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§7. THE MIDDLE RANGE

We return, as at the beginning of §4, to the study of intersections of curves in
C2 with round disks D* and their boundaries S;, and bidisks D(r, r,) and their
boundaries. Now the (bi)radii are no longer required to be very small.

An embedding i: (S, S) — (D¥, S}) of a surface-with-boundary S into a
round disk is a ribbon embedding provided that N o i is a Morse function without
local maxima on Int S, where N(z,w) = | z|* + | w|?; and a surface-with-
boundary S = D#, with S = S} n S, is a ribbon surface if the inclusion (S, 0S)
< (D%, S?) is isotopic through embeddings of pairs to a ribbon embedding. To
demand that a surface be ribbon is to place genuine topological restrictions on
the embedding.

A theorem of Milnor [Mi 1], specialized to our dimensions, shows that if I
— C? is a nonsingular analytic curve then for almost all choices of origin and
radius, the inclusion of (D%, I'nS?) into (DY, S?) is a ribbon embedding. A
continuity argument easily shows that for no matter what choice of origin, N | I’
has critical points, possibly degenerate, of index no greater than 1. It is easy to see
thatif I has singularities, an analogous theorem holdsfor N o r: R — [0, co[ on
the resolution. All these results generalize the Maximum Modulus Principle.
Nothing much more seems to be known about big round disks and complex
plane curves.

Turning our attention to bidisks, we let the way that they separate the
variables z and w suggest an attitude to adopt towards our curves: consider one
variable (conventionally w) as an analytic but possibly multiple-valued function
of the other.

More precisely, let E, be the space of unordered n-tuples of points of C
(duplications allowed). Then E, inherits a topology, and a structure of algebraic
variety (affine, and singular if n = 2), from its description as C"/%,, where the
symmetric group &, acts by permuting coordinates. Let E, keep its topology,
but normalize and resolve its algebraic variety structure, by using the map C”
— E, which carries (cy, .., ¢,) to {ry, .., r,} such that (w—r,)..(w—r,) = w"
+ cw"™ ' + .. + ¢,. Now any function F: X — E, can be called an n-valued
(complex ) function on X. The graph of an n-valued function on X is the
obvious subset of X x C; adjectives like “continuous”, “analytic”, “algebraic”
apply to n-valued functions in the obvious way:.

We make the convention that (if X is not discrete) the entire image F(X)
should not lie in the subset A « E, of unordered n-tuples with at least one
duplication; A is an algebraic hypersurface (irreducible, and singularifn > 3)in
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the affine space E,, called the discriminant locus. Its complement E, — Ais called
the configuration space (of n distinct points in C).

To allow infinity as a value, we could replace C by CP!, E, by CP”, and so on.

Let f(z, w) = fo(z)w" + fiz)w"~ ! + ... + f(2) € C[z, w]. Historically [Bl],
the equation f(z, w) = 0 (or equivalently the curve it defines) was said to give w
as an algebraic function of z, provided only that f(z, w) was without repeated
factors and without factors of the form z — c. (Also, of course, fo(z) # 0.) Then,
in fact, on the complement in C of the zero-locus of f,(z), the assignment
z+> {w:f(z, w) = 0}isan algebraic n-valued complex function. A zero of f,(z) is
called a pole of the algebraic function, and can be accounted for by letting infinity
be a value.

If fo(z) = 1, so that there are no poles at all, the algebraic function is entire.
More generally, if f(2), ..., f,(z) are allowed to be entire functions of z (in the usual
sense), then f(z, w) = 0 gives w as an n-valued meromorphic function ; and if also
folz) = 1, w is an entire analytic n-valued function. The graph of an n-valued
entire function is a curve (algebraic or analytic as the case may be); when there
are poles, the graph must be closed up to provide fibres over them.

Conversely, any algebraic curve in C? becomes, after almost any linear
change of coordinates, such a graph for some n. (This is not so for analytic curves,
in general.) Thus we can study plane curves by studying certain curves in E,,.

