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Then using the results above one shows that

t s(öw) ööcj,£t(i/(K)) Tm

so that t and s set up a bijective correspondence between the closures of orbits in

the two cases and hence induce a bijective order preserving correspondence

between the sets of orbits themselves.

8. Vectorbundles and systems

This section contains a modified version of the construction of Hermann-

Martin [14] associating a vectorbundle £(X) over the Riemann sphere P^C) to

every X (A, B) g Lcnru n. This version makes it almost trivial to see that £(X)

splits as a direct sum of line bundles L(Kf), i 1,m where k (kx, kJ is

the set of Kronecker indices of X.

The first thing needed is some more information on the universal

bundle c,m.

8.1. On the Universal Bundle £m - G„(C" + m). Let L be a complex n + m

dimensional vector space and L* Homc(K C) its dual vector space. Given

x g Gn(C" + m) define x* {y g L* | < y, p > =0 for all x g V) where < >
denotes the usual pairing L* x V -> C. Then x* is m-dimensional and x^x*
defines a holomorphic isomorphism

(8.2) d:Gn(V)^Gm(V*).

Now v g V/x defines a unique homomorphism vT : x* C as follows :

vT{a) < a, v > for all a e x*, where v g V is any representative of v. This is

well defined because < a, b > 0 for all b g x if a e x*. This defines an

isomorphism between the pullback (d~x) ^m and the dual of the subbundle rjm on
Gm(L*) defined by

{(x*5 w) e Gm(L*) X K* I WG X*}

It follows that £m is a subbundle of an n + m dimensional trivial bundle
G„(C" + m) x Cn + m. Because G„(CM + m) is projective (compact) all holomorphic
maps Gn(C" + m) C are constant so that the space of holomorphic sections

r(G„(C"+m) X Cn +
m, Gn(Cn + mj) is of dimension n + m. As a subbundle of a

trivial (n + m)-dimensional bundle ^m can therefore have at most (n + m) linearly
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independent holomorphic sections. But we have already found (n + m) linearly
independent sections viz. the el5..., s„+m defined by s,(x) et mod a where e{ is

the i-th standard basis vector of Cn + m. Therefore

(8-3) dim r(Çm, Gn(Cn + mj) n + m

Now let A e GL„+m(C). Then A induces a holomorphic automorphism A* of
Gm(C" +

m) defined by x i— Ax. Then, of course, there is an induced isomorphism
A~1 : Cn + m/Ax -> Cn + m/x which for varying x induces an isomorphism

(8.4) ^4eGL„+m(C)

8.5. The Line Bundles L(i) over P^C). The Riemann sphere P1(C)
S2 can be obtained by gluing together two copies of C along the open subsets

C\{0} by the isomorphism

C\{0} -+ C\{0}, s I— t - s"1

A line bundle over P:(C) is then obtained by giving a holomorphic isomorphism
C\{0} x C h* C\{0} x C linear in the second variable compatible with the

above isomorphism. Obviously the only possibilities are (s, v) -> (s-1, slv) for
i e Z. This gives us the following commutative diagram identifications

C x C

t
C\{0} X C

(s, v) - (s slv)

C _v 1

C\{0) xCcCxC

t
I C ^ C\{0} C\{0} C "

The corresponding holomorphic line bundle is denoted L( — i). A section of L( — i)

consists of two holomorphic mappings s1; s2 of the form s - (s, /(s)), t (t, g(t))

such that slf(s) g(s~l). It readily follows that f(s) must be a polynomial of
degree ^ —i. Thus

(8.6)

(8.7)

dim r(L(i)) 0 if i < 0

dim T(L(0) /+! if i > 0

8.8. The (modified) Hermann-Martin vectorbundle of a system. Let £
(A, B) be a pair of real or complex matrices of sizes n x n and n x m. Then

