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isomorphic Milnor lattices and by [8] isomorphic monodromy groups. These
are the singularities given by

23+ x* + y36
and

22 + y(x12+y18).

The resolution graph is in both cases

(31 [0] [0]
o—0—0,
-1 -2 -2

where the number in brackets denotes the genus, the other the selfintersection
number of the corresponding cycle. Here (pg, 4, 1_) = (6, 42, 162). However,
the orders of the classical monodromy operators are 36 resp. 38.

4. DISTINGUISHED BASES FOR THE BIMODULAR SINGULARITIES

We have seen in the last section that there are bimodular singularities which
have the same Dynkin diagrams with respect to weakly distinguished bases, but
not with respect to distinguished bases. We now turn our attention to the sets #*
for these singularities. Let us first look at the unimodular case. All exceptional
unimodular singularities have a weakly distinguished basis with a Dynkin
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diagram in Gabrielov’s canonical form given by the graph of Fig. 2 setting d
= e = 1.One can show that these graphs provided with the numbering of Fig. 3
also correspond to distinguished bases. (The graph with this numbering 1s
obtained from the graph in [7, Abb. 15] by the following transformations: We
indicate only the transformations for the first branch, the other branches are
treated in an analogous manner: B, Bg, Bs, Bas B3: Bs, B> Bss Bss Bas 5 Bp+a
Brt3> Bpras Bpats Bps Yar Y35 - ¥Yp—1)- We call this graph S,
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A natural form for the Dynkin diagrams of elements of 2° for the bimodular
singularities E, 3 and Qg is given in Fig. 2. Not all bimodular singularities have a
Dynkin diagram of this type, one has to allow additional edges between e, and es
and between e, and e, (see [7]). But one can show by the methods introduced
later in this section that none of the diagrams of Fig. 2/Table 1 equipped with any
numbering corresponds to a distinguished basis of any of these singularities.
However, there are elements of #* with a Dynkin diagram of a form which is
very close to the form of Fig. 2: one has to add only one dotted edge to this
diagram. More precisely we have the following theorem:

" THEOREM 4.1.  All bimodular singularities have a distinguished basis with the
Dynkin diagram R .. shown in Fig. 4, where the values x, A, a,b,c,d, e are
given in Table 2

The graph R%}. ;. is deﬁned fora,b,c 2 2,d,e > 1,x,Ahe {0, 1} and A <
Here k = 0(1) means that there is no edge (1s an edge) betweene,, . ande, ;.. (7»
=0(1) analogously). In Table 2 the values of d and e can be interchanged and for
Kk=d=¢e=1,A=0allvalues ¥, ¢’ > 2withb' + ¢ = b + ¢ (b, c in the
table) are possible. Finally i, j, kK > 0.

We shall examine the graph R% . more closely. Such a labelled weighted
graph defines in an obvious way a lattice and a basis in this lattice (setting
(e, e;y = —2forallvertices e,). The rank rk(R%}.,.) and discriminant disc(R*}.,.)
of the lattice defined by R%}.,, are given by the following general formulas:

rk(Ripese) = a+b+c+d+e—1 = H,
disc(Rpeae) = (—1* 1.
{[(l+x+X)c—1](ab—a—b) — (1+x+Nab — xa(c+1)
—Ab(c+1) + (k—A)c} de — [(c—1)ab—c(a+b)] (d+e).

Such a graph R also defines a Coxeter element C, which is by definition the
product of reflections corresponding to the vertices e;,

CR — Sel 0...OSe“.

In the case that the graph is the Dynkin diagram of a distinguished basis, the
Coxeter element C corresponds to the classical monodromy operator. Now by

[2, Ch. V.6, Exercice 3] the characteristic polynomial Pg(t) of C, can be
computed as follows
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Pty = det(t.1—-Cyg)
= | 1+t —{e, e )t .. —<¢1; eyt
_<82a el> 1+t
—<eyer) o 141t

In particular
Pg(1) = (—1)* disc(R) .

One can associate a directed graph R’ to R as follows: Replace each edge
between vertices e; and e; with i < j by an arrow of the same type (dotted or not)
pointing to e;, and omit the numbering of the vertices. Then Pg(t) depends only
on R" and not on the special admissible numbering. Using the methods of [6], we
have calculated Pg(t) for R = R%.,. and obtained the following result. Let I
= {a, b, ¢, d, e} and for J < I define ZJ to be the formal expression

2

jed

Then the formal expression for Pg(t) is

Pg(t) = (f—l)_5< 2 (Pj(t)t"" — P, (%) t“+5_”>>,

#J <2

Py = (14+x+M)* + 3t3 — 61 + 4t — 1,

Pu = —(1+0)t* — (1—k+20> + B—k+20)% — 3t + 1—1,
Py = — (1+Mt* — 1+ + B+0M2 — G—x+M)t + 1—x,
Py = — (ck+Mt* =26 + Q+x+M* — (1+x+M),
Py = Py = — (1+x+M*, |

Poy = t* — (1—k—Me> — (k+0)2 + 2t — (1—x—}),
Poog=1xt* + (1—x+M3 — (1+0M)2 + (1+x)t + A,
Pp o = M+ 12 — (1—k+2M% + (1—k+20)¢ + x,
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Pog=Puo= 04+t — 1+c=20 + (1+k—20)2 + A,
Pogy = Ppo = (140 — 1—0)83 + (1—A)2 — (k—N)t + «,
Pioa = Pe o = (K+Mt* + Q—x—Mt2 — Q—x—A)t + 1,

Py o = (k+Mt* + 12,

Now given the characteristic polynomial of the classical monodromy
operator of a bimodular singularity, one can compute the valuesof k, A, a, b, ¢, d, e
for which the polynomial above coincides with it. In this way one gets

SUPPLEMENT TO THEOREM 4.1.  Table 2 (the remarks after Theorem 4.1 taken
into account ) contains for each bimodular singularity all possible values «, A, a, b,
¢, d, e such that the graph RX%.,. is a Dynkin diagram with respect to a
distinguished basis of the singularity.

KA

The graph S, is related to the graph R}, in the following way. The group

par

Z* = Z, x (Z]2Z)"

acts also on the set of all labelled graphs weighted by + 1 with p vertices. We
denote equivalence under Z* by ~. Then

00 00

Ripeie ~ R, b,' c+1,1,e—1 (e=2)
00

RabCIINSa, b,c+1
00 00

RabchNRa, b,c+1,d—1,1 (d>2)

(PVOOf' B3> 84’ M ﬁw Bpa Bp-—b Yp—z)'

Therefore Theorem 4.1 and the supplement above imply in particular that
none of the bimodular singularities has a distinguished basis with a Dynkin
diagram of type S,,,.

A closer study of Table 2 yields the following observation, with which we
want to conclude. Let R%} . be a graph of a singularity X of Table 2. Substract 1

from one of the following parameters:

c,d, e for the E/J-, Z-, Q- series
b,c,d, e for the W-, S- series
a, b,c,d, e for the U- series

such that the new parameters a, b, ¢, d, e still satisfy a, b, ¢ > 2,d, ¢ > 1. Then
either R;‘%m is again a graph of Table 2, say of the singularity Y, and we relate X
and Y by an arrow X — Y. Or it is equivalent under Z* to a graph of the form
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S, Which does not correspond to a distinguished basis of any unimodular
singularity. So the graphs of the bimodular singularities cannot be simplified by
the action of Z* to a graph S ,,,, but the graphs immediately “below” them can.
On the other hand the relations one gets by the arrows are exactly the adjacency
relations of Laufer [15] between bimodular singularities with the difference of
the Milnor numbers being equal to 1. '
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