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Then using the results above one shows that

t 5(0(x)) = 0O(k), s 1(U(x)) = Ulx)

so thatt and s setupa bijective correspondence between the closures of orbits in
the two cases and hence induce a bijective order preserving correspondence
between the sets of orbits themselves.

8. VECTORBUNDLES AND SYSTEMS

This section contains a modified version of the construction of Hermann-
Martin [14] associating a vectorbundle E(X) over the Riemann sphere P(C) to
every £ = (A, B) e L ,. This version makes it almost trivial to see that E(X)
splits as a direct sum of line bundles L(x;), i = 1, .., m where k = (Ky, ..., K,,) 1S
the set of Kronecker indices of . |

The first thing needed is some more information on the universal
bundle &,

8.1. Onthe Universal Bundle &, — G, (C""™). LetV beacomplexn + m
dimensional vector space and V* = Hom¢(¥, C) its dual vector space. Given
x € G,(C""™) define x* = {yeV*| < y,0 > = Oforall xe V} where <, >
denotes the usual pairing V* x V — C. Then x* is m-dimensional and x +— x*
defines a holomorphic isomorphism

(8.2) d: G, (V) - G, (V*).
Now v € V/x defines a unique homomorphism v” : x* — C as follows:

vI(a) = < a, v > for all a e x*, where 0 € V is any representative of v. This is
well defined because < a,b > = 0 for all be x if ae x*. This defines an

isomorphism between the pullback (d~ 1) €, and the dual of the subbundle n,, on
G, (V*) defined by

Mw = {(x*, W) € G(V*) x V¥ | we x*)

It follows that &, is a subbundle of an n + m dimensional trivial bundle
G, (C"™™) x C""™ Because G,(C"™™) is projective (compact) all holomorphic
maps G,(C""™) — C are constant so that the space of holomorphic sections
[(G,(C"™™) x C**™ G,(C"™™) is of dimension n + m. As a subbundle of a
trivial (n + m)-dimensional bundle &, can therefore have at most (n+ m) linearly
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independent holomorphic sections. But we have already found (n+ m) linearly
independent sections viz. the g4, ..., €, ,, defined by g(x) = ¢; mod x where ¢; is
the i-th standard basis vector of C"*™. Therefore

(8.3) dim T(&,, G(C"™*™) = n + m

Now let 4 € GL, ,,,(C). Then A4 induces a holomorphic automorphism A* of
G,(C""™) defined by x — Ax. Then, of course, there is an induced isomorphism
A~1:C""™/Ax — C"*™/x which for varying x induces an isomorphism

(84) A >:< Z:;m = &ma A € GLn+m(C)

8.5. The Line Bundles L(i) over P!(C). The Riemann sphere P!(C)
= S%can be obtained by gluing together two copies of C along the open subsets
C\{0} by the isomorphism

C\{0} - C\{0},s = s 1

A line bundle over P!(C)is then obtained by giving a holomorphic isomorphism
C\{0} x C - C\{0} x C linear in the second variable compatible with the
above isomorphism. Obviously the only possibilities are (s, v) — (s~ %, s'v) for
i € Z. This gives us the following commutative diagram identifications

CxC>C\{0} xC - C\{0} x C=cC x C
T (s, v) = (s7*, s'v) ?
1, l l s—os =t l l 52
- C > C\{0} = C\{0} cC --

,\' The corresponding holomorphic line bundle is denoted L(—i). A section of L(— i)
- consists of two holomorphic mappings s,, s, of theform s — (s, f(s)), t — (¢, g(t))
. such that s'f(s) = g(s™1). It readily follows that f(s) must be a polynomial of
- degree < —i. Thus ‘

' (86) dim T(L()) = 0 if i <0
- 8.7) dmT(LG) =i+ 1 ifi>0

8.8. The (modified) Hermann-Martin vectorbundle of a system. Let X

= (A, B) be a pair of real or complex matrices of sizesn x nand n x m. Then
(A, B) is completely reachable (cr) iff the n x (n+m) matrix (sI — A; B)1s of rank
n for all complex values of s. Soif ¥ = (A, B)is cr one can define a holomorphic

