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The condition on H and the second alternative hold either if K 1is
algebraically closed or if K = R and G(K) is compact. In that last case,
x(G(K), H(K)) = x(G(K)/H(K)) by [10], and Theorem A follows.

I wish to thank D. Sullivan for having sent me a preprint of [ 8], which was the
starting point of the present paper, and D. Kazdhan and G. Prasad for having
pointed out two errors in a previous proof of Theorem B for SL,.

Notation and conventions. In the sequel, G is a connected semi-simple
algebraic group over some groundfield, and p the characteristic of the
groundfield. For unexplained notation and notions on linear algebraic groups,
we refer to [ 1]. In particular, in such a group, the word “torus” is meant asin [ 1],
1.e., refers to a connected linear algebraic group which is isomorphic to a product
of GL,’s. In a compact group however it means a topological torus (product of
circle groups).

If H is a group, and A, B are subsets of H, then

4 = {bab™'|ae A, be B}, Ny(4) = (he H|hAh~' = A},
Try(A,B) = (heH|hAh™! = B}.

If I' acts on a space X, the isotropy group of I' at x is
', ={yel]ly x = x}.

We recall that a morphism f: X — Y of irreducible algebraic varieties is
dominant if its image is not contained in any proper algebraic subvariety. If so,
then Im f contains a Zariski-dense open subset of Y [1: AG 10.2]. If the
groundfield has characteristic zero, then, since f is separable, the differential of f
has maximal rank on some non-empty Zariski open subset of X [1: AG, 17.3].

§1. PROOF OF THEOREM B

Letmbeaninteger 22.Letw = w(X, .., X, ) be a non-trivial element in the
free group F(X, .., X,,) on m letters X, i.e., a non-trivial reduced word in the
X’s, with non-zero integral exponents [3: 1.81, Prop. 7]. Then given a group H,
the word w defines a map f,,: H™ — H by the rule

(1) Sllhss o hy) = Wy, o by, (heH ; 1<i<m).

If H is an algebraic group, then f,, is a morphism of algebraic varieties which is
defined over any field of definition for H. In the case where H = G we want to
prove
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THEOREM 1. The map f,:G"™ - G is dominant.

This 1s a geometric statement. To prove it, we shall identify G with G(Q),
where Q is some universal field. We have then to prove that f,(G(Q)") is Zariski-
dense in G(Q).

The Zariski closure Z of Imf,, is irreducible (since G™ is) and is invariant
under conjugation, since Im f,, is obviously so. Since the semi-simple elements of
G are Zariski-dense, and all conjugate to elements in some fixed maximal torus T,
it suffices to show that Z o T

a) We first consider the case where G = SL,(n>2). Let us prove that G(Q)
contains a Zariski-dense subgroup H, no element of which, except for the
identity, has an eigenvalue equal to one. This statement and its proof were
directly suggested by [§].

One can find an infinite field L of the same characteristic as Q over which
there exists a central division algebra D of degree n?>. We may for example take
for L a local field (see e.g. XIII, §3, Remarque p. 202 in [14]). We may assume L
< Q. Let ' be the algebraic group over L whose points in a commutative L-
algebra M are the elements of reduced norm one in D ®, M. Then 2! is an
anisotropic L-form of SL,. Of course, D splits over Q and the isomorphism
D ®,Q = M,(Q) yields an isomorphism of 2'(Q) onto G(Q). We let H be the
image of D' = 2*(L)under such an isomorphism. The group H is Zariski-dense
since Lis infinite. The fact thatany h € H — {1} has no eigenvalue equal to one is
then proved as in [8]: the element 7 — 1 is a non-zero element of D, hence is
invertible, hence has no eigenvalue zero and therefore h has no eigenvalue one.
This proves our assertion. Let p, be the characteristic exponent of Q (p, = 1 if
char Q = 0 and p, = char Q otherwise). If p, = 1, then H consists of semi-
simple elements ; if not, then h%g = p?~ ') is semi-simple forany h € G. Let f4: G™
— G be defined by f4(g) = f.(9)% Then f%(H) consists of semi-simple elements.
Let Z, be the Zariski closure of Im /.. Since x + x“is dominant, we have shown:

(*) Let V be the set of semi-simple elements in G(Q) which have no
eigenvalue equal to one. Then {1} U (Vnlm 1) is Zariski-dense in Z,.

