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Here the factor m! %/t is never zero or infinite, while A, + B, 1S zero or
infinite only at certain integer values, as indicated in the table above.
The proof of Lemma 13 can now easily be completed as follows. If s < Oisan
integer, then L(1—s, %) # 0, so it follows that L(s, 5—() equals zero if and only if
A, + B, is zero, as indicated in the table. [

APPENDIX 2

SOME RELATIVES OF THE GAMMA FUNCTION

This appendix will describe certain functions y,(x), v(x), ... which satisfy a
modified form of the Kubert identities, with a polynomial correction term. (See
(22) below.) They are defined as partial derivatives of the Hurwitz function by the
formula

(18) Yi-dx) = 0C(x)/0t.

We will show that vy, is related to the classical gamma function via Lerch’s
identity

(19) ¥:(%) = log((x)/y/2m).

(Compare [27, p. 60].) As a bonus, we will give a self-contained exposition of the
basic properties of the gamma function, based on formulas (18) and (19).

Let us begin with equation (18), which defines y,(x) as an analytic function of
both variables for all s # 0 and all x > 0. Recall that the Hurwitz function
G(x) = x7' + (x+1)"! + ... (analytically extended in ¢ for t # 1) satisfies

Clx+1) = Clx) — x7".

Differentiating with respect to ¢, and then substituting t = 1 — s, we obtdin

(20) Yx+1) = vd(x) + x* ! log x.

In particular,

Yix+1) = v(x) + log x.
Note that

Clx) = —tC, 4 1(x)

hence
(%) = tt+1)C 4+ (%),
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where the prime stands for the derivative with respect to x. By analytic
continuation, this last equation holds also at ¢t = 0. Differentiating with respect
totatt = 0, we obtain

(21) Vi(x) = Colx).

In particular, it follows that vyi(x) > 0 for all x > 0.
Let us define the gamma function as follows. (Compare Artin [1].)

LEMMA. 15 (Bohr and Mollerup). There is one and only one twice
continuously differentiable function T'(x) > 0 for x > 0 which satisfies

Mx+1) = x[(x), T(1) =1, and (logT(x)' >0.

Proof. Evidently it suffices to show that there is one and, up to an additive
constant, only one C?-function

f(x) = log I'(x) + ¢

for x > 0 which satisfies the two conditions

f(x+1) = f(x) + log x
and

f(x) = 0.

Existence is clear, since the equation v,(x) satisfies both of these conditions. To
prove uniqueness, let us differentiate twice to obtain

frx+1) = f'(x) — 1/x*,
hence
f'x+n+l) = f'(x) = x> = (x+1)"? — . — (x+n)" > =0,

Taking the limit as n — oo, it follows that

(%) = Calx).

On the other hand, note that the difference f(x) — v,(x) 1s periodic, of period 1.
Hence its second derivative f"(x) — {,(x) is periodic, and has average [§ (f"(x)
— Cz(x))dx equal to zero. Clearly it follows that f"(x) = {,(x) everywhere.
Integrating twice, we see that

f(x) = yix) + ax + b.

Subtracting the corresponding equation for f(x+ 1), we see that a = 0, which -
completes the proof. ]
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This argument shows that
11(x) = log(T(x)/C)

for some constant C, whose precise value will be computed later.
Remark : The customary definition of the gamma function is the expression

[(x) = [§et* 'dr

which was used in §2 and Appendix 1. Here is an outline proof that this
expression does indeed satisfy the conditions of Lemma 15. Integration by parts
shows that I'(x+ 1) = xI'(x). Note that a twice differentiable positive function
satisfies (log f(x))” > 0 if and only if the matrix

[f (x) f ’(X)}
f'x) f(%)
is positive semi-definite, for all x. But the collection of all 2 x 2 positive semi-

definite matrices forms a convex cone. It follows that the sum f(x) + g(x) of any
two functions which satisfy this condition will also satisfy it. Similarly the

integral
I I'(x ® 1 log t
,(X) ”( )| _ g et
Ix) I'(x) o | logt (logt)
is a positive semi-definite matrix. Hence (log I'(x))” > 0 as required. O
Now consider the Kubert identity

m—1

tht(x) = Z C,((x+k)/ m) .

