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ON FREE SUBGROUPS OF SEMI-SIMPLE GROUPS

by A. BOREL

In [8], P. Deligne and D. Sullivan show that an odd-dimensional sphere
S27+1(n > 1) admits a non-commutative free goup of isometries which acts freely.
This answers a question raised in [7] (for n even, it was settled there for n odd),
recalled in [11], and motivated by the fact that this property implies a strong
form of the Hausdorff-Banach-Tarski paradox [6] (see §4). The present paper
grew out of the attempt to extend this result to homogeneous spaces of compact
semi-simple Lie groups having zero Euler characteristic. More generally we shall
prove:

THEOREM A. Let U be a non-trivial connected semi-simple compact Lie
group. Then U contains a non-commutative free subgroup 1" with the following
property : for any proper closed subgroup V, any element ye I — {1}, acting
by left translations on U/V, has exactly y(U/V) fixed points, where y(U/V)
is the Euler characteristic of U/V.

In particular, I' acts freely if y(U/V) = 0. Note that since every translation by
an element of U is homotopic to the identity, the number of fixed points is the
smallest possible in view of the Lefschetz fixed point theorem. The proof shows in
fact that there are “many” such subgroups: given m € N, the set of m-tuples of
elements in U which do not generate freely a free subgroup with the property
mentioned in the theorem is contained in a set of Haar measure zero in U™,

The result of [6] alluded to above also extends to actions of free groups with
commutative isotropy groups (called “locally commutative” in [6]). This suggests
looking for such actions in case y(U/V) # 0. We shall see indeed in §4, by a
completely different argument, that they always exist (see Theorem 3). This in
particular answers a question of T. J. Dekker for S* [6].

Let w be a reduced non-trivial word in m letters and their inverses. It defines
an obviousmap f,,: U™ — U. The main step to prove Theorem A is to show that
fw 1s a dominant map. In particular Im f,, contains a non-empty open set.
Furthermore, x(U/V) can be described purely in Lie group terms, by a theorem
of Hopf-Samelson [10], (recalled below). This suggests proving more general

results for semi-simple algebraic groups, and deriving the above ones as special
cases. We shall do so and show first
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THEOREM B. Let G be an algebraic connected semi-simple group. Let
meN, and f,:G™ — G be the map associated to a non-trivial element w in
the free group on m letters. Then Im f, is not contained in any proper
subvariety (m=>?2).

The proofis by induction on dim G and uses a variant of the key idea of [§].
In this statement, we have implicitly identified an algebraic group H with the
group H(Q) of its points in a “universal field” Q, i.e., an algebraically closed
extension of infinite transcendence degree of a prime field. Assume now that G is
defined over a field K of infinite transcendence degree. It follows from [17], and
was well-known over R or C, that G(K) contains many non-commutative free
subgroups, in fact that m “sufficiently general” elements are free generators of a
subgroup (meN). Theorem B implies a sharpening of that assertion, namely the
existence of non-commutative free subgroups in G(K) all of whose elements,
except the identity, are outside a given proﬁer subvariety (or even outside a
countable union of proper subvarieties defined over a common field of finite
transcendence degree over the prime field, see Theorem 2 for the precise
statement). As an application, we deduce

THEOREM C. Let K beafield of infinite transcendence degree over its prime
field and assume G to be defined over K. Then there exists g = (g9, € G(K)"
whose components ¢; freely generate a subgroup T of G(K) such that every
yel — {1} is regular and generates a Zariski-dense subgroup of the unique
maximal torus T, containing it. '

In fact, there are many such g’s. In some sense, a “generic” g € G(K)™ always
gives rise to such a subgroup. If K = R, Corisa p-adic field, the set of such g’s is
dense in the ordinary topology.

Given a closed subgroup H of G, set (G, H) = 01if H does not contain any
maximal torus of G. If it does, and T is one, then set (G, H) = [Ng(T): Ny(T)).
Then Theorem C implies the:

CoROLLARY. Every yel — {1}, acting by left translations on
G(K)/H(K), has at most x(G, H) fixed points.