Lety < C be a simple closed curve, R the compact simply-connected region
it bounds, F : R — E, a continuous n-valued function analytic on Int R with
F(y) n A = @.Thenthereissomeradius M > Osothatthe graphof F | yliesin
the opensolid torusy x {we C:|w| < M};and this graph is a (not necessarily
connected) n-sheeted covering space of y. An application of one version of the
Maximum Modulus Principle [ G-R ] shows that actually the graph of F itself is
contained in D = R x {w:|w| < M} = C? a topological 4-ball (with
boundary 3-sphere piecewise as smooth as y). Now, F(R) n A must be finite; let
F~Y(A) < R be called the branch locus, and denoted B. One can casily see that
the graph of F in D is a 2-dimensional pseudomanifold-with-boundary (ie.,
geometric relative cycle), with any singularities lying in B x {w:|w| < M}
— Int D; its boundary in 0D is exactly the link Lwhich is the graph of F | y.
Furthermore, the graph of F is naturally oriented (by its complex structure at the
regular points), so L has a natural orientation, and the projection L— vy

preserves orientations.
At this point it is convenient to introduce braids ; a general reference is [Bi].

The braid group on n strings is the fundamental group B, = m,(E,—A; *) of
the configuration space. Let [:[0,2n] — E, — A, [0) = [2n), be a
parametrization of a loop in the configuration space. Then the graph of [ in
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[0, 2n] x Cisa geometric braid, that is, the union of disjoint arcs, on which pr, 1s
a covering projection to [0, 2r], and such that the unordered n-tuples of top and
bottom endpoints are identical; each arc is called a string. Under the map
[0,2n] x C = S! x C: (8, w)— (e, w), a geometric braid is carried to a closed
braid in the open solid torus. When S' x C is identified with the tubular
neighborhood of an unknotted circle in S3, in such a way that distinct circles S*
x {zo}and St x {z,} are (algebraically, and therefore geometrically) unlinked,
then any closed braid becomes a knot or link in S3, and it is naturally oriented.
For B e B,, any closed braid constructed in this way from a loop which
represents B is denoted P. If, conversely, L= S' x Cisan oriented link on which
pr; 1s an orientation-preserving n-sheeted covering map, then any choice of a
basepoint ¢ € S* yields a loop in E, — A, based at * = {we C:(e" w)e L},
and thus a braid Le B, = n,(E,—A; %), with (L)” = L.

Since A is irreducible, the abelianization of B, is infinite cyclic, and in fact B, is
normally generated by one element, that is, generated by a single conjugacy class.
Choose for the basepoint * of E, — A the (real) n-tuple {1, ..., n}. Let

gz, w) = <w2 — Qi+ w + (iz + 1+ i(l——Z)))‘ nﬁl (w—j)e C[z, w],

j=1
jFii+1
fori = 1,..,n — 1;andlet G;: C — E, be the n-valued function corresponding
togz,w) = 0.If R = {z:|z| < 1}, theneach G, | Ris an embedding of R as a
normal disk to A (at a regular point), with center

G(0) = {1, e b — 1,1 + %,i + %,i + 2,...,n}

on A, and basepoint G(1) = *. Giving JR its positive (counterclockwise)
orientation, we get oriented loopsin E, — A, and the homotopy class of G(JR) is
denoted by o; and called the i-th standard generator of B,.(The geometric
braids corresponding to the given construction are the standard pictures of the
o;.) The set of standard generators does, in fact, generate B,, cf. [Bi]. Each o, is
conjugate to o,. Following [Ru 2], let any braid in B, conjugate to o, be called a
positive band in B,; aloop in the configuration space represents a positive band
if and only if it is the oriented boundary of an oriented disk in E, which meets the
discriminant locus transversely in a single positive (regular) point. The inverse of
a positive band is a negative band.

An ordered k-tuple b = (b(1), ..., b(k)) of bands in B, is a band representation
of length k of the braid B(b) = b(l) - b(k). (A braid word is a band
representation where each band is a standard generator or the inverse of a
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standard generator.) Each braid has many band representations, corresponding
to the various null-homotopies, transverse to A, of a loop representing the braid
in E, — Atoapointin E,. (See [Ru 2] for a precise statement and proof.) Such a
null-homotopy gives a map of a disk into E,, transverse to A—the length of any
corresponding band representation is the geometric number of intersections of
the disk with A, and the number of positive (resp., negative) bands is the number
of positive (resp., negative) intersections with A. In particular, suppose each such
intersection is positive, so each band b(s) is positive. Then b, B(b), and the closed
braid B(b) are all called (in [Ru 1-4]) quasipositive. The closed braid L, associated
to an analytic n-valued function F and a simple closed curve y which bounds a
simply-connected region in the domain of F, is quasipositive. (If F as given is not
transverse to Ain R, almost any small translation of F in E, will become so, while
the braid type of L won’t change; and complex analytic intersections are
positive.)

