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250 S. AKBULUT AND H. KING

Briefly the proof of Theorem 5.3 goes as follows: By a standard argument,
n(PL/A)) coincides with the concordance classes of A,-structures on S’ (the
exotic A4,-spheres). Since n(PL/A) = lim =(PL/A,) it follows by definitions
that the inclusion m,(PL/A) —» n# is an—fnjection, where n# is the cobordism
group of i-dimensional A-manifolds. Then we construct a Thom space M A4 such
that 1M A4) ~ n#(by using a transversality argument for A-manifolds). Then it
turns out that the map n* - H/(B,; Z/2Z) given by {M i B4} (Vpg), [M] s
an injection. We can put these maps into the following commutative diagram :

w(PL/A)  — nf
. % !
H,(PL/A;Z) 5> H(PL/A; Z/2Z) > H(B,: Z/2Z)

where h is the Hurewicz map, r is the reduction and g is induced by inclusion.
Since the other two maps are injections then f must be injection. In fact f is a
split injection since it is a map between Z/2Z-vector spaces. Hence h is a split
injection. This implies that all k-invariants of PL/A is zero, ie. PL/A is a
product of Eilenberg-Mclaine spaces [ [K(Z/2Z, n,). Then by dualizing the split
injection g o f we get a surjection

H'(B,; Z/2Z) - Hom(r(PL/A); Z,/2Z)
Let 8, € H"(B,; Z/2Z) such that A(3, ) 1s the generator of Z/2Z.
& = []8,, defines a map B, — [ K(Z/2Z,n) = PL/A.
Then the map © x &: B, » Bp; x PL/A turns out to be the desired splitting.
The calculation of p, can be done by using the geometric interpretation of

. (PL/A).
The set & (M) = @ H"(M ; n(PL/A)) measures the number of different

“topological resolutions” of M, up to concordance (i.e. A-structures). Therefore
often & (M) is infinite ; and % ,(M®) has 2%° elements for any closed 8-manifold
M5,

§6. ON CLASSIFICATION OF REAL ALGEBRAIC SETS

The resolution and complexification properties of real algebraic sets impose
many restrictions on the underlying topological spaces. To give a topological
characterization of algebraic sets one has to find all such properties, such that a
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set is homeomorphic to an algebraic set if and only if it satisfies these properties.
Call a polyhedron V an Euler space if y(Link (x)) is even for all vertices x € V.
Recall that all algebraic sets are Euler spaces, in fact in low dimensions this
topological property completely determines compact algebraic sets (and hence
all algebraic sets by Proposition 3.1).

THEOREM 6.1. Let X be a compact polyhedron of dimensions <2. Then
X is homeomorphic to a real algebraic set if and only if X is an Euler spaces.

This theorem was announced in [AK,] and a proof was given [AK]. Since
[AK -] did not appear in print we repeat that proof here. This proofis very useful
to understand the high dimensional case. It is done by first constructing a
“topological resolution” for X then proceeding as in the proof of Theorem 5.1.

Proof: The proof of case dim(X) < 1follows from Theorem 4.1, so assume
that dim(X) = 2. Let X' be the barycentric subdivision of X. Let X; = the i-
skeleton of X'. Then (exercise) X, satisfies the even local Euler characteristic
condition also. We will say a one simplex in X" has type i (i = 0,1) if the number
of faces containing it is congruent to 2i mod 4. Let X ,; be the unions of edges of
type i, then (exercise) X ;, and X, each satisfy the even local Euler characteristic
condition. Hence, they have resolutions ny; : Z,; - X,; where Z,; are unions of
circles, and the n,; are diffeomorphisms over X;; — X,.

First, we imbed X, in R*. Now let V; = B(R* X, ) and let u, : ¥; — R* be
the projection. We may imbed Z,,u Z,, in V; so that p,(Z,) v X, is
homeomorphic to Xy; and p,|; = my;. Since V; has totally algebraic
homology, by Theorem 2.8 we may assume after replacing V; by V; x R”" that
each component of each Z; is a nonsingular algebraic subset of V;. We now let
V, = B(Vy, Z,,uZy,) and X, : V, — V; be the projection and p, : ¥, - R* be
the composition of p; and A,. We will now imbed a surface Z, in V, so that

Ha(Z,) U n(Z10uZ) U X,

1s homeomorphic to X.