In particular, I acts freely if H does not contain any maximal torus of G.
Assume now that it contains one, say Ty, which we may assume to be defined over
K. Assume further that all maximal K-tori of H are conjugate under H(K) and set

X(G(K), H(K)) = [New)(To) : NH(K)(TO))] .

Then we shall see that vy acts freely on G(K)/H(K) if T, is not conjugate to Tj
under G(K) and has x(G(K), H(K)) fixed points otherwise.
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The condition on H and the second alternative hold either if K 1is
algebraically closed or if K = R and G(K) is compact. In that last case,
x(G(K), H(K)) = x(G(K)/H(K)) by [10], and Theorem A follows.

I wish to thank D. Sullivan for having sent me a preprint of [ 8], which was the
starting point of the present paper, and D. Kazdhan and G. Prasad for having
pointed out two errors in a previous proof of Theorem B for SL,.

Notation and conventions. In the sequel, G is a connected semi-simple
algebraic group over some groundfield, and p the characteristic of the
groundfield. For unexplained notation and notions on linear algebraic groups,
we refer to [ 1]. In particular, in such a group, the word “torus” is meant asin [ 1],
1.e., refers to a connected linear algebraic group which is isomorphic to a product
of GL,’s. In a compact group however it means a topological torus (product of
circle groups).

If H is a group, and A, B are subsets of H, then

4 = {bab™'|ae A, be B}, Ny(4) = (he H|hAh~' = A},
Try(A,B) = (heH|hAh™! = B}.

If I' acts on a space X, the isotropy group of I' at x is
', ={yel]ly x = x}.

We recall that a morphism f: X — Y of irreducible algebraic varieties is
dominant if its image is not contained in any proper algebraic subvariety. If so,
then Im f contains a Zariski-dense open subset of Y [1: AG 10.2]. If the
groundfield has characteristic zero, then, since f is separable, the differential of f
has maximal rank on some non-empty Zariski open subset of X [1: AG, 17.3].

§1. PROOF OF THEOREM B

Letmbeaninteger 22.Letw = w(X, .., X, ) be a non-trivial element in the
free group F(X, .., X,,) on m letters X, i.e., a non-trivial reduced word in the
X’s, with non-zero integral exponents [3: 1.81, Prop. 7]. Then given a group H,
the word w defines a map f,,: H™ — H by the rule

(1) Sllhss o hy) = Wy, o by, (heH ; 1<i<m).

If H is an algebraic group, then f,, is a morphism of algebraic varieties which is
defined over any field of definition for H. In the case where H = G we want to
prove
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THEOREM 1. The map f,:G"™ - G is dominant.

This 1s a geometric statement. To prove it, we shall identify G with G(Q),
where Q is some universal field. We have then to prove that f,(G(Q)") is Zariski-
dense in G(Q).

The Zariski closure Z of Imf,, is irreducible (since G™ is) and is invariant
under conjugation, since Im f,, is obviously so. Since the semi-simple elements of
G are Zariski-dense, and all conjugate to elements in some fixed maximal torus T,
it suffices to show that Z o T

a) We first consider the case where G = SL,(n>2). Let us prove that G(Q)
contains a Zariski-dense subgroup H, no element of which, except for the
identity, has an eigenvalue equal to one. This statement and its proof were
directly suggested by [§].