Conversely, it is shown in [Ru 1] that for every quasipositive band
representation bin B,, there are an algebraic n-valued function and simple closed
curve yielding the given band representation in the manner just exposed. It is also
shown (and this is why we have excluded poles) that any type of closed braid
whatever can occur as the graph over S! of a meromorphic (algebraic) n-valued
function on C. (But note that when poles actually do occur inside the simple
closed curve, the closed braid is never the complete boundary of the piece of
analytic curveinside a bidisk ; a typical example is given by f(z, w) = zw — i ,1n
D(1, 1),y = St)

Lete: B, — Z be abelianization. Thus e(P) is the exponent sum of B, when [ is
written as a braid word in the standard generators; or more generally it is the
number of positive bands in b, minus the number of negative bands in b, when
B(b) = B. Geometrically, e() is the linking number of (any loop representing)
with A, in E,. Analytically, e(p) can be given by an integral formula, as by Laufer
[Lau], where it is called self-winding (and is generalized to links that aren’t
necessarily given as closed braids).

When b is quasipositive, e((b)) is the length of b, a fact with the following
geometric meaning. When F : R — E, is smooth and transverse to A, then the
graph of F is a smooth surface in R x C; the intersections with A correspond to
“simple vertical tangents” to the graph, and projection from the graph of F back
to R is a branched covering, with only two sheets coming together over each
branch point in R. Thus the Euler characteristic y(graph F)equals ny(R) — 1, if |
is the number of branch points. When R is a disk and F corresponds to a
quasipositive band representation b, then [ is the length of b and we recover a
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genus formula for the graph of F in terms of n, the number of components of the
boundary of the graph, and the exponent sum of the boundary. More generally,
when F is analytic, even if it is not transverse to A it will have a well-defined
positive intersection multiplicity at each point of intersection, which will equal
the number of geometric intersections of almost any small (analytic)
perturbation of F; thus its graph, which will now be a singular curve, will have
well-defined multiplicities for each singular point, and again a genus formula can
be recovered, this time involving also these multiplicities: cf. [Lau].

A very interesting subclass of the quasipositive braids consists of the positive
braids. A braid in B, is positive if it can be written as a word in the standard
generators without using their inverses, strictly positive if each of oy, .., 5,_;
actually occurs. Positive braids play an important algebraic role in the braid
group (cf. [Bi]). Closed positive braids enjoy various nice knot-theoretical
properties (cf. [St], [Ru 5]), and have turned up in diverse contexts—as knotted
orbits of some special dynamical systems [Bi-W]; and, what is relevant here, as
the links of singular points of plane curves.

Let f(z, w) € C[z, w] be squarefree, not divisible by z, and satisfy f(0, 0) = 0.
Then for ¢ > O sufficiently small, f(z, w) = 0 defines an n-valued analytic
function F: {z:]|z| < ¢} —» E, with F~1(A) = {0}. Let w,(2), ..., w,(z) be the n
numbers in F(z); then it is readily seen that the assignment z— {wyz)
—wiz): 1 <i,j<ni#j}isan n(n—1)-valued analytic function. Without
loss of generality, we may take nand e so that w,(0) = ... = w,(0) = 0,and w,(z)
— wiz) # Oforz # 0,] z| < & Now a straightforward calculation shows that
for z # 0,| z | < &, we have d(arg (w;—w,))/d(arg z) > 0. Consider the closed
braid L which is the graph of F | {z:| z| = ¢}, and the link of the singularity of
{/ = 0} at (0,0). A braid diagram for L may be obtained by projecting its
ambient solid torus S' x C onto S* x ¢®R orthogonally; for almost all  this
will be a braid diagram in general position, from which a braid word may be read
offin the usual way ; and the signs of the crossings are precisely determined as the
signs at the appropriate points of d(arg (w; —w)))/d6. Since 8 = arg z, the link of
asingularity is a positive closed braid. In fact, it can be seen to be strictly positive ;
for if it were not, it would be a split link, in particular it would have components
with zero algebraic linking—but the linking number of two components of the
link of a singularity is the intersection number of the corresponding branches,
and s strictly positive.

