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isomorphic Milnor lattices and by [8] isomorphic monodromy groups. These

are the singularities given by

z3 + x4 + y36

and

z2 + y(x12 + y18) •

The resolution graph is in both cases

[3] [0] [0]

• •
-1 -2 -2

where the number in brackets denotes the genus, the other the selfmtersection

number of the corresponding cycle. Here (p05 f*+> H_) (6, 42, 162). However,
the orders of the classical monodromy operators are 36 resp. 38.

4. Distinguished Bases for the Bimodular Singularities

We have seen in the last section that there are bimodular singularities which
have the same Dynkin diagrams with respect to weakly distinguished bases, but
not with respect to distinguished bases. We now turn our attention to the sets

for these singularities. Let us first look at the unimodular case. All exceptional
unimodular singularities have a weakly distinguished basis with a Dynkin
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diagram in Gabrielov's canonical form given by the graph of Fig. 2 setting à

e 1. One can show that these graphs provided with the numbering of Fig. 3

also correspond to distinguished bases. (The graph with this numbering is

obtained from the graph in [7, Abb. 15] by the following transformations: We

indicate only the transformations for the first branch, the other branches are

treated in an analogous manner: ß7, ß6, ß5, ß4, ß3; ß8, ß7, ß6, ß5, ß4;...; ßp+4,

ßp+3, ßp + 2, ßp+i> ßP; y2, y3, -, YP-i). We call this graph Spqr.

Figure 4

The graph R%cde
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A natural form for the Dynkin diagrams of elements of for the bimodular

singularities E18 and g18 is given in Fig. 2. Not all bimodular singularities have a

Dynkin diagram of this type, one has to allow additional edges between eA and e5

and between e6 and e7 (see [7]). But one can show by the methods introduced

later in this section that none of the diagrams of Fig. 2/Table 1 equipped with any

numbering corresponds to a distinguished basis of any of these singularities.

However, there are elements of with a Dynkin diagram of a form which is

very close to the form of Fig. 2 : one has to add only one dotted edge to this

diagram. More precisely we have the following theorem :

Theorem 4.1. All bimodular singularities have a distinguished basis with the

Dynkin diagram shown in Fig. 4, where the values k, X, a, b, c, d, e are

given in Table 2.

The graph Rllcde is defined for a, b, c ^ 2, d, e ^ 1, k, X e {0, 1} and X ^ k.

Here k 0( 1 means that there is no edge (is an edge) between ed + e and ea+d + e(X

0(1) analogously). In Table 2 the values of d and e can be interchanged and for

k d e 1, X 0 all values b\ c' > 2 with b' + c' b + c (b, c in the

table) are possible. Finally i, j, k ^ 0.

We shall examine the graph Ralcde more closely. Such a labelled weighted
graph defines in an obvious way a lattice and a basis in this lattice (setting
<<?t, et} — 2 for all vertices e£). The rank rk(R*lcde) and discriminant disc(Rabcde)

of the lattice defined by R^lcde are given by the following general formulas :

rk(R*lcde) a + b + c + d + e— 1 |i,
disc (Ralcde)•

{[(1 + k +A,)c — 1] (ab — a — b) — (1 +K + X)ab — Ka(c+ 1)

-Xb(c + 1) + (k -X)c} de - [(c-I)ab-c(a + b)](d + e).

Such a graph R also defines a Coxeter element CR which is by definition the

product of reflections corresponding to the vertices eh

sei °... o

In the case that the graph is the Dynkin diagram of a distinguished basis, the
Coxeter element CR corresponds to the classical monodromy operator. Now by
[2, Ch. V.6, Exercice 3] the characteristic polynomial PR(t) of CR can be
computed as follows
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Table 2

Sing. K X a bed e Sing. K X a b c d e

J3 i 0 0 2 3 8+i 2 2 E.8 0 0 2 3 9 2 3
J J 1

0 0 2 3 8 2+i 2 0 0 2 3 8 3 3

Z1 i 0 0 2 4 6+i 2 2 E.9 0 0 2 3 10 2 3
1 1

0 0 2 4 6 2+i 2 0 0 2 3 9 2 4

Q2,i 0 0 3 3 5+i 2 2
0 0 2 3 8 3 4

0 0 3 3 5 2+i 2 E20 0 0 2 3 1 1 2 3

W] i 0 0 2 5 5+i 2 2
0
n

0
f)

2
0

3
q

9
o

2
q

5

1
> 1

1 0 2 6 6 I +i 1
u u z J o J D

W i>0 0 0 2 5 5 2+i 2 Z1 7
0
0

0

0
n

2

9

4
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7
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2
q

3
qJ 1
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1

1

0
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2
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1

1
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u
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Z
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0