One can find an infinite field L of the same characteristic as Q over which
there exists a central division algebra D of degree n?>. We may for example take
for L a local field (see e.g. XIII, §3, Remarque p. 202 in [14]). We may assume L
< Q. Let ' be the algebraic group over L whose points in a commutative L-
algebra M are the elements of reduced norm one in D ®, M. Then 2! is an
anisotropic L-form of SL,. Of course, D splits over Q and the isomorphism
D ®,Q = M,(Q) yields an isomorphism of 2'(Q) onto G(Q). We let H be the
image of D' = 2*(L)under such an isomorphism. The group H is Zariski-dense
since Lis infinite. The fact thatany h € H — {1} has no eigenvalue equal to one is
then proved as in [8]: the element 7 — 1 is a non-zero element of D, hence is
invertible, hence has no eigenvalue zero and therefore h has no eigenvalue one.
This proves our assertion. Let p, be the characteristic exponent of Q (p, = 1 if
char Q = 0 and p, = char Q otherwise). If p, = 1, then H consists of semi-
simple elements ; if not, then h%g = p?~ ') is semi-simple forany h € G. Let f4: G™
— G be defined by f4(g) = f.(9)% Then f%(H) consists of semi-simple elements.
Let Z, be the Zariski closure of Im /.. Since x + x“is dominant, we have shown:

(*) Let V be the set of semi-simple elements in G(Q) which have no
eigenvalue equal to one. Then {1} U (Vnlm 1) is Zariski-dense in Z,.

We now prove the theorem for SL,(n=2) by induction on n. It suffices to
show that f4 is dominant and, for this, that Z, > T Let n = 2. The group SL,
has dimension three and the conjugacy classes of non-central elements have
dimension two. If Z, # G, thendim Z, < 2 and Z, is contained in the union of
the set U of unipotent elements of G and of finitely many conjugacy classes of
semi-simple elements, # 1. Those are closed, disjoint from U. Since Z, is
irreducible and contains 1, it should then be contained in U. On the other hand,
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Z, # |1} since G contains non-commutative free subgroups, as follows from
[17] (see also Remark 1 below). We then get

{l}c;_chU,

but this contradicts (*), whence the Theorem for SL,.

Assume now n > 2 and our assertion proved up to n — 1. This implies in
particular that Z, contains all subgroups of G isomorphic to SL, _ ;, hence that
Z,NT contains the subtori of T of codimension one consisting of the elements
of T which have at least one eigenvalue equal to one. Call Y their union. Assume
that Z, n T # T. Then we may write Z,n T = Y u Y', where Y' is a proper
algebraic subset of T not containing any irreducible component of Y. Let Q be
the Zariski-closure of the set Y’ of conjugates of elements of Y. We claim that
Y & Q. In fact, the subsets Y and Y’ are stable under the Weyl group W
= N(T)/T (which may be identified with the group of permutations of the basic
vectors of Q7). Let J < Q[T/W] be the ideal of Y'. The algebra Q[ T/W] is
isomorphic, under the restriction mapping, to the algebra S of regular class
functions on G [16]. Let J' be the ideal of S corresponding to J under this
isomorphism and R the variety of zeroes of J'. We havethen Q = R,but Y ¢ R,
whence Y & Q.

The difference Y’ — (YNY’) contains a conjugate of every semi-simple
element of Z, not having any eigenvalue equal to one. Therefore (*) implies that
Z, = {1} U Q. But this contradicts the fact that Y ¢ (. Therefore T < Z_ and
the theorem is proved for SL,.

b) Inthe general case we use induction ondim G.Ifp: G' — Gis anisogeny,
then the theorem for G’ implies it for G, hence we may assume G to be simply
connected. It is then a direct product of almost simple groups, whence also a
reduction to the case where G is almost simple. By a), it suffices to consider the
case where G is not isomorphic to SL, for any n. But then it contains a proper
connected semi-simple subgroup H of maximal rank (see lemma below). By
induction Z contains a maximal torus of H, hence one of G, and therefore T.

We have just used the following lemma:

LEmMA 1. Assume G to be almost simple, and not isogeneous to SL, for

any n. Then G contains a proper connected semi-simple subgroup of maximal
rank.