We pick some pairing of the faces coming into each edge, i.e. there are an even
number of them, and we divide them into groups of two. This gives a resolution
of X — X,, namely, take the disjoint union of the faces with vertices deleted and
identify two edges if they are in the same group of two. This will be part of our
surface Z,, but we will not imbed it until later. We will first imbed the part of Z,
lying over a small neighborhood of X,,.
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Take any vertex v of X, and let e be an edge containing v, leti = 0, 1 be such
that e = X,;. Then e = p,(U) for some interval U in Z,;. Let there be 4k + 2i
faces containing e. Pick a point p in p; *(v) » A *(u) where u € U is the point so
that p,(u) = v. Then in a neighborhood of p, we have two codimension one

submanifolds p; }(v)and A; *(Z,;). Weimbed k + isquaresin a neighborhood of
p as indicated below.

ir= 0 or 1 square

\

A (V) b (V)

We do this for each edge containing v. Notice that one of these edges is p,(U’) for

some interval U’ in Z,; so U n U = u, ie. the interval on the other side

of u. If i = 1, we connect the bottom squares of the two sides together
as shown below. |

In the end, we have a bunch of squares

]
1
1
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whose horizontal midlines are mapped by ., to v and whose vertical midlines are
mapped by A, to Z,, U Z,,. Furthermore, this map is either equivalent to x* or
x if we choose our imbedding nicely. To each corner of each square, we may
assign a face of X’ which contains v so that the following conditions are met : each
face containing v is assigned to exactly two corners, if e is the edge containing p,
of the top half of the vertical midline, then the faces assigned to the top two
corners each contain e and are, in fact, paired, and likewise, for the bottom two
corners and the bottom midline half. We may now form a number of polygons by
taking the vertical side edges of all the squares and identifying their endpoints, if
the corresponding faces are the same. We claim these polygons are the boundary
of a surface S which contains L, a union of arcs and circles in general position so
that S is a regular neighborhood of L, S n L is the union of the endpoints of all
the arcs in L and dS n L is also the union of all the midpoints of the sides of the
boundary polygons. ‘

TR ) el

Given this, we imbed S in V, so that S misses A; Y(Z,,0Z,,)and p; (X, —v) and
sop; '(v) S = L,and so S intersects the squares we have already imbedded in
the union of the side edges of all the squares, furthermore, these intersect in the
natural way so that the point of L n 4S which corresponds to the midpoint of a
side of a polygon, is mapped to the midpoint of the corresponding side of a
square. So, letting S be S union all the squares, we have that n,(S') is
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homéomorphic to the star of v in the union of the faces of X. This is because
clearly p,(S’) is the cone on p,(0S), but p,(0S’) is obtained by taking the polygon
formed by all the top and bottom sides of the squares and identifying endpoints
corresponding to the same face and identifying midpoints of all sides which map
to the same edge of X'. This is clearly the link of v in the closure of all faces.

We do this for all the vertices and we get a surface S”. We now add some more
squares. For each edge e of X', let v and v’ be its vertices. We have previously
paired up the faces containing e. For each pair of faces, we have a corresponding
top or bottom side of a square over v, and a top or bottom side of a square over v/
(namely the sides between the two corners assigned to the pair), we connect these
two sides with another square as shown (S is not shown).

new squarc

AT

T

My (V) uy (e) po i)

If we do this for each pair of faces coming into each edge of X', we get a surface S*
imbedded in V¥, so that pu,(S*) is homeomorphic to a neighborhood of X, in the
union of the faces of X'. It is now easy to imbed a bunch of discs (one for each face
of X’) and so get a surface Z, in V,, so that p,(Z,) is the union of the faces of X’
and so

Ho(Zy) U ny(Z10VZ1) U X

is homeomorphic to X.
We could now try to approximate Z, by a nonsingular algebraic set and then
blow down to finish off the proof, but the problem is Z, is not stable, 1.e. Z, is not
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transverse to p; (X ,). However, we may, after replacing ¥, by ¥, x R assume
that Z, n p; *(X,) is a union of nonsingular algebraic sets. An exercise below
shows that if we blow up along each of these algebraic sets twice, then Z,
becomes transverse to p; }(X,). Then we are able to finish off by approximating
Z, by an algebraic set (Theorem 2.8) and blowing down, first over Z,, U Z,;
and then over X, (Proposition 3.3).

We deferred the proof that the polygon bounds the surfaces S, so we give it
here. First, by induction, we may assume all polygons have either one or two
sides, for we may take three sides and fill in part of the surface and reduce to the
problem with those three sides replaced by one side (see below).

7 The shaded region is filled in part, + is part of L. If
#r we can fill in the rest, then adding on 744 will fill
“ ' g
in all of it.

But we can easily fill in a polygon with two sides, and we can also fill in two one
sides. Since the total number of sides is even, we are done.

%%

two sides filled in two one-sides filled in

Exercise: Think of R" as {(x, y,z,w)|x,y,zeR and we R" 73} Let S
= {z=x%w=0}and T = {z = 0}. Blow up along the x axis twice and
along the y axis twice, and show that after blowing up S becomes transverse to
the inverse image of T, (assuming a = 1,2 and b = 1 or 2). Note that by
imbedding the S in the above proof correctly, we may assume that locally it looks
like this with T = p; }v). u

The proof of the 2-dimensional case is done by first constructing an
appropriate topological resolution. In the general case this leads us to make the
following definition. A topological resolution tower {V;, V;, p;;} is a collection
of smooth manifolds V., i = 0, ..., n, subsets Vic V,j=0,.,i — 1and maps
pji: Vi — V; satisfying the following properties:
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D piVinV) = VW for k<j<i.
(II)  pyje pji |Vjindi = Puilvov,, for k<j<i.
(III) pﬁl( U ij) = V;‘i a U Vmi .

m<k m<k

(IV) Vi, is a union of codimension one smooth submanifolds of V; in general
position ; we call them the sheets of V; ;. If S is a sheet of V;;then p;; 1(S)is the
intersection of ¥;; with a union of sheets of (] V,

m<k
(V) pj; is smooth on each sheet of V;;, and
Pji3Vji— U Vki_’Vj_ U ij
k<j k<j

is a locally trivial fibration.

