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A PROPOS DES ÉQUATIONS ANTIPELLIENNES

par Pierre Kaplan

Soit m un entier positif non divisible par un carré. Les équations anti-

pelliennes sont les équations

où 8 est un diviseur sans diviseur carré et > 1 du discriminant À du corps

quadratique Q(>/m). Le but de cette note est de donner une nouvelle démonstration

du fait suivant :

Proposition. Le nombre m étant donné, il existe exactement un nombre

8 tel que l'équation (1) soit résoluble.

Nous noterons 80 le nombre 8 tel que l'équation (1) soit résoluble.

On voit immédiatement que l'équation X2 — mY2 — 1 est résoluble si,

et seulement si, S0 m.

L'importance de cette proposition a été notée par G. Pall [6] et de notre
côté, nous l'avons utilisée notamment dans [3], [4] et [5].

La proposition a été jusqu'à présent démontrée à partir de la théorie des

formes quadratiques binaires de Gauss de la manière suivante. D'après [2],
§ 158 ou bien [1], § 153, toute classe de formes de déterminant m et d'ordre 1

ou 2 pour la composition représente exactement deux diviseurs sans diviseurs
carrés et ^ 1 de À, donc, en particulier, la classe de X2 — mY2, qui représente
déjà 1, représente un autre de ces diviseurs, 80. Cette démonstration utilise la
théorie de la réduction des formes quadratiques binaires indéfinies.

Au contraire, notre démonstration repose uniquement sur la propriété
suivante des solutions de l'équation de Pell

Si (R0, S0) désigne la solution de (2) où R0 et S0 sont strictement positifs
et minimaux et si (R, S) est une solution de (1) où R et S sont strictement
positifs, il existe un entier k ^ 1 tel que

(1) T2 — mU2 8

(2) R2 — mS2 1 :

(3) R + S y/m (Ro + S0/m)k.



324 P. KAPLAN

Nous poserons

(4) r|o #0 + S0 Jm

et démontrerons le résultat suivant, qui précise la proposition.

Théorème. Soit m un entier positif non divisible par un carré.
1) Parmi les équations

(5) dV2 - eW2 t

où t, d, e sont des entiers positifs vérifiant

(t 1 si m ^ — l(mod 4), t 1 ou 2 si m — l(mod 4),
(6) <

(de m, dt =£ 1,

une et une seule a des solutions entières (V9 W).

2) Soit

(50) d0V2 - e0W2 t0

celles des équations (5) qui est résoluble et soit (V0, W0) la solution de (50)

où V0 et W0 sont positifs et minimaux. Posons

(n,
Vo V + Wo V eoto

(7) eo - ; •

to

Alors

(8) Sjj T|0

Remarques.

1) La condition dt # 1 de (6) signifie que l'équation (5) ne peut être

l'équation de Pell (2).

2) On passe de l'équation (50) à l'équation (1) résoluble en multipliant par
d0, c'est-à-dire que ô0 d0t0, T d0V, U W. Inversement, si

T2 - mU2 80

on a ô0 d0t0 où d0 | m et t0 1 ou 2. Alors T d0Vet divisant par d0,

on trouve l'équation (50) avec W U.

3) Dans [5], lemma 1, p. 360, le théorème est démontré à partir de la

proposition et des applications du théorème sont faites.

Démonstration du théorème. Considérant la relation

Ro — mSl 1 modulo 4,
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on voit que R0 et S0 ont des parités différentes et que R0 est impair si

m # — l(mod 4). Si m - l(mod 4), il arrive que R0 soit pair, par exemple

22 — 3.12 1, ou bien impair, par exemple 252 — 39.42 1.

Supposons d'abord R0 impair. L'équation Rl — mSl 1 s'écrit

R0 + 1 R0 — 1 fS0
(9) — —

Les entiers
+

-et — étant premiers entre eux, il existe des entiers
2 2

d0 et e„ positifs tels que d0e0 met des entiers >0 et >0 tels que

KM y, K°2+
1

d0V20 et ^~1

e0W20, d'où

(10) 1 d0V20 -
(11) Rq — d0Vl + e0Wl; S0 2V0W0

Comme W0 < S0, on a d0 > 1.

Supposons maintenant R0 pair. L'équation Rl — mSl 1 s'écrit

(9') (R0+l)(Äo-l) mSl •

Les entiers impairs R0 + 1 et R0 — 1 ont pour différence 2, donc sont

premiers entre eux, donc il existe des entiers d0 et e0 positifs tels que
d0eo m et des entiers F0 et W0 positifs tels que V0W0 S0, R0 + 1

d0Vl et R0 — 1 - e0Wl, d'où

(10') 2 d0V20 - e0Wl

(11') d0V20 + e0W20; S0 V0W0

Posons t 1 si *o est impair, t 2 si *0 est pair.
Alors les relations (11) si *0 est impair, (11') si *0 est pair montrent que

e0 défini par (7) vérifie (8).

Nous avons donc trouvé l'équation (50) ayant des solutions, à savoir (10) si

R0 est impair, (10') si R0 est pair. Notons que cette relation (50) entraîne

n -1 K) — H'o
tiZJ 80 —

Pour achever la démonstration du théorème, nous allons montrer que si

une équation (5) vérifiant (6) a une solution positive (V, W\ alors t t0,d d0,

e e0, V ^ V0 et W ^ W0. Posons
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D
dV2 + eW2

o 2VW vJdt+wJJt
(13) R S ,8 — —.t t t

On vérifie que 82 R + S -Jm et que R2 — mS2 1.

D'après (3) et (8), il existe un entier k ^ 1 tel que 82 rjo donc,

comme 8 et 80 sont des nombres réels positifs, on a

(14) 8 e£

Développant ek0 en tenant compte de ce que 81 R0 + S0 Jm et aussi

de (12), on voit qu'il existe des entiers positifs tt, dl9 el9 Vx et W1 tels que

c ^
Vi+ fViyejÄ

e-1 _ jv± sfiîh - wi s/^ïh
h h

avec

{(1,1, m) si k est pair
(16) {ti,d1,e1) <

l(t0, d0, e0) si k est impair.

Les équations (5) et (13) montrent que

_ vJJt - wJVt
t

De (13), (15) et (17) résulte en particulier que

—. ^Jd1t1 — y/dt.
t1 L

Ceci n'est possible que si d d1 t tl est le carré d'un entier.

Si m ^ — l(mod 4), d d1 est un carré, donc, comme ni d ni dt n'a de diviseur

carré, d =» du et, comme d ^ 1, (16) montre que d d0, e e0 et k est impair.
Si m — l(mod 4), d et d1 sont impairs, donc t îu donc d dl est un

carré, donc ici encore d « dv Comment ^ 1, (16) montre que t t0,d d0,

e e0 et k est impair.
Donc 8 8q avec k impair ^ 1, ce qui entraîne, puisque s0 > 1

V^/d^To + ^ + WoVëTo
s - ^ - £o •

lo Lo

Comme (K W) et (V0, W0) sont deux solutions positives de la même équation

(50), on a V ^ V0 et W ^ W0. Ceci achève la démonstration du théorème.

(17)
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