For convenience, we may assume G to be isomorphic to its adjoint group. Let
® = O(G, T) be the root system of G with respect to T and A = {og, oy oy} @
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basis of ®. Since G is adjoint, A is also a basis of the group X*(T) of rational
characters of T. Let d be the dominant root and write
i=1
d = Z dl-O(,- "

1

The d;’s are strictly positive integers. By assumption, @ is not of type A,, for any
m. Therefore, by the classification of root systems, one of the d,’s is prime (see e.g.
[4]). Say d, = q, with q prime. Let ¥ be the set of elements in ® which, when
expressed as linear combination of simple roots, have either 0 or +g¢ as
coeflicient of «,. This is a closed set of roots. In fact, it is a root system with basis
%y, ..., 0y and —d [2]. We claim that there exists a closed connected subgroup H
of G containing T with root system V.
Let first ¢ # char. K. Then there is an element t € T, t # 1, such that

It has order g, and ¥ is the set of roots which are equal to one on t. Then the
identity component of the centralizer of ¢ satisfies our condition.

Letnow g = char. Q. Lett be the Lie algebra of T and u be the subspace of t
which annihilates the differentials do; of the roots o;(i = 2,..,1[). It is one
dimensional and does not annihilate do, (since, as recalled above, A is a basis of
X*(T), hence the da(1 <i<!) form a basis of the dual space to t). Of course, the
differential of any A € X*(T) which is divisible by g in X*(T)1is identically zero on
t. It follows then that

¥ = {ae®|duyu) =.O} .
Let g be the Lie algebra of G and
g, = {xeg|Ad t(x) = o) x(teT)}, (aed) ,
be the (1-dimensional) eigenspace of T corresponding to o[ 1, §14]. The previous

relation implies that

39(11): t@@?’ga

By [1: §14] the Lie algebra of the centralizer
Zgu) = {ge G| Ad g(x) = x, (xeu)},

of uin G is equal to 34(u) ; therefore Z (u) is a semi-simple subgroup satisfying our
conditions.

Remarks. 1) We have used [ 17] only for SL,(€), but it is possible to bypass
[17] in this case and make our proof, and the whole paper, independent of [ 17].
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We need only to prove that SL,(Q) contains a non-commutative free subgroup F.
If Q has characteristic zero, we may take any torsion-free subgroup of SL,(Z).
Let now p = char Q be >0. Then, by the arithmetic method, using division
quaternion algebras over global fields, we can construct a discrete cocompact
subgroup of SL,(L), where L is a local field of characteristic p (cf. A. Borel-G.
Harder, Crelle J. 298 (1978), 53-74). The latter has a torsion-free subgroup F of
finite index (H. Garland, Annals of Math. 97 (1973), 375-423) which is then free,
since it acts freely on a tree, namely the Bruhat-Tits building of SL,(L).

2) For any non-zero n € Z, the power map g +— ¢”" 1s dominant (because it 1s
surjective on any maximal torus [1: 8.9]), hence Theorem 1 is obvious if the sum
of the exponents of one letter in the word w is not zero. (See [11] for a similar
remark in the context of compact groups.)

3) If U and V are non-empty open subsets in a connected algebraic group H,
then H = U - V [1: 1.3]. It follows then from Theorem 1 that if w, w’ are two
words in two letters, say, then the map G* — G defined by

f91, 92, 93, 94) = w(g1, 92) " W(gs, ga)

is surjective. For instance, every element of G(Q) is the product of two
commutators. However, the map f,, itself is not always surjective; for instance
x — x? is not surjective in SL,(C), as pointed out in [11].

4) If K = C,then Theorem 1 implies that Im f,, contains a dense open set in
the ordinary topology. If G is defined over R, then Theorem 1 also shows that
/.{G(R)) contains a non-empty subset of G(R) which is open in the ordinary
topology. However it may not be dense. For instance, it is pointed out in [11]
that for SU,, the image of the map defined by [x?, yxy~!] omits a neighborhood
of —1; however this map is surjective in SO,.

It seems thatlittle is known about the image of f,,, even over R or C. A general
fact however is that the commutator map is surjective in any compact connected
semi-simple Lie group [9].

