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306 J. MILNOR

is non-zero according to Dirichlet. Thus we obtain a contribution of
—1 + @(m)/2 to the rank coming from the non-trivial even characters.

On the other hand, for the eigenspace corresponding to the trivial character,
using formula (10) of §4 we obtain a contribution equal to the number of primes
dividing m. Lemmas 8 and 10 of §5 now complete the proof. OJ

APPENDIX 1

RELATIONS BETWEEN POLYLOGARITHM AND HURWITZ FUNCTION

For every complex number s, it follows from Theorem 1 that there exists a
linear relation between the even [or the odd] part of the function I(x) and of the
function {; _ (x) or B(x) = —sC,_(x). This appendix will work out the precise
form of these relations. Compare [3], [19], [27].

For integer values of s, the required relation can be obtained as follows.
Recall from formula (9) of §2 that

lo(x) = (—1+1i cot mx)/2
hence
lo(x) + lo(1—x) + Bo(x) = 0.

Integrating, we see that
Li(x) — L,(1—x) + 2mi By(x)/1! = 0O
(x) + L,(1—x) + (2mi)*B,(x)/2! = 0

and so on, for0 < x < 1. Foreven values of the subscript, specializingtox = 0
as in §4, this yields Euler’s formula

2(2k) + (2mi)*b,,/(2k)! = 0.

1
In particular, it follows that {(0) = — > and that the numbers b,, — by, b,

— by, ... are strictly positive. On the other hand, differentiating the formula for
lo(x), we obtain

I_(x) = —csc*(nx)/4 .

This is an even function satisfying (*_,), so it must be some multiple of {,(x)
+ {,(1 —x). Comparing asymptotic behavior as x — 0, we obtain the classical
formula

(o(x) + §o(1—x) = ©?/sin? nx = (2mi)?l_(x)/1! .
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Differentiating, we see that
—G3(x) + G0 —x) = 2mi)*1_ ,(x)/2!
Calx) + Ca(1—x) = (2mi)*1_ ;5(x)/3!

and so on.
Fors # 0,1, 2, .. we know from §3 that there is some relation of the form

(14) I(x) = AG:-x) + BL;-(1—x)

for 0 < x < 1; where A, and B, are certain uniquely determined constants.
Expressing each of these functions of x as the sum of an even part and an odd
part, we see that

05 £900) = (A, BILS0)
l;)dd(x) = (As_Bs)C(id:is(x) :

Evidently the functions s+ A, + B, are meromorphic, taking finite non-zero
values for all se C — Z. Differentiating with respect to x, we see that

(16) A; £ B, = s(As4, + B,y y)/2mi) .

Forintegral values of s, using the discussion above, we easily obtain the following
table of values, where 0! = 1.

-2 —1 0 1 2 3
B 0 21 0 (2mi)? |
T (2mi)? 21
220 2.0 o7 ) 2ni)?
{ — Bs == _—3 O | — A o0
(2mi)° | 2mi 2-0 2-2!
‘ |

Now suppose that we specialize to x = 0, by the procedure of §4. Then
equation (14) reduces to a form

Cs) = (As+ BJ)L(1—s)
of Riemann’s functional equation. It follows that
(As+By)(A;_s+By_)) = 1,
and hence using (16) that
(A;—By)(A,_—B;_y) = —1.
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This discussion gives all of the information about A, + B, which we will need.
However, it is possible to compute precise values as follows. Let {, _ (e*™x) be the
result of analytic continuation in a loop circling the origin. Then evidently

Cy-de*™x) — Gy _(x) = (2™ —1)x*" 1.

Using the integral formula (6), computation shows that
I(e*™x) — I(x) = —(2mi)*x*"}/I(s).

Comparing these two eXpressions, and noting that {; _ (1 —x) is holomorphic
throughout a neighborhood of x = 0, we can solve for 4. The result after some
manipulation is
i(21) —nis/2
Al i(2m) e. |
21°(s) sin(ms)

Now comparing the behavior of [, and {; _, under complex conjugation we see
easily that

o i(zn)senis/Z

2I'(s) sin(ms)

B, = A. =
In particular, it follows that

(2my i(2m)*

Ay + 8o = 2I°(s) cos(ms/2)’ A= B, = 2I°(s) sin(ms/2)

As an application of formula (15), let us prove the corresponding functional
equation for a Dirichlet L-function. Recall from Lemma 14 that for any primitive
Dirichlet character x modulo m the function

m

L(s, ) = ., w(k)Cok/m)/m

1
satisfies

L(s, x) Zx(k )(k/m)/ .

Here we may just as well use either the even or the odd parts of {; and [ according
as y(—1)is +1 or —1. Therefore, it follows from (15) that

L(s, x) = (A;+ B ; X(K)C s - s(k/m)/T
= m(A,+ By)L(1—s, )/t .
Thus we have proved the functional equation

(17) L(s, x) = m' ™4, + x(— DBJL(1—s, x)/t(x) -
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Here the factor m! %/t is never zero or infinite, while A, + B, 1S zero or
infinite only at certain integer values, as indicated in the table above.
The proof of Lemma 13 can now easily be completed as follows. If s < Oisan
integer, then L(1—s, %) # 0, so it follows that L(s, 5—() equals zero if and only if
A, + B, is zero, as indicated in the table. [

APPENDIX 2

SOME RELATIVES OF THE GAMMA FUNCTION

This appendix will describe certain functions y,(x), v(x), ... which satisfy a
modified form of the Kubert identities, with a polynomial correction term. (See
(22) below.) They are defined as partial derivatives of the Hurwitz function by the
formula

(18) Yi-dx) = 0C(x)/0t.

We will show that vy, is related to the classical gamma function via Lerch’s
identity

(19) ¥:(%) = log((x)/y/2m).

(Compare [27, p. 60].) As a bonus, we will give a self-contained exposition of the
basic properties of the gamma function, based on formulas (18) and (19).

Let us begin with equation (18), which defines y,(x) as an analytic function of
both variables for all s # 0 and all x > 0. Recall that the Hurwitz function
G(x) = x7' + (x+1)"! + ... (analytically extended in ¢ for t # 1) satisfies

Clx+1) = Clx) — x7".

Differentiating with respect to ¢, and then substituting t = 1 — s, we obtdin

(20) Yx+1) = vd(x) + x* ! log x.

In particular,

Yix+1) = v(x) + log x.
Note that

Clx) = —tC, 4 1(x)

hence
(%) = tt+1)C 4+ (%),
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