It is known that a strictly positive closed braid is a fibred link, cf. [St], [Bi-
W], which provides another proof (in this dimension) of Milnor’s Fibration
Theorem (that the link of a singularity is fibred—Milnor, of course, gives an
actual analytic formula for the fibration). Here is a simple proof which
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FIGURE 1| (n=4)

geometrically constructs a fibration of the complement of a strictly positive
closed braid. Let p: X — C be the n-sheeted branched covering with branch
locus {1, .., n — 1}, where the permutation at j is the transposition (j j+1).
Then X is homeomorphic to C again. For concreteness, we realize p as in
Figure 1:cuts C; = {w:Rew = j,Imw = 0} are made in the base space; we
coordinate X so that the singular point of p~1(j) is j, and so that {z : Re z = j} is

-1
one component of p~ *(C;); then the components of p~ (C— U C)) are the sets
=1

J

X, ={z:Rez< 1}, X, ={z:1 <Rez<2},.,.X,={z:n—-1< Rez}‘,

known in the classical style as sheets of the branched cover. Now if we consider
E, — A to be the configuration space of X, the inverse of the covering map
defines a continuous function from C — {1,..,n — 1} into E, — A, inducing a
homomorphism from the free group n,(C — {1, .., n — 1}; 0)to the braid group
m(E, — A; p~*(0)). One readily .checks that this homomorphism is onto,
carrying the obvious free generator x; of the free group (Figure 2) to the standard
generator o; € B,. Let v = xj, ... X;4y be any strictly positive word in

Xis oy Xg— 1p B = Gji1) " Ojwy = (p_l)*(v)

FIGURE 2 (n=4)

2 1) x(x2) = O3
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its strictly positive image in B,. We use v to construct an auxiliary closed braid
in S' x C, the closure of v = A, jq)-. Ay jay € Bus1, Where A ;
= (04 .. 0;_1)03(0 ... 0;_4) " lis one of the standard generators 4, ; of the pure
braid group (cf. [ Bi] or see below). Now, v’ can be realized as a geometric braid in
two special ways: the first string can be made to wind in and out among the
others, which are all straight ; or the first string may be made straight, while the
others wind around it in a succession of loops (Figure 3). On the first

Y ==

J

]
A\

jl

. FIGURE 3 (n=4)

v = Xlexl.X3

interpretation, identifying the straight strings with [0, 2n] x {1, ., n — 1}, the
winding first string becomes the graph of a loop

I+ ([0, 2], {0, 2n}) — (C — {1, .., n — 1},0})

in the homotopy class v; and its inverse image under the branched covering idg:
x p:S' x X - S x Cis a geometric braid representing B. On the second
interpretation, identifying the single straight string with [0, 2r] x {0}, and
taking care that each other string winds monotonically around this axis, the
fibration of S' x (C — {0}) over S by (e”, w) — arg w lifts back through the
branched covering to a fibration of (S! x X) — P over S. (The strictness is used
at this point, to ensure that in fact there is a non-zero winding number for each
string. Positivity, however, could be weakened to “homogeneity” in the sense of
[St].) There is no trouble “at infinity”, so that the fibration can be extended over
allof S* — PB. Note that the fibre surface for B is the union of n disks with a surface
that is the cover of an annulus branched at e(B) points, so it has Euler

L’Enseignement mathém., t. XXIX, fasc. 3-4. 14
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characteristic n — ¢(P) and hence (being connected) genusg = 1 — %(n — e(P)
+ ¢ if B has ¢ components. This is the same genus formula as before when the
link of a singularity is considered.