§2. FREE SUBGROUPS WITH STRONGLY REGULAR ELEMENTS

1. In the sequel, K is a field of infinite transcendence degree over its prime
field. We shall need the following lemma :

LEMMA 2. Let X be an irreducible unirational K- -variety. Let L be a
finitely generated subfield of K containing a field of definition of X, and
V{ieN) a sequence of proper irreducible algebraic subsets of X defined over an
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algebraic closure L of L. Then X(K) is not contained in the union of the
Vi n X(K), (ieN).

By definition of unirationality, there exists for some n € N a dominant K-
morphism ¢ : A" - X, where A" denotes the affine n-dimensional space.

This map is already defined over some finitely generated extension of L.
Replacing L by the former, we may assume ¢ to be defined over L, hence ¢~ (V)

to be defined over L. It is a proper algebraic subset since ¢ is dominant. This
reduces us to the case where X = A" But then any point whose coordinates

generate over L a field of transcendence degree n will do.

THEOREM 2. Assume G tobedefinedover K. Let ¥ = {V) (ieN) bea

family of proper subvarieties of G, all defined over an algebraic closure L of a
finitely generated subfield L of K over which G is also defined. Then G(K)
contains a non-commutative free subgroup I such that no element of I’ — {1}
is contained in any of the V/s. Given m = 2, the set of m-tuples which freely
generate a subgroup having this property is Zariski dense in G™.

We may (and do) assume that the identity element is contained in one of the
Vi's.
Let w and f,, be as in §1. Then f,, is defined over L hence 1, *(Z) is defined
over L for every Z € ¥~ and is a proper algebraic subset by Theorem 1. The sets
/' 1(Z), as wruns through all the non-trivial reduced words (in m letters and their

inverses) and Z through ¥, form then a countable collection of proper algebraic

subsets, all defined over L. But G, hence G™, 1s a unirational variety over any field
of definition of G [1: 18.2]. Lemma 2 implies therefore the existence of g
= (g;) € G(K)™ not belonging to any of these subsets. Then the g;’s are free
generators of a subgroup which satisfies our conditions. In fact, we see that we

can take for g any point of G(K)™ which is generic over L and, sincewi has finite
transcendence degree over the prime field, such points are Zariski-dense. This
establishes the second assertion. '

Remark. 1If G = SO,, (resp. SO,, . ;), this shows for instance the existence
“of a free subgroup I', no element of which except 1 has the eigenvalue 1 (resp. the
eigenvalue 1 with multiplicity > 1).

2. Any semi-simple element x of G 1s contained in a maximal torus [1:
11.107; x is called regular if it is contained in exactly one maximal torus. We shall
say that x is strongly regular if it is not contained in any non-maximal torus, i.e., if
the cyclic group generated by x is Zariski-dense in a maximal torus.

The following result contains Theorem C of the introduction.
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COROLLARY 1. Assume G tobedefined over K. Then G(K) containsa
non-commutative free subgroup T all of whose elements # 1 are strongly
regular. Given m = 2, theset of m-tuples (g;) € G(K)" which generate freely a
subgroup with that property is Zariski dense in G™.

The field K contains a field of definition L of G which is finitely generated
over its prime field. Let L be an algebraic closure of L in our universal field Q.

Then the subfield generated by L and K has infinite transcendence degree over L.
Let S be the set of singular elements of G (i.e., of elements g € G such that Ad ¢

has the eigenvalue one with multiplicity > rk G). It is algebraic, defined over L.
Fix a maximal L-torus T of G [1: 18.2]. Every proper closed subgroup of T is
contained in the kernel of a rational character [1: 8.2]. The characters are all
defined over a finite separable extension L' of L [1:8.11] and form a countable
set. For e X*(T),x # 1,let T, = ker A, and V, the Zariski-closure of °T,.
The V, and S form a countable set ¥~ of proper algebraic subsets of G which are

all defined over L.
Our assertion is now a special case of the Theorem.