8
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J

3
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S1 i 0 0 3 4 Vi 2 2
0 0 2 4 6 3 4

J 0 3 5 5 J+i 1 Z19

^16

0 0 2 4 9 2 3

si,i- 1>0

i=j+k-6

0
1

1

0

0

0

3

3

3

4 4 2+i
2+j 2+k 1

4 6 ] +i

2

1

1

0
0

0

0

0

0

2

2

3

4

4

3

7

6

6

2

3

2

5

5

3'
0 0 3 3 5 3 3

Ul,i
i=j +k-5

]

1

0

0
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4
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1

1

3.7 0
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3
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PR(t) det(r. 1 — CR)

1 + t -<el5 e2> t -(e1, eP) t

1 + t~~ (e2> el

In particular

PR( 1) (-If disc(R).

One can associate a directed graph R' to R as follows: Replace each edge

between vertices et and ej with i < j by an arrow of the same type (dotted or not)
pointing to ep and omit the numbering of the vertices. Then PR(t) depends only
on R' and not on the special admissible numbering. Using the methods of [6], we
have calculated PR(t) for R R*£cde and obtained the following result. Let /

{a, h, c, d, e) and for J c I define SJ to be the formal expression

P 0 — (1 + K T X,)f4 + 3t3 — 6£2 + 41 — 1

P{a} ~ (1+k)U — (1 — K + 2A,)t3 + (3 —K + 2A,)t2 — 31 + 1 — X,

P{b} ~ (l+7,)t4 — (1+K)t3 + (3 + X)t2 — (3 — k + X)t 4- 1—k,
P{c} — (K + X,)f4 — It3 + (2 + K + X,)f2 — (1+K -\-X)t,

P{d} P {e) — (l+K + ^)t4,

P{a, b}
t4 — (1—K — X)t3 — (K + ?i)t2 + It — (1— K — À,)

P {a, c}
Kf4 + (1—K + À,)t3 — (1 +^)t2 + (1 + K.)t + X

P{b,c} ^t4 + t3 — (1—K + 2A.)t2 -f (1—K + 2A,)f + K,

Li-
je J

Then the formal expression for PR(t) is

pR(t) (t-iy5

where
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P{a, d} — P{a, ej ~ (1+k)£4 — (1+K —2X)t3 + (1 + k — 2X)t2 + X,

P{b, d} — P{b, e} — (1+X)t4 — (1— K)f3 + (1 —X)t2 — (K — X)t + K,
P{c,d} P{c, e} (K + + (2 — K — X)t2 — (2 — K — X)t + 1,

P{d, e) — (K + + t3
•

Now given the characteristic polynomial of the classical monodromy
operator of a bimodular singularity, one can compute the values of k, X, a, b, c, d, e

for which the polynomial above coincides with it. In this way one gets

Supplement to Theorem 4.1. Table 2 (the remarks after Theorem 4.1 taken

into account containsfor each bimodular singularity all possible values k, X, a, b,

c, d, e such that the graph Ralcde a Dynkin diagram with respect to a

distinguished basis of the singularity.

The graph Spqr is related to the graph Ralcde in the following way. The group

Z* - xi (Z/2ZY

acts also on the set of all labelled graphs weighted by ± 1 with \x vertices. We

denote equivalence under Z* by Then

Pabcle ^P-a°b, c+ 1,1, e-1 (ß^2)
n 00 o
*^abc 11 ^ ^a, b, c + 1

Pabcdl ~ Pa°b, c+ 1, d- 1, 1 (d^ 2)

(Proof: ß3, ß4,..., ßp ßM, ßM_i, yp-2).

Therefore Theorem 4.1 and the supplement above imply in particular that

none of the bimodular singularities has a distinguished basis with a Dynkin
diagram of type Spqr.

A closer study of Table 2 yields the following observation, with which we

want to conclude. Let R^cde be a graph of a singularity X of Table 2. Substract 1

from one of the following parameters :

c, d, e for the E/J-, Z-, Q- series

b, c, d, e for the W-, S- series

a, b, c, d, e for the U- series

such that the new parameters a, b, c, J, e still satisfy a, b, c ^ 2, (7, e ^ 1. Then

either R?---^ is again a graph of Table 2, say of the singularity 7, and we relate X
and 7 by an arrow X -> 7. Or it is equivalent under Z* to a graph of the form
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Spqr which does not correspond to a distinguished basis of any unimodular
singularity. So the graphs of the bimodular singularities cannot be simplified by
the action of Z* to a graph Spqr, but the graphs immediately "below" them can.
On the other hand the relations one gets by the arrows are exactly the adjacency
relations of Laufer [15] between bimodular singularities with the difference of
the Milnor numbers being equal to 1.
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