 — 1. According to the Dirichlet unit
theorem, this implies that it has finite index in the group of all units of Z[£].

[
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The author [21] has conjectured that the function Q/Z — R defined by
x b Alnx) = —f log |2 sin 0| dO

1s a universal odd function satisfying (*,). This seems very difficult. However, W.
Sinnott has pointed out to the author this the situation for the derivatives of
log 2 sin 0 is much easier to analyze.

Let f(x) be the t-th derivative of log | 2 sin 0 |, evaluated at 6 = nx. For
example fi(x) = cot(nx), f5(x) = —csc*(nx). Note that fi(1—x) = (— 1) fi(x).
The values at x = 0 are to be defined as in §4.

THEOREM 3. For each fixed t = 1,2, .., the function

/1 Q/Z - R
is a universal even or odd function satisfying (*,_,).

That 1s every Q-linear relation between the values f,(x) for x in Q/Z follows
from (*, _,), together with evenness or oddnes according as t is even or odd.

Fixing some integerm > 3,let§ = e2™/™ Iftiseven, the proof will show that
the values

span the real part of the cyclotomic field Q[£]. Similarly, if ¢ is odd, the values
if (k/m) span the totally imaginary subspace of Q[£]. In either case, these values
span a rational vector space of dimension @(m)/2, as required by Lemma 8.
Compare Ewing [ 7] for an analogous discussion of the values of csc(nx) and
its derivatives at rational x.
The proof will depend upon well known properties of Dirichlet L-functions.
Fixing some positive integer m, let

Y (Z/mZ)y - C
be an arbitrary Dirichlet character modulo m. We allow the degenerate case m
= 1 with the understanding that the only character modulo 1 is the constant

function (k) = 1. Recall that such a character is primitive (or has conductor
generated by m) if it cannot be factored through the projection

(Z/mZ) — (Z/dZ)

for any divisor d < m. As usual, we set (k) = 0 if k is a non-unit modulo m.
The associated L-function is defined by

L(s, x) = Zx )/k*

—
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for Re(s) > 1. In terms of the Hurwitz function
C(k/m)m® = k™% + (k+m)™° + ...

we can clearly write this as a finite sum

(12) Lis, %) = ix(k) Cefmyjm® .

It follows that L(s,) extends to a function which is holomorphic in s for all
complex s, whenever 7y # Y, Foritiseasy to check that the difference ((x)
— (s—1)" 'isholomorphicin s;and the (s— 1)~ ! terms cancel whenever x # Xo-
On the other hand, for the trivial character y,, evidently L(s, ) is equal to
the Riemann zeta function, with a pole at s = 1.
Now let us restrict to integer values of s.

LEMMA 13. For primitive <y # %o, and for integer values of s, the
function L(s,y) is zero if and only if s <0 and y(—1) = (—1).

For s > 1, the statement that L(s, x) # 1 1s fairly easy to ijrove, while for s
= 1 it is a basic result of Dirichlet. See for example [5] or [23]. For s < 0, this
lemma is proved using the functional equation relating L{(s, x) and L(1—s, ).
(Compare [10].) Details of this last argument may be found in Appendix 1.

[

In the case of the trivial character y,, this lemma remains true except for
anomalous behavior ats = 0(where {(s)is non-zero)and s = 1(where {(s) hasa
pole). |

These Dirichlet L-functions can also be expressed as finite linear
combinations of polylogarithms, via Fourier analysis, as follows. Let § = e*™/™.

LemMMma 14. If vy # yo is primitive modulo m, then

Lis, %) = Z Y (k/m)/

where

= 1(y) = ﬁx(k)&k

is a complex constant with absolute value ﬁ

In the case of the trivial character Y, this lemma remains true provided that
I(1) is interpreted as in §4.

Proof of Lemma 14.  Since both sides are holomorphic in s for all complex s,
it will suffice to consider the case Re(s) > 1. First note that the “Fourier
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transform” of the complex valued function  on the finite ring Z/mZ is equal to
1y ; that is

(13) 2, e = k).

jmod m

If k is a unit modulo m, this follows from the equation x(j) = y(k)x(ik), while if k is
a non-unit modulo m then, using the hypothesis that y is primitive, it is not
difficult to check that both sides of this equation are zero. Now dividing both
sides by k* and summing over all positive integers k, we obtain

2. XNLLE) =Lis, %) -

jmodm

Since Z(£’) = I(j/m), this implies the required equation.
To compute | T | combine (13) with the complex conjugate equation to obtain

my(n) = . %()) 2’; g = ;i"‘" 2 KEY
= 2};&_"" (k) = TTy(n);
hence m = 17 as asserted. O

Remark. Similar arguments prove that the Fourier transform of the
Hurwitz function {(j/m) on the finite ring Z/mZ. is a multiple of [(k/m). More
generally, one can show that any function on Z/mZ. satisfies (*,) if and only if its
Fourier transform satisfies (¥, _).