3. We can now prove the Corollary in the introduction. Let Q be an
algebraically closed extension of K. Since G(K)/H(K) may be identified to an
orbit of G(K) in G(Q)/H(Q) it suffices to show:

COROLLARY 2. Assume K to be algebraically closed. Then every vyeTT
— {1}, operating by left translations on G(K)/H(K), has exactly (G, H)
fixed points. .

Forye' — {1}, let F, be the fixed point set of y in G(K)/H(K), and let T, be
the maximal torus in which the cyclic group generated by y is dense. Clearly, F.is
also the set of fixed points of T(K). Thus, if F is non-empty, then T, is conjugate
to asubgroup of H, and H has maximal rank. Assume this is the case and let T, be
a maximal K-torus of H. Since the maximal tori of H (or G) are conjugate, it is
clementary that F, may be identified with Tr(Tj,, T,)/N x(Tp). But, if x € Tr(T,, T),
then Tr(75, T,)) = x - Ng(Ty), whence the Corollary.

4. We now generalize slightly the Corollary in case H contains a maximal

torus of G, dropping again the assumption that K is algebraically closed. Assume
instead

(*) The maximal K-tori of H are conjugate under H(K).
If T, is a maximal K-torus of H, we then set

x(G(K), H(K)) = [NG(K)(TO) ! Nuy(To)] .
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If K is algebraically closed, then (*) is fulfilled and x(G(K), H(K)) is our previous
x(G, H). We again set x(G(K), H(K)) = 0 if H does not contain any maximal
torus of G.

COROLLARY 3. Let T be as in Theorem 2. Let H be a closed K-
subgroup of maximal rank and assume (*) to be satisfied. Then yeI — {1}
acts freely if T, isnot conjugate under G(K) to T, and has yx(G(K), H(K))
fixed points otherwise.

The argument is the same as before : F, is also the set of fixed points of T.. The
latter is defined over K. If F, # (D, then there exists x € G(K) such that *T, € H,
hence by (*),

Trow(To, T,) # OF

and we have, as above, bijections

F, = Trew(To, T)/Nuw(To) = New(To)/Nuw(To) -

5. (1) If K = R, C or also is a non-archimedean local field with finite
residue field, then G(K), endowed with the topology stemming from K, is a Lie
group over K, and in particular is a locally compact topological group. In that
case, we can use in Theorem 2 a category argument instead of Lemma 2: the
f-1(Z), being proper algebraic subsets, have no interior point, the intersection of
their complement is then dense by Baire’s theorem, whence the last assertion of
Theorem 2 with “Zariski-dense” replaced by “dense in the K-topology”.

(i1) In [4] it is asked whether the hyperbolic n-space admits a non-
commutative free group of isometries which acts freely. More generally, one has
the

PROPOSITION. Let S be a connected semi-simple non-compact Lie group
with finite center, U a maximal compact subgroup of L and X = L/U the
symmetric space of non-compact typeof S. Then S containsanon-commutative
free subgroup which acts freely on X.

If rk § # rk U, this could be deduced from Corollary 2. However, the
_existence of one such subgroup can be proved much more directly in all cases : if
S = SL,(R) or PSL,(R), then we may take for I" a free subgroup of finite index in
SL,(Z) or SL,(Z)/{+1}. If S is of dimension >3, then it contains a copy of
SL,(R) or of PSL,(R), and therefore a discrete non-commutative free subgroup
[.Noelementy e I' — {1} iscontained in a compact subgroup of S, hence I" acts
freely on X.

A similar argument would be valid over a non-archimedean local field K for
the Bruhat-Tits buildings attached to semi-simple K-groups.
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§3. COMPACT GROUPS. PROOF OF THEOREM A.