0

If we differentiate both sides with respect to ¢, then substitute t = 1 — s and
&, = —By/s, we obtain

22) Yx) = (log mByx)/s + m*~! gvs((x+k)/m>.

Thus v, satisfies the Kubert identity (%), except for a correction term
involving the Bernoulli polynomial Byx), for s = 1,2,3,....

If we work modulo the logarithms of positive rational numbers, then the
function

Q/Z - R/Qlog Q*

induced by vy, actually satisfies (*,). It seems natural to conjecture that this is a
universal Kubert function on Q/Z for integers s > 1.
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Fors = 1, the “even” part of this conjecture can easily be proved using Bass’
theorem, together with the classical identity

vi(x) + v4(1—x) + log(2 sin nx) = 0

for 0 < x < 1, which is proved below, and the fact that y,(1) = log(l/\/%)
where m 1s transcendental. For the odd part of y,, Rohrlich has conjectured
universality even if we work modulo the logarithms of all algebraic numbers. See
[17, p. 66].

In the case s = 1, formula (22) takes the form

| 1
(23) 71(x) = (log m) (x - 5) + Y8 (e ky/m)
Hence the derivative v)(x) = I''(x)/I'(x) satisfies
(24) Yi(x) = logm + m™ ' Y 57" vi((x +k)/m).

Note that yi(x+ 1) = vi(x) + 1/x = v}(x) mod Q, if x is positive and rational.
We may conjecture that v induces a universal function Q/Z — R/(Q
+Q log QF) satisfying (). (It can be shown that /(1) is equal to the negative
of Euler’s constant. Thus even at x = 1 the number theoretic properties of v(x)
are not known.)

As a typical application of (23), taking x = 1 we obtain the equation

vi(l/m) 4+ ¥,2/m) + ... + vi((m—1)/m) = log(1/y/m).
In particular, y,(1/2) = log(l/ﬁ).
As a further application of (23), we will prove the classical formula
(25) vi(x) + v,(1—x) + log(2 sin nx) = 0

for0 < x < 1.Ifwe add (23) to the corresponding formula for y,(1 — x), then the
correction terms cancel out. Hence the sum v,(x) + v,(1 — x) satisfies the Kubert
identities (*,) in their original form. By Theorem 1, this implies that

v.i(x) + v(1—x) = c log(2 sin mx)

for some constant ¢. One way to evaluate ¢ would be to differentiate twice:
{o(x) + ((1—x) = —cn?/sin? nx

and to note that both {,(x) and n?/sin? nx are asymptotic to 1/x* as x — 0.
(Compare Appendix 1.) Another would be to substitute x = 1/2, noting that

1 : :
v.(1/2) = — 3 log 2 while log(2 sin /2) = log 2. Using either method, one

finds that ¢ = —1, proving equation (25). 0
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Next let us prove Lerch’s identity (19). We showed during the proof of
Lemma 15 that y,(x) = log(I'(x)/C) for some constant C > 0. Exponentiating
(25), we obtain

I'ix) '1—x) _ .
— 2sinmtx = 1.
C
Since
I(x) ~ x~ 1, r(1—x) ~ 1, and 2 sin mx ~ 2mx
as x — 0, it follows that C = /2m, as required. O

This argument also proves the classical Euler functional equation
I'x)I'(l—x) = mn/sin nx .

Taking x = 1/2, it proves that I'(1/2) = ﬁ
Similarly, exponentiating (23), we obtain the classical Gauss multiplication

formula
I(x) [((x + k)/m)

As an example, taking x = 1 and m = 2, we obtain another proof that I'(1/2)

= /.
‘Note that each vy, , is essentially just an indefinite integral of y,, up to a
constant factor and a polynomial summand. More precisely, differentiating the

— mx— 1/2 1—[15:—1

equation
Glx) = —1tG4 1(x)
with respect to t and setting s = —t, we find that
(26) Yor1(X) = 0¥s+1(x)/0x = sy{x) + Bdx)/s.