- Besides exponent sum, there are other representations of B, with applications
here. First recall the permutation representation n: B, — &, which takes o; to
G j+1),j = 1,..,n — 1. The kernel ker = is the group of pure braids; it is the

fundamental group of the space of ordered n-tuples of distinct complex
numbers. Let S, be the free abelian group of rank En(n—l) consisting of

symmetric n-by-n integer matrices with 0 diagonal. Now, in general, a cycle in
n(B) corresponds to a component of B; and in particular the closure of a pure
braid consists of n (unknotted) components which are naturally ordered 1, ..., n.
Define A : ker n — S, by setting A(B); ;equal to twice the linking number of the i-
th and j-th components of B, for B pure. These representations are combined in
o: B, - S, x &, wherein the semidirect product %, acts on S, by conjugation
with the standard permutation matrices, and

o(c;) = ([Bi,i+1 + 6;4 1, (i i+1))>i =1,.,n—1.

Let &, act diagonally on {1, .., n}?, and let | x | - (i, j) denote the orbit of (the
cyclic subgroup generated by) x € &, on (i, j). Then for

i # J,BeB, of) = ([apq]’ x) J

the sum > a,, 1s an integer invariant of 3, and appropriate sums of such
(P, @)lx| @, J)
invariants are conjugacy class invariants. In particular, when n(B) is an n-cycle

(so that B is a knot), such a conjugacy class invariant arises by summing over
pairs (i, j) with a fixed constant difference modulo n: and this may be seen to be
precisely twice one of the self-windings sw; introduced by Laufer [Lau]. Laufer
showed that the sw,(i = 1, ..., n) suffice to distinguish the knot types of links of
unibranch singularities; in fact, he showed that the Puiseux pairs of a branch
could be reconstructed from the self-windings. Simple examples show that sw

= e and the sw; (and even their slight generalizations just given) can’t tell apart
all quasipositive, or even all positive, closed braids. It is interesting to speculate
that there might be reasonable representations A, of ker A, A, ofker A,, ..., which
could somehow be combined into a (faithful?) representation of B, in which
quasipositivity might show up more clearly than it does in B, itself. (Is there any
relation to Laufer’s other numerical link invariants [Lau 2]? Perhaps A, can be
constructed out of linking numbers in branched covers of §°, branched over one
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of the—unknotted!'— components of a pure link in which every linking number
is 0; and so on.)

As a final topic, we return to “knot groups” of plane curves and related
matters, from a braid-theoretical point of view.

As before, let R be the compact region of C bounded by a simple closed curve
v. Let S be a compact oriented surface-with-boundary. Then amap f: S — R
x C, or its image f(S), is a braided surface of degree n = 1 provided that
pri < f:S — R is a branched covering of degree n: f is a smooth, analytic, or
algebraic braided surface if f(S) is smooth, complex analytic, or (complex)
algebraic. Let V', < S and V, < R denote the branch sets of pr; o f, finite sets
avoiding @S and vy; and let W, V, = W, = R, be the set {zeR:({z}
x C) 0 f(S) contains fewer than n points}. One can interpret f ~' as a map, as
smooth as f, from R into E,. As remarked earlier, when f ! is transverse to A,
then W, = V,and f is a smooth braided surface; but f can be smooth without
7! being transverse to A. (Consider non-generic “vertical” tangencies.) Nor
need W, be finite, but we will always assume that it is, even when f~1is not
transverse to A. With this proviso, every braided surface f isatopological (even
p.l.) immersion, though not necessarily locally flat. To see this, define the local
braid of f at ze R, denoted B, , e B,, to be the homotopy class of the loop 6
— [T z+¢€®),0 £ 0 < 2r, for any sufficiently small € > 0. (Since the
basepoints of the various copies of B, vary with z, B, . is really only defined up to
conjugacy.) This is well-defined when W, is finite (or even as long as z is not an
accumulation point of W); of course B, , = 1if and only if ze R — W,. For
ze W, B .- has strictly fewer than n components, which will be grouped into
possibly yet fewer unsplittable links. Then f(S), above z, is embedded in R x C
like disjoint cones (with distinct vertices) on the unsplittable sublinks of Bf, .. For
example, if z € V} lies under only a simple vertical tangent, then B, , is a band
(positive or negative), which might as well be taken to be 6{! € B,, and B, ,is a
split link of n — 1 unknotted components.