1. Let U beacompact Lie group. Then we may view U as the group G(R) of
real points of an algebraic group G defined over R [5]. Furthermore, the
maximal (topological) tori of U are the groups T(R), where T runs through the
maximal R-tori of G. They are conjugate under inner automorphisms of U.
Corollary 1 to Theorem 2 insures the existence of a non-commutative free
subgroup I' of U such thateveryy e ' — {1} is strongly regular, i.e., generates a
dense subgroup of a maximal torus of U. If now V is a closed subgroup of U,
then, by [10], x(U/V) = 0 if V does not contain a maximal torus of U, and is
equalto [N(T): N(T)]if V contains a maximal torus T of U. By the results just
recalled, we may write V' = H(R), where H is an algebraic R-subgroup of G, the
condition (*) of §2 is satisfied, and any maximal torus of U is conjugate to T
Theorem A now follows from Corollaries 1 and 3 to Theorem 2.

2. The results of this paper, specialized to compact Lie groups, can of course
be proved more directly, in the framework of the theory of compact Lie groups,
without recourse to the theory of algebraic groups. For the benefit of the reader
mainly interested in that case, we sketch how to modify the above arguments.

The main point is again to prove Theorem 1, where now G stands for a non-
trivial compact connected semi-simple Lie group. In part a) of the proof, the role
of SL, is taken by SU,. If n = 2, G contains non-commutative free subgroups. If
n > 2, the argument is the same except that now we take for D, exactly asin [8], a
division algebra with an involution of the second kind and identify SU, to
(D®,R)', where L is the fixed field, in the center of D, of the given involution of D.
In part b), we use the fact that if G is simple, not locally isomorphic to SU,,, then it
contains a proper closed connected semi-simple subgroup of maximal rank, for
which we can refer directly to [2] (the proof of Lemma 1 was in fact just an
adaptation to algebraic groups of the one in [2]).

Then, as pointed out in section 5 of §2, a simple category argument yields
Theorem 2, whence also Corollary 1 to Theorem 2 and Theorem A.

§4. FREE GROUP ACTIONS WITH COMMUTATIVE ISOTROPY GROUPS

1. LetI beanon-commutative free group acting on a set X. Assume that I
acts freely, or more generally, that the isotropy groups I' (xe X) are commutative
(hence cyclic), and that at least one is reduced to {1}. Then the decomposition
theorem 2.2.1, 2.2.2 of [6] implies in particular the following: given n = 2, there
exists a partition of X into 2n subsets X; and elements v, € I'(1 £i< 2n) such that
X is the disjoint union of v;X; and v, ; X, + (i< i < n). If we view the operations of
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[" as congruences, this shows that X is equivalent to the union of n copies of itself
via finite congruences. The existence of such partitions of S* was proved first
by R. M. Robinson [13].

This then leads to the problem of finding actions of free groups with
commutative isotropy groups in cases where free actions are ruled out. We now
prove some results pertaining to that question.

2. Consider first the case of S = SO,,, ,/SO,. The problem is then to find a
free non-commutative subgroup I' of SO, . , such that no two non-commutative
elements of [ are contained in a conjugate of SO, i.c., have a common non-zero
fixed vector. In [6], this is shown for n = 2, but n # 4. We want to give an
alternate proof which also covers that last case. For n odd, there is even a I such
that no element # 1 has an eigenvector, as follows from the remark to Theorem
2. So assume n even. If n = 2, then the isotropy groups of SO, itself on S* are
commutative, hence any non-commutative free subgroup will do. Assumen > 2.
The group SO has an (absolutely) irreducible real representation of degree n
+ 1;itcane.g. be realized in the space of spherical harmonics in R of degree n/2.
Let H be the image of SO in SO, , , under such a representation and let I be a
free non-commutative subgroup of H. Then any two non-commuting elements
of I' generate a dense subgroup of H, hence do not have a common non-zero
proper invariant subspace of R"*!; in particular they have no common fixed
vector, whence our assertion.

Example. For the sake of definiteness, we indicate one explicit example in
the case n = 4.