The function exp(y,(x)) can be thought of as a kind of higher order gamma
function, satisfying
exp(ydn+1) — v{1)) = R
(Compare Shintani [24].)
As a final remark, let us apply these methods to derive the Stirling asymptotic
series for y,(x) as x — oo. Using (26), together with (3) and (20), we have

(31 yy(w)du = xlog x — x.
As in the discussion of Bernoulli polynomials in §2, the left side of this equation
can be expanded as a Taylor series
e — 1
D

710 = gv"vl(x)/(m— 1,

L’Enseignement mathém., t. XXIX, fasc. 3-4. 21
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which converges whenever v,(x) is analytic throughout a unit disk centered at x,
or in other words whenever x > 1. Here D stands for d/dx. Recall from §2 that
the inverse operator is given formally by

D 0
= ) b,D"/n!.
5] %’, /n

Hence, applying this inverse operator to both sides of the equation

el — I
D

v1(x) = xlog x — x,

we might hope that

?
Yi(x) =

D _ | (x log x—x) = ) b,D"(x log x—x)/n! .
. 0

Unfortunately, this series does not converge. However, if we truncate, setting
N
sy(x) = ) b,D"(x log x—x)/n!
0

for some integer N > 1, then we will prove that
Y1(X) = sy(x) + O(x~ ")

as x — 00. This is the required asymptotic series. More explicitly, we can write it
as

(27) v(x) = (x log x—x) — 1log X + i b(,,x - + O(x™M).

' 2 > n(n—1)
(For a more precise description of the error term, see [ 1, p. 31]. Using (19) this
yields the corresponding asymptotic formula for I'(x).)
To prove this formula, substitute the identity

0 Dm
logx —x =Y — —
x log x — x ;(mﬁ—l)! 71(x)

in the definition of sy(x) to obtain a double series

N @ pD" D"

sy(x) = Z z

Eonso ml (m1)

() ,

which converges absolutely whenever x > 1. If we collect terms involving the
same total power of D, then evidently all the terms involving D', D?, ..., DY must
cancel. Since

D™y,(x) = +(n—1)IC,(x)
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for n > 2, it follows that the resulting series has the form

e}

sy(x) = v1(x) + Z a,5,(x)

N+1
for suitable constants a,. Setting

E(x) = i ax ",

N+1

we can write the error term as
sy(x) — v4(x) = E(x) + E(x+1) + ...
Note that all of these series converge absolutely for x > 1. Evidently

E(x) = O(x~ V71
as x — oo, for any fixed N, so
sp(x) — v1(x) = O(x~")
as required. O
This argument yields similar asymptotic series for related functions such as
£ (%), v4(x), and y4(x). Such estimates work also for complex values of x, as long as
x stays well away from the negative real axis. '

APPENDIX 3
VOLUME AND THE DEHN INVARIANT IN HYPERBOLIC 3-SPACE

We will describe some constructions in hyperbolic space involving the
dilogarithm function %#,(z) and its Kubert identity (7). Further details may be
found in the paper “Scissors Congruences, II” by J. L. Dupont and C.-H. Sah (J.
Pure Appl. Algebra 25 (1982), 159-195).

Using the upper half-space model for hyperbolic 3-space, consider a totally
asymptotic 3-simplex A. In other words, we assume that the vertices a, b, ¢, d of A
all lie on the 2-sphere of points at infinity, which we identify with the extended
complex plane C U co. Then A is determined up to orientation preserving
isometry by the cross ratio

z=(ab;c,d) = (c—a)(d—b)/(c—b)(d—a).

[The semicolon is inserted in our cross ratio symbol as a remainder of its
symmetry properties, which are similar to those of the four index symbol R, ; in

Riemannian geometry.] In particular, the volume of A can be expressed as a
function of the cross ratio z.
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