Recall (cf. [Bi]) that B, acts (faithfully) as a group of automorphisms of the
free group F, of rank n. Explicitly, if F, = n,(C — {wy, .., W,}; W), the acting B,
is realized as my(E, — A; {w,, .., w,}); on standard free generators x,, .., x, of F,
(positively oriented meridians around wy, ..., w,), the action is

_ -1
XiO0p = XiXi11X; 5 Xi410; = X, X;0; = X;

forj # i,i + 1. Pick a basepoint z, € R — W, and paths from z, to the points
Zy, - 2 Of W, By these paths, all the local braids can be taken to lie in one and

the same brald group, namely, n,(E, — A; pry(({z,} x C)n f(S ))}—denote by
B’ . these braids. (Simple vertical tangents, for instance, will now give braids B, ,
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which are bands that cannot all at once be taken to be o 1.) It may now be seen
that

(X15 e X2 XiBy ., = X0 = 1, .,n, 2 W))

is a presentation of the “knot group” m,((R x C) — f(S); *). When f is algebraic
and y1is a very large circle this is really van Kampen’s presentation (except for the
relation “at infinity” to which we will return shortly).

A finite presentation of a group, in which each relation sets one generator
equal to some conjugate of another generator, is a Wirtinger presentation; a
group with a Wirtinger presentation is a Wirtinger group. Any Wirtinger group
has a simple Wirtinger presentation, in which each relation is of the form x;x ;x; *
= X, for not necessarily distinct generators x;, x;, x,. After possibly adding more
generators, and renumbering them, one can assume that each relation is of one of
the two forms x; = x;,; or x; = x;x;,,x; ', i < j. These two relations are
contributed, respectively, by the action on F, of

(0iCi4+1 .. 05-1)0(0,0;41 .. 05_;) e = +1lor —1.

So every Wirtinger group has a simple Wirtinger presentation which is the van
Kampen presentation of the fundamental group m;({(z, w)e C*:|z| < 1}
— f(S); *) for some smooth braided surface f(S) with boundary the closure of a

quasipositive braid (the product of the bands used to achieve the desired
relations); and actually f(S) can be taken to be non-singular complex analytic.

So we see that the class of knot groups of complex analytic curves in a bidisk is
exactly the class of Wirtinger groups, a refinement [Ru 2] of results of Yajima
[Ya] and Johnson [Jo] (who weren’t concerned with complex analytic
structures).

If one wishes to investigate knot groups for smooth braided surfaces of fixed
topological type, one still loses nothing by demanding that the surfaces be
complex curves: if f(S)is smooth, by slight jiggling f ~! becomes transverse to A
while f(S) moves by an isotopy; then the braids 8/, , are all bands, positive or
negative ; changing all the signs to positive reimbeds S as a quasipositive braided
surface, and therefore, up to isotopy, a complex analytic curve; but it does not
change the knot group at all, since xB~! = x is the same relation as x = xB.

So far, everything has been phrased for braided surfaces over a compact
(simply-connected) region R. If we replace R by all of C, much stays the same ; itis
now appropriate to let W, be infinite, but discrete. It ceases to be clear, however,
(at least to this author at the present time) that a quasipositive “infinite band
representation” can always be realized by an entire n-valued analytic function.
Also, as observed in [Ru 1], for compact R, at least as far as the boundary closed
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braid is concerned, every n-valued analytic function can be assumed to be the
restriction of an entire n-valued algebraic function ; this is certainly not true for
R = C, because the “local braid at infinity” B, , of an algebraic braided surface
over C—i.e., the braid over a simple closed curve large enough to enclose V;
entirely—is severely restricted. Its closure, for instance, is an iterated torus link
(as we saw in the proof of the theorem of Abhyankar and Moh, § 6). And if the
projective completion of the algebraic braided surface (algebraic curve), in CP?,
meets the line at infinitely transversely, one actually has B 7. the union of n
circles of the Hopf fibration S* — CP'—the braid B, . is the generator of the
(infinite cyclic) center of B,(n> 3), which bears the name A* (unfortunately, in this
context), cf. [Bi]. Any knot group of a projective plane curve, then, can be
presented by starting with an expression of A? as a product B(I) -~ B(k) in B,
where each B(i) is conjugate in B, to some local braid associated to the link of a
singularity (including non-trivial local braids which are associated to the
unknotted link of a regular point!), then forming the presentation

(X150 Xyt XXX, = 1, x;B() = xp i =1,.,nj=1,.,k.