Let o, B € (0, 2n) be two angles such that the rotations of angle o and B of R?
around two perpendicular axes freely generate a free subgroup F, ; of SO;. We
may take e.g. o = B, where a is such that cos o is transcendental [7]. Let
{e,, .., es} be the canonical basis of R°. Let 4, € SO5 be the transformation
which is a rotation of angle 2« in the plane [e4, e5] spanned by e, and es and
which is the rotation of angle 4o around the axis spanned by (32,0, 1) in
[e,, e, e3]. Let By the element of SO s which fixes e; and 1s a rotation of angle 23
(resp. 4P) in the plane [e,, e, ] (resp. [e,, es]). Then A, and B freely generate an
irreducible subgroup of SO, whose closure is isomorphic to SO, and which is
therefore locally commutative on S*.

In fact, in suitable coordinates, this group is just the image of the group F,
under the five-dimensional irreducible representation of SO;. The easy
computations showing this are left to the reader.

3. The above argument extends in the general case to the following
sharpening of Theorem A in the case of non-zero Euler characteristic.
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THEOREM 3. Let U be a compact connected non-trivial semi-simple Lie
group. Then U  contains a non-commutative free subgroup I whose elements
v # 1 are regular and such that, for any proper closed subgroup 'V of maximal
rank of U, the isotropy groups T (xeU/V) of T on U/V are commutative
and any yel — {1} has exactly y(U/V) fixed points.

Proof: First we carry an easy reduction to the case where U is simple and V'
connected. Let U’ be the quotient of U by its center, n: U — U’ the natural
projection and V' = m(V). The isotropy groups of U on U'/V’ contain the
isotropy groups on U/V, hence we may assume that U has center reduced to the
identity. Let V° be the identity component of V. Any isotropy group of I"on U/V
contains an isotropy group on U/V° as a subgroup of finite index. Both are
therefore simultaneously commutative or not commutative. So we may assume
V to be connected. Now U is a direct product of simple groups and V, being of
maximal rank, is the direct product of its intersections with the simple factors of
U [2], whence our reduction.

We now prove the theorem in this case except for the last assertion on the
number of fixed points.

If U = SO,, then any, proper closed subgroup has a commutative subgroup
of finite index, and any element # 1 is regular. Therefore we may take for I any
non-commutative free subgroup. Assume now that U # SOj;, hence dim U
> 3. Then U has a closed subgroup H, isomorphic to SO,, which contains
regular elements of U and is not contained in any proper subgroup of maximal
rank [15:§12]. (This subgroup is called “principal” in [15].) Then any element of
infinite order in H is regular in U. In particular any element y # 11in a free non-
commutative subgroup I' of H 1s regular. Moreover any two non-commuting
elements of I' generate a dense subgroup of H. If they were contained in a
conjugate of V, then so would H, whence a contradiction.

There remains to see that every y e I' — {1} has exactly y(U/V) fixed points
on U/V. Let §, be the closure of the subgroup of H generated by vy. It is a one-
dimensional torus, almost all of whose elements are regular in U. Fix a maximal
torus Ty of V, hence of U. If x, y € U are such that *S, S < T, then the inner
automorphism by x - y~!, which brings *S, onto *S., must leave Tj, stable since
*S, contains regular elements, i.e., x - y~ ' € N(T,). From this we see again that
there is a natural bijection between the fixed point set of ¥ and Ny(T,)/N(Tp),
and our assertion follows as in section 4 of §2.

4. Thesame argument is valid for a complex semi-simple Lie group, using a
principal three-dimensional subgroup, or also over any algebraically closed
groundfield. Over a field K of infinite transcendence degree over its prime field,
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one would have to assume the existence of a principal three-dimensional
subgroup which is defined over K.

5. Wenote finally thatif ' = G(K) satisfies the conditions of Corollary 1 to
Theorem 2 and if H is a subgroup of maximal rank of G whose identity
component is solvable, then for any x € G(K)/H(K), the isotropy group I, is
commutative, since its intersection with the isotropy group of x in G(K) is on one
hand free, as a subgroup of I', and on the other hand contains a solvable normal
subgroup of finite index, since H(K) does.
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