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306 J. MILNOR

is non-zero according to Dirichlet. Thus we obtain a contribution of
— 1 + cp(m)/2 to the rank coming from the non-trivial even characters.

On the other hand, for the eigenspace corresponding to the trivial character,

using formula (10) of §4 we obtain a contribution equal to the number of primes

dividing m. Lemmas 8 and 10 of §5 now complete the proof.

Appendix 1

Relations between polylogarithm and Hurwitz function

For every complex number s, it follows from Theorem 1 that there exists a

linear relation between the even [or the odd] part of the function ls(x) and of the

function C)1 _s(x) or ßs(x) — 5^_s(x). This appendix will work out the precise

form of these relations. Compare [3], [19], [27].
For integer values of s, the required relation can be obtained as follows.

Recall from formula (9) of §2 that

l0{x) — 1 + i cot 7dc)/2

hence

'o(x) + 'o(l-x) + ßoM 0-

Integrating, we see that

l^x) - hil-x) + 2tzi ßiM/l! 0

Z2(x) + Z2(l-x) + (2ni)2$2{x)/2l 0

and so on, for 0 < x < 1. For even values of the subscript, specializing to x 0

as in §4, this yields Euler's formula

2Ç(2k) + (2ni)2kb2k/(2k)\ 0

In particular, it follows that Ç(0) — and that the numbers b2, —b4, b6,

— b8,... are strictly positive. On the other hand, differentiating the formula for

/0(x), we obtain

l-i(x) — csc2(nx)/4

This is an even function satisfying (* _ J, so it must be some multiple of Ç2(x)

4- Ç2(l — x). Comparing asymptotic behavior as x -> 0, we obtain the classical

formula

Ç2(x) + Ç2(l —x) 7t2/sin2 m (2tui)2/-i(x)/1!
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Differentiating, we see that

-Ç3(x) + Ç3(X-x) (27ri)3/_2(x)/2!

Ux) + Utf-*) (2tu)4/-3(X)/3!

and so on.

For s # 0, 1, 2,... we know from §3 that there is some relation of the form

(14) /s(x) A^-lx) + Bs^-s(l-x)
for 0 < x < 1 ; where As and Bs are certain uniquely determined constants.

Expressing each of these functions of x as the sum of an even part and an odd

part, we see that

15)
rrenw (A+ßs)^rns(x)
kddW (As-

Evidently the functions s i— As ± Bs are meromorphic, taking finite non-zero
values for all se C — Z. Differentiating with respect to x, we see that

(16) As ± Bss(v4s+ +

For integral values of s, using the discussion above, we easily obtain the following
table of values, where 0! 1.

s -2 -1 0 1 2 3

+ Bs 0
2- 1!

0 00
(2tu)2

00
(2^0 2 2- 1!

-Bs
2-2!
(2th)3

0
2-0!
2ni

2ni

2-0!
00

(2tu)3

2-2!

Now suppose that we specialize to x 0, by the procedure of §4. Then

equation (14) reduces to a form

Ç(s) (As + Bsm-s)
of Riemann's functional equation. It follows that

t^s + ^s) (^1-s + ßi-s) 1,

and hence using (16) that

(A-BJiA^-B^s) -1.
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This discussion gives all of the information about As ± Bs which we will need.

However, it is possible to compute precise values as follows. Let C>1 _s(e2nix) be the

result of analytic continuation in a loop circling the origin. Then evidently

- ^_s(x) (e^-l)**"1.
Using the integral formula (6), computation shows that

ls(e2nix) - IJLx) -(IniYx^'/ris).

Comparing these two expressions, and noting that ^_s(l — x) is holomorphic
throughout a neighborhood of x 0, we can solve for As. The result after some

manipulation is

_
i(2n)se-nis/2

2T(s) sin(Tcs)

Now comparing the behavior of ls and (5l _s under complex conjugation we see

easily that

— -i(2n)senis/2
ß _ _ v ;

2T(s) sinfas)

In particular, it follows that

(2tt)s i(2nf
As + Bs ' - As-B

2T(s) cos(tt5/2) ' s s
2T(s) sin(rcs/2)

'

As an application of formula (15), let us prove the corresponding functional

equation for a Dirichlet L-function. Recall from Lemma 14 that for any primitive
Dirichlet character % modulo m the function

m

Us, x) £ x
1

satisfies
m

Us, X) £ X(kMUm)/z
1

Here we may just as well use either the even or the odd parts of and ls according
as %(— 1) is +1 or — 1. Therefore, it follows from (15) that

mUs,x)(4+ßs)£x(fcKi-#/w)/T
1

ms(As+ Bs)L(l —x)/T •

Thus we have proved the functional equation

(17) L(s,X)ml~s(As + X(- l)ßs)L(l -s, X)A(X) •
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Here the factor ml~s/z is never zero or infinite, while As ± Bs is zero or

infinite only at certain integer values, as indicated in the table above.

The proof of Lemma 13 can now easily be completed as follows. If s ^ 0 is an

integer, then L(1 — s, x) 0, so it follows that L(s, x) equals zero if and only if
As ± Bs is zero, as indicated in the table.

Appendix 2

Some relatives of the gamma function

This appendix will describe certain functions y^x), y2W,... which satisfy a

modified form of the Kubert identities, with a polynomial correction term. (See

(22) below.) They are defined as partial derivatives of the Hurwitz function by the

formula

(18) Ti-rW d(,t(x)/dt.

We will show that y1 is related to the classical gamma function via Lerch's

identity

(19) YIM l°g(r(x)/v/27t).

(Compare [27, p. 60].) As a bonus, we will give a self-contained exposition of the
basic properties of the gamma function, based on formulas (18) and (19).

Let us begin with equation (18), which defines ys(x) as an analytic function of
both variables for all s / 0 and all x > 0. Recall that the Hurwitz function
Çr(x) + (x+ 1)~/ + (analytically extended in t for t ^ 1) satisfies

Çf(x + 1) Çf(x) - x~'.

Differentiating with respect to t, and then substituting t 1 — s, we obtain

(20) ys(x + l) ys(x) + xs_1 log x

In particular,
Yi(x+1) yx(x) + log x

Note that

G(x) -Kt + 1(x)
hence

Ç(x) t(t+ l%
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