- map Vs by

[ ok I
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(8.9) Vs : PYC) » G,(C""™), s — Row(sI — A ; B), oo — Row(I; 0)

where Row(M) for an n x (m+n) matrix M denotes the subspace of C"*™™
generated by the rows of M. The vectorbundle E(X) over P*(C)is now defined by

(8.10) EZ) = Vs&,

8.11. Proposition. E(X) depends only on the feedback orbit of X.
Indeed one easily checks that X = (A4, B), X' = (A, B') e L;; , are feedback
equivalent (cf. 2.6 above) iff there are constant invertible matrices P, Q such that
P(sI—A;B)Q = (sI—A'; B).
Now Row(PM) = Row(M) and postmultiplication with Q changes {5 to
Q>I< o Jry and
EX) = Vs Ew) = ¥z (Q &) = (V2 (€ = E(D))

by 8.4 above, proving the proposition.
_ Thus to determine E(X) we can assume that £ = (A4, B) is in Brunowsky
canonical form which means that A4, B takes the form

01 0 00 0|

0 0 K,
1 0

0 0 1 0 0

01 0 0 0 0
0 K,

I 0

0 0 0 1 0

01 0 0 0 0
0 0 K

1 0

i 0 o| [0 o0 1]

in case m = 3, where (x4, k,, K;) = (A, B) are the Kronecker indices of 3
= (4, B). (The general case is evident from this example); every (4, B) € U(Ki 18
feedback equivalent to such a pair [30, 9]. The matrix (sI —A; B) is now easily
written down, and one observes that for all

s # 0,00, =¢, = .. = e, = €,,, mod Row(sI— A4; B),
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i.e. mod Yy(s) and for s = 0, e, = .. = ¢, = ¢,,; = 0 but ¢; # 0 and for
s = ,¢e; =..=¢, = 0ande,,; # 0. It follows that the vectors

81(\1’2(5))’ e 81(1(\]:’2(5))7 En+ 1(“12(5))

span a one-dimensional subspace of &,((s)) for all s so that E(Z) ~ &,
contains a line bundle L, which admits at least k; + 1 linearly independent
holomorphic sections viz. the g, ..., €, €, ;. Similar relations hold for

K2
8K1+...+Ki_1+l’ ) 8}(1 +.. otk 8n+1

foralli = 1, .., m giving us subbundles L, i = 1, .., m which admit at least x;
+ 1 linearly independent holomorphic sections. This exhausts the g, and
because the g,(x), ..., €,. ,(x) span £, (x) for all x e G,(C"*™) it follows that E(X)
= @ L, Asthe pullback of the bundie &, E(Z)itselfis a subbundle of an (n + m)-
dimensional trivial bundle. Because P*(C) is projective it follows (as before) that
E(X)hasatmostn + mlinearly independent holomorphic sections. But L; has at
least x; + 1 linearly independent sections, hence @ L, has atleast X(x;+ 1) = n
+ m linearly independent sections which proves that L; has precisely k; + 1
linearly independent sections and hence identifies L; as the bundle IL(k;)
described above in (8.5). We have reproved the theorem of Hermann and
Martin [14].

8.12. Theorem. Keeping the notationsintroduced above in(8.10)and (8.5)

we have E(Z) ~ @ L(k,).
Still another proof of this theorem, using the Riemann-Roch theorem is

found in Byrnes [33].

8.13. The Correspondence B. (cf. the diagram in section 5 above). The

mapping X — E(X) is obviously continuous. Thus the result U(x) = U(A) & «

.> X can be deduced from Shatz’s theorem (cf. 2.9). Inversely Shatz’s theorem for
positive bundles over P!(C) can be deduced from the result on feedback orbits
because every positive bundle arises as an E(X). By tensoring with a suitable L(r),
. .r high enough, the result is then extended to arbitrary bundles over P!(C).

9. VECTORBUNDLES, SYSTEMS AND SCHUBERT CELLS

9.1. Partitions and Schubert-cells. Let x be a partition of n. To x we
associate the following increasing sequence of n numbers (k).
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