(A, B) is completely reachable (cr) iff the n x (n + m) matrix (si — A ; B) is of rank

n for all complex values of s. So if E (A, B) is cr one can define a holomorphic

map vJ/j by
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(8.9) \|/s : P^C) G„(C"+m), s i-* Row(sI-A;B), oo Row(/; 0)

where Row(M) for an n x (m + n) matrix M denotes the subspace of Cn + m

generated by the rows of M. The vectorbundle £(X) over P*(G) is now defined by

(8.10) £(X)

8.11. Proposition. E(L) depends only on the feedback orbit of X.

Indeed one easily checks that X (A, B\ X' (Ä, B') e Lc„t „ are feedback

equivalent (cf. 2.6 above) iff there are constant invertible matrices P, Q such that

P(sl — A ; B)Q (sI-A'iB').
Now Row(PM) Row(M) and postmultiplication with Q changes \|/E to

° tyz and

E(S') ^ (^(U EÇL))

by 8.4 above, proving the proposition.
Thus to determine £(X) we can assume that X (A, B) is in Brunowsky

canonical form which means tha

0 1 0

0

1

0 0

0 1

0

0 0

in case m 3, where (kx, k2, k3) k(A, B) are the Kronecker indices of X
(A, B). (The general case is evident from this example) ; every (A, B) e U(k) is

feedback equivalent to such a pair [30, 9]. The matrix (sI~A ; B) is now easily
written down, and one observes that for all

s ^ 0, oo, ex e2 eKl en + 1 mod Row(sI — A ;B),

it A, B takes the form

0 1 0

1

0 0

0 0 0

0

1 0 0

0 0 0

0

0 1 0

0 0 0

0

0 0 1
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i.e. mod v|/z(s) and for s — 0, e2 eK1 en + l =0 but e1 ^ 0 and for
s oo, ex eKl 0 and en + 1 ^ 0. It follows that the vectors

ei(*Ms)), -, eKl(Ws)), en+i(v|/r(s))

span a one-dimensional subspace of £>m(\|/x(s)) for all s so that £(X) ~ i|f^m
contains a line bundle Ll which admits at least k1 + 1 linearly independent
holomorphic sections viz. the sl5..., sKl, £„ + 1. Similar relations hold for

^Kl 4 + Kj - 1 + 1? i ^Ki >,,,. + Kj' + 1

for all i 1,..., m giving us subbundles Lh i 1,..., m which admit at least Kt-

+ 1 linearly independent holomorphic sections. This exhausts the st- and
because the 8n + m(x) span ^(x) for all x e G„(C" + m) it follows that E(L)

© Lj. As the pullback of the bundle E(L) itself is a subbundle of an (n -f m)-

dimensional trivial bundle. Because PX(C) is projective it follows (as before) that
EÇL) has at most n + m linearly independent holomorphic sections. But Lt has at
least K; + 1 linearly independent sections, hence © Lt has at least E(kf+ 1) n

+ m linearly independent sections which proves that Lt has precisely Kt + 1

linearly independent sections and hence identifies Lt as the bundle L(k;)
described above in (8.5). We have reproved the theorem of Hermann and

Martin [14].

8.12. Theorem. Keeping the notations introduced above in (8.10) and (8.5)
m

we have E(L) ~ © L(Kt).
i 1

Still another proof of this theorem, using the Riemann-Roch theorem is

found in Byrnes [33].

8.13. The Correspondence B. (cf. the diagram in section 5 above). The

mapping Z i— E(L) is obviously continuous. Thus the result U(k) => U(k) k
> X can be deduced from Shatz's theorem (cf. 2.9). Inversely Shatz's theorem for

positive bundles over P^C) can be deduced from the result on feedback orbits
because every positive bundle arises as an E(L). By tensoring with a suitable L(r),

r high enough, the result is then extended to arbitrary bundles over P^C).

9. Vectorbundles, systems and Schubert cells

9.1. Partitions and Schubert-cells. Let k be a partition of n. To k we

associate the following increasing sequence of n numbers t(k).
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