Proof of Theorem 3. We will work with the polylogarithm function
Z(E) = I(k/m)

where & = e*™/™ Ifs = 1 — tisanon-positive integer, recall from §2 that Z (z)
1s a rational function with rational coefficients. Hence [(k/m) takes values in the
cyclotomic field Q[&]. _

The Galois group G of Q[&] over Q can be identified with (Z/mZ) . Evidently
the mapping

Ud4,) - Q[&]

induced by [, is G-equivariant, in the sense that the automorphism
u(k/m) — u(gk/m) of Uy(A4,,) corresponds to the automorphism f(&) — f(£%) of
Q[&] for every g in G = (Z/mZ). Tensoring both sides with the complex
numbers, each splits into a direct sum of 1-dimensional eigenspaces under the
action of G. Hence, to compute the rank of this map, we need only decide how

many eigenspaces are mapped non-trivially.
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For each character y mod m,lety : (Z/dZ) — C be the associated primitive
character, where d | m generates the conductor of x. Evidently the sum

Y. I(kid) ® x'(k)

kmod d

belongs to the x-eigenspace under the action of G on Q[E] ® C. By Lemmas 13
and 14, its image Y x/(k)l{(k/d) in C is zero if and only if y(—1) = (—1)*; except
for the single anomalous case when s = 0 and x, = 0. Thus the rank of this
mapping

UyAn) — Q[E]

is at least @(m)/2 for s < 0, and at least 1 + @(m)/2 when s = 0.

It follows that the image 1(A,,) spans the real part of the cyclotomic field
Q[&] when s =1 —1t <0 isodd, and the totally imaginary part of Q[E]
when s is even. Here I is related to the real valued functions f, of Theorem 3
by the identity

li-x) + £i(x)/20) =0

for t > 2; which follows from (8) and (9). Similarly, for t = l,x'the image of the
function

ify(k/m) = 2lo(k/m) + 1

spans the totally imaginary subspace of Q[&].
Since the dimension ¢(m)/2 of this image is the maximum allowed by Lemma
8, this completes the proof of Theorem 3. ]

Proof of Bass’ Theorem. Recall that V,, is the multiplicative group in Q[&]
spanned by the 1 — E*. Evidently the Galois group G of Q[£] operates on V,,.
Since each generator is the product of a real number and a root of unity, G
operates also on the additive group log | V,, |, generated by the images

folkfm) = log |1 — &¥|.

Note that fy(x) is precisely the even part —(Iy(x) + I;(—x))/2 of the function
—1(x) = log(l —e*™x),
As in the proof of Theorem 3, we can consider the map

Uy(4,—0) = log | V, |

induced by f,, and split both sides into eigenspaces under the action of G
= (Z/mZ). For each even character x # 7y, with conductor generated by d | m,
the corresponding L-function

Y Kk folkjd) = = ¥ AR (k/d) = —TL(1, %)

k mod d k mod d
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is non-zero according to Dirichlet. Thus we obtain a contribution of
—1 + @(m)/2 to the rank coming from the non-trivial even characters.

On the other hand, for the eigenspace corresponding to the trivial character,
using formula (10) of §4 we obtain a contribution equal to the number of primes
dividing m. Lemmas 8 and 10 of §5 now complete the proof. OJ

APPENDIX 1

RELATIONS BETWEEN POLYLOGARITHM AND HURWITZ FUNCTION

For every complex number s, it follows from Theorem 1 that there exists a
linear relation between the even [or the odd] part of the function I(x) and of the
function {; _ (x) or B(x) = —sC,_(x). This appendix will work out the precise
form of these relations. Compare [3], [19], [27].

For integer values of s, the required relation can be obtained as follows.
Recall from formula (9) of §2 that

lo(x) = (—1+1i cot mx)/2
hence
lo(x) + lo(1—x) + Bo(x) = 0.

Integrating, we see that
Li(x) — L,(1—x) + 2mi By(x)/1! = 0O
(x) + L,(1—x) + (2mi)*B,(x)/2! = 0

and so on, for0 < x < 1. Foreven values of the subscript, specializingtox = 0
as in §4, this yields Euler’s formula

2(2k) + (2mi)*b,,/(2k)! = 0.

1
In particular, it follows that {(0) = — > and that the numbers b,, — by, b,

— by, ... are strictly positive. On the other hand, differentiating the formula for
lo(x), we obtain

I_(x) = —csc*(nx)/4 .

This is an even function satisfying (*_,), so it must be some multiple of {,(x)
+ {,(1 —x). Comparing asymptotic behavior as x — 0, we obtain the classical
formula

(o(x) + §o(1—x) = ©?/sin? nx = (2mi)?l_(x)/1! .
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