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SOME PARADOXICAL SETS 3

3. A TOURIST COLONY NOT TO BE RECOMMENDED

In 1927 Nikodym, in order to explore the geometric structure of the
measurable sets in the plane, showed how to construct, inside a square Q,aset N
that fills it (i.e. the measure of Q-N is zero) and so that for each point x of N there

is a straight line /(x) passing through it and not hitting any other point of N
(Fig. 4).

FIGURE 4

The architects of tourist colonies have not yet learned about this magnificent
business possibility, but the day somebody tells you about the marvels of a
colony in an island which offers a free view over the ocean from each one of its
apartments, beware!

Although it seems incredible one can still make it better. R. O. Davies in
1953 constructed a set N in Q filling Q and such that each x of N has infinitely

many directions in which one can see the ocean... inside any arbitrarily small
angle one may fix!

4. A SMALL TREE WITH MANY FRUITS

In 1928 Besicovitch was informed about the needle problem and published
its solution. In 1929 Perron simplified the somewhat laborious construction of
Besicovitch. It has been further simplified later on. The final product of the line of
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thought, that we shall call the Perron tree, has proved to be an extraordinarily
fruitful tool for the solution of certain deep problems of recent mathematical
analysis.

The result is as follows: Given an arbitrary ¢ > 0 and an arbitrary triangle
ABC of area that we denote by S(ABC), we can divide the triangle A BC into small
triangles T, T,, ..., T, as Figure 5 shows (i.e. dividing the basis a into a finite
number of equal intervals I,, I,, ..., I,) and one can translate appropriately the
small triangles T;, T, ..., T, parallelly to the basis a in such a way that the area of
the union of the translated triangles is less than €S(ABC). (See Fig. 6.)

T

FIGURE 5 FIGURE 6

5. How THE PERRON TREE SPROUTS

Following an idea of Rademacher (1962), the construction of the Perron tree
can be easily understood as follows. Let us divide first a triangle T, MNP, of area
S(T), into two triangles T;, T, with bases J,, J,, of the same length. If we wish to
move T, and T,, parallelly to NP so that the shifted triangles cover less area we
can do it by pushing T, towards T; as Figure 7 shows. The area covered by T; and
T", can be easily measured by elementary geometry and is (see Fig. 7, we take 1/2
<a<l)

«2S(T) + 2(1—o)2S(T)
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