(VI) Foranygqe Vi let g¢; = q, q; = pji(‘])'
Then there are smooth local coordinates

0,:(Upy0) S (Vi qoa =i, j,

where U, is an open neighborhood of 0 in some R0 x Rf! x .. x Rfa such
that:

m%ﬂm={®if%=°’

Cat

{xlﬂx,s=0}mUa if ¢, #0,

Cit

( ) [9 ! opﬂoel(x ]km H H xlkm (Pkm(x) lf k <j>

t=0s=

where I, is a nonnegative integer, and each ¢,,, is a nowhere zero smooth
function. x,; denotes the s-th coordinate of x in R, and [6; ' o p;; o 0(x)]im
denotes the m-th coordinate of 0; ' o p;; o 8(x) in R, R

Even though (VI) looks like an algebraic condition it is a topological
condition. It says that topologically the map p; has only certain types of
singularities (i.e. it folds or crushes). We call a topological resolution tower
{Vi, Vi, Dji} an algebraic resolution tower if all V,, V}; are compact algebraic sets
and p;; are entire rational functions.

The realization | 9 | of a (topological or algebraic) resolution tower 7

= {V, V;;, p;} is the quotient space | JVi/x ~ p;(x)forx € V};.| 7 |is a stratified

space with i-th stratum equal to ¥; — () ¥j;. It turns out that 1f is an algebraic
j<i
resolution tower then | 7 | is an algebraic set. | | is a generalization of an 4-

- space.
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Voa
)
\\) B
Py,
v folds the circle V;,
g _
onto an arc v,

Py, ( identifies L

Vo> AuBuUuCuD,

Jentifies Py,
—-Cub

V01 — {A,, Au’ BI’ B", C,, Dr}

Real algebraic sets are obvious candidates for realizations of topological
resolution towers: If X is a real algebraic set, it has an algebraic stratification

XocXjc..cX, ;cX,=X

with Sing(X;) < X,_,,i = 1, .., n. Then the resolution of singularities theorem
[H] says that there is a multiblowup:

V= Z, 57 > 2y Zy = X

with, : Z, — Z, is a multiblowup of X which resolves the singularities of X ,,
Le. there is a nonsingular V; < Z; making the following commute
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If w;; : Z; —» Z; is the composition projection, then m;, ; is a multiblowup of Z,
which resolves the singularities of the strict preimage of X, ; under ny;, i.e. there
is a nonsingular V., < Z;,, and the commutative diagram

Vier © Ziyy
! Voitt
Xiv1 & Zg

Let V; = nj; (V) () V;and m; |y = pji: Vi = V;. Then one can show fhat
= UV;‘/Pﬁ(X) ~ X

for xe V..

In fact after refining this process one gets:

THEOREM 6.2. A set is an algebraic set if and only if it is homeomorphic to a
realization | J | of some algebraic resolution tower I = {V, Vj, p;i}.

Hence we have natural maps

{Algebraio sets} L {realization of t013010gical}
—

resolution towers

onto P

realization of algebraic
resolution towers

where p is the forgetful map, and 1 is the composition. We will denote the set of
realization of topological resolution towers by £. To characterize algebraic sets
topologically, we need to show that p maps onto £%. Presently to prove this we
need each V; to be diffeomorphic to a nonsingular algebraic set with totally
algebraic homology (see §2). We believe that these restrictions should not be
necessary.

Once surjectivity of 1T is proven, then it would be useful to find the
combinatorial conditions which characterize elements of # (i.e. algebraic sets).
For spaces of dimension <2 the only condition is that the space has to be an
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Euler space (Theorem 6.1). In dimension 3 this is not sufficient. For example if X >
is the suspension X(Y?) of Y? where

AN

Y2 = = X (figure 8) U X (three points)
U an arc

then X3 is an Euler space but it can not be in #; in particular X> can not be
homeomorphic to an algebraic set (also see [K,] for a discussion of this).

In general we start with a Thom stratified space X, by refining the
stratification we can assume that each-stratum has a trivial normal bundle. Then
by proceeding as in [Su,] we can find obstructions o, € H{X(k); I',_, - ;) to X
being an algebraic set with this stratification, where X(k) is the k-th stratum of
X,n = dim(X) and I, is the cobordism group of i-dimensional elements of .
For example we can show I'y = '} = Z/2Z and I', = (Z/2Z)'. It would be
useful to compute the cobordism groups I', for * > 3 or reduce the computation

to a certain homotopy group of a universal space (as in the smooth cobordism
group). A more precise discussion of this section will appear in [AK,].




	§6. On classification of Real Algebraic Sets

