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SOME PARADOXICAL SETS 11

If we now perform an analogous construction starting from the other side BC
of ABCD we obtain a finite number of strips satisfying all the properties
indicated (a), (b), (c).

The Besicovitch set is now very easily obtained as follows. We take a square
' MNPQ of side length 1 and apply to it the above auxiliary construction (**) with
e = 1/2. We obtain a number of strips o7, ©3, .., ©, , covering an area smaller
than 1/2 and such that for each segment determined by a point of MN and
another of PQ there is a segment of the same length and direction inside Q'
=0, U0;U .U,

Now we consider each of the parallelograms o} and apply to it the same
construction (**) with ¢ = 1/2%r,. Collecting all parallelograms corresponding
to each 03}, j=1,2,..,r;, we obtain a second family of parallelograms
®71, ©3, ..., ;. Their union @ = ] U ®3 U .. U ©; has area less than 1/2, is
contained in Q' and, again, for each segment joining a point of M N to another of
PQ there is another one of the same length and direction inside Q2. We proceed
with the parallelograms o7 as we did with the o}, now with ¢ = 1/23r,, and so
on. Thus we obtain

QL5 Q2>5Q3 - ..

of areas
S(QY < 172, S(Q?) < 1/22, 8(Q3) < 1/23, ...

The sets ) are compact and have the property of containing a parallel
translation of each segment with one extremity on M N and the other on PQ. The
intersection

B=Q'nQ®n. . QA ..

is of null area gnd has this same property. We now proceed with the square
MNPQ in the same way in the other direction and obtain a compact set of
measure zero containing a segment of length one in each direction, i.e. the
Besicovitch set.

8. THE NIKODYM SET

The Nikodym set can be obtained from the Perron tree in a similar way
through the following auxiliary construction, also surprising in itself.
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FIGURE 16

Let ABCD be an arbitrary parallelogram and CDEF another one
contained in it as Figure 16 shows. Let € be any arbitrary positive number. Then

one can construct a finite number of parallelograms o, ®,, ..., ®,, with a basis on

q’
CD and another one on AB such that the figure ®; U ®, U .. U ®, covers

CDEF while the part of it above EF has area less than ¢, that is:

®; Uo,u.. v, > CDEF

S((0, vo,u...u0,) N (ABCD—CDEF)) < ¢

This construction is a little more technical than that of the Besicovitch set
and will be omitted. For details we refer to Guzman (1975).

9. MATHEMATICAL FRIVOLITIES?
FROM THE PERRON TREE TO THE MEASURE OF THE DENSITY

What started as a puzzle has proved to have many important applications to
solve some interesting problems of recent analysis.

Let us assume that we have a mass distributed on the plane and that we wish
to measure the density of this distribution at each point. Let us also suppose that
the mass is not continuously distributed. One can perhaps say: “Will it not be
very artificial to consider a mass that is not continuously distributed?” It is true
that the old Scholastic used to affirm that “natura non facit saltus” (nature does
not proceed by jumps). However, the findings of modern physics permit us to
affirm with even stronger motivation “natura non facit nisi saltus” (nature
proceeds only by jumps). Therefore it is rather natural to consider a
discontinuous mass distribution.

For a long time one thought that in order to measure the density one could
take any system of reasonable sets that contract to the point at which one
measures the density, find the mean density over such sets and hope that, when
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