Forinstance, a quasipositive band representation of A% (each B(i) a positive band,
that is, conjugate to the nontrivial local braid o, associated to a simple vertical
tangent) corresponds to a non-singular curve of degree n, and presents Z/nZ. A
quasipositive nodal band representation, where each B(i) is either a pesitive band
or the square of a positive band, corresponds to a node curve; if some B(i) are
cubes of positive bands, others squares or first powers, we have a cuspidal band
representation; and so on. There is a mapping from the set of strata of Q, (§ 5)
into a hierarchy of “types of expressions” of A? e B, as products B(]) - B(k);
Moishezon’s problem of normal forms is a first step in the study of this mapping,
about which little seems to be known. Is it onto? An affirmative answer would be
a strong generalization of Riemann’s Existence Theorem. (Again, cf. [Mo].)

We conclude with three examples. First recall some formulas for A2 in B, (cf.
[Bi] or [Mo]): A* = (6,0,0,_)"; also, A? is pure, and in terms of the
standard generators

Ajj = (67705 1) 0,;(0';'"'0'1‘—1)_1.,1 <i<jsn—1,
of the pure braid group,
2
A=Ay Aypz A Ag -1 Agp Ap—1n—1-

Example 1. Write A> = B(I) = B(n*—n), B()) = Bi moa n— 1, @S just given. It is
easy to see that this expression for A% does in fact correspond to a non-singular
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curve of degree n. The corresponding presentation of the knot group of the curve
includes among its relations x;x, - x, = 1 and each equality x; = x;,, i
= 1, .., n—1. 5o the knot group is a quotient of Z/nZ ; but a simple homological
argument shows that Z/nZ is the abelianization of the knot group, so the two
groups are equal.

Example 2. Write A*> = B(I) - B((n*—n)/2), where B(i) = 4,,
Each pair (p, q) arises. The relations in the corresponding presentation say that
for each pair p, g the generators x,, x,, , commute. (For instance, the action of

as above.

_ A2 ; 2 _ ~1 _ —1,-1
Apy = oy on F,is x;07 = (X(X5X{ )0y = X XoX1X; Xi

2 = § .
X2O-1 = x10'1 — xlxle ) xk01 == xk, k ?é-' 1,2,

and the relations x; = x;x,x;x; 'x; ! and x, = x;x,x;! both say x,
commutes with x,.) The group is free abelian of rank n— 1. Moishezon sketches a
proof that this presentation does arise geometrically; another proof could be
given by the method of [Ru 1].

Example 3. For n = 4, A> = 6,0,0,6,6,0;6,6,0;0,0,0;. Let us
suppress the symbol o, raise subscripts (so k denotes &,), and write, for instance,
234 to mean 6,05 '5,6,0; *. Then, by dogged manipulation, A2 € B, can be
worked into the form (3-3:3) (321) (1-1-1) (2) (1-1-1) (321), the product of three
positive bands and three “cusps” (cubes of positive bands). The corresponding
presentation, before adjoining the relation at infinity, presents the group of the 5-
twist spun trefoil (as has been remarked by Dewitt Sumners) ; with that relation,
X1X,X3X, = 1, the group becomes the non-abelian group of order 12, (a, b: aba
=bab, a* =1, a* = b?). This is the correct group [Z] for a tricuspidal cubic curve,
and presumably the given “quasipositive cuspidal band representation” really
arises geometrically, but I have not had the courage to check this.—Similarly, for

n=6,A = 123451234123121, which can be written as (1-1-1) (T"'l) (3-3-3) (343)
(5:5-5) (_13—32) (ﬁ4) (?3) (*5); the presentation for the square of this, with the
relation at infinity, is at an intermediate stage (x,, X,, X3, X4, X5, Xg: X1 =X3= X5,
Xy =X4=Xg X XoX; =X,X1X, X;X,X3X4XsXc=1) which becomes (a, b: a*=b>
= 1), the group given in [Z] for a sextic with six cusps on a conic. On the other
hand, a less symmetrical way to write A% € By is as (2223) (4) (5) (2:2:2)! (2:2-2) (32)
(4312) (1-1-1) (*321) (445) - (**23) (4-44) (1-1-1) (*123)2 (1-1-1) (**1) (2), which
presents the abelian group Z/6Z which [Z] gives for a sextic with six cusps not all
on the same conic.
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