We now prove the theorem for SL,(n=2) by induction on n. It suffices to
show that f4 is dominant and, for this, that Z, > T Let n = 2. The group SL,
has dimension three and the conjugacy classes of non-central elements have
dimension two. If Z, # G, thendim Z, < 2 and Z, is contained in the union of
the set U of unipotent elements of G and of finitely many conjugacy classes of
semi-simple elements, # 1. Those are closed, disjoint from U. Since Z, is
irreducible and contains 1, it should then be contained in U. On the other hand,
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Z, # |1} since G contains non-commutative free subgroups, as follows from
[17] (see also Remark 1 below). We then get

{l}c;_chU,

but this contradicts (*), whence the Theorem for SL,.

Assume now n > 2 and our assertion proved up to n — 1. This implies in
particular that Z, contains all subgroups of G isomorphic to SL, _ ;, hence that
Z,NT contains the subtori of T of codimension one consisting of the elements
of T which have at least one eigenvalue equal to one. Call Y their union. Assume
that Z, n T # T. Then we may write Z,n T = Y u Y', where Y' is a proper
algebraic subset of T not containing any irreducible component of Y. Let Q be
the Zariski-closure of the set Y’ of conjugates of elements of Y. We claim that
Y & Q. In fact, the subsets Y and Y’ are stable under the Weyl group W
= N(T)/T (which may be identified with the group of permutations of the basic
vectors of Q7). Let J < Q[T/W] be the ideal of Y'. The algebra Q[ T/W] is
isomorphic, under the restriction mapping, to the algebra S of regular class
functions on G [16]. Let J' be the ideal of S corresponding to J under this
isomorphism and R the variety of zeroes of J'. We havethen Q = R,but Y ¢ R,
whence Y & Q.

The difference Y’ — (YNY’) contains a conjugate of every semi-simple
element of Z, not having any eigenvalue equal to one. Therefore (*) implies that
Z, = {1} U Q. But this contradicts the fact that Y ¢ (. Therefore T < Z_ and
the theorem is proved for SL,.

b) Inthe general case we use induction ondim G.Ifp: G' — Gis anisogeny,
then the theorem for G’ implies it for G, hence we may assume G to be simply
connected. It is then a direct product of almost simple groups, whence also a
reduction to the case where G is almost simple. By a), it suffices to consider the
case where G is not isomorphic to SL, for any n. But then it contains a proper
connected semi-simple subgroup H of maximal rank (see lemma below). By
induction Z contains a maximal torus of H, hence one of G, and therefore T.

We have just used the following lemma:

LEmMA 1. Assume G to be almost simple, and not isogeneous to SL, for

any n. Then G contains a proper connected semi-simple subgroup of maximal
rank.

For convenience, we may assume G to be isomorphic to its adjoint group. Let
® = O(G, T) be the root system of G with respect to T and A = {og, oy oy} @
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basis of ®. Since G is adjoint, A is also a basis of the group X*(T) of rational
characters of T. Let d be the dominant root and write
i=1
d = Z dl-O(,- "

1

The d;’s are strictly positive integers. By assumption, @ is not of type A,, for any
m. Therefore, by the classification of root systems, one of the d,’s is prime (see e.g.
[4]). Say d, = q, with q prime. Let ¥ be the set of elements in ® which, when
expressed as linear combination of simple roots, have either 0 or +g¢ as
coeflicient of «,. This is a closed set of roots. In fact, it is a root system with basis
%y, ..., 0y and —d [2]. We claim that there exists a closed connected subgroup H
of G containing T with root system V.
Let first ¢ # char. K. Then there is an element t € T, t # 1, such that

It has order g, and ¥ is the set of roots which are equal to one on t. Then the
identity component of the centralizer of ¢ satisfies our condition.

Letnow g = char. Q. Lett be the Lie algebra of T and u be the subspace of t
which annihilates the differentials do; of the roots o;(i = 2,..,1[). It is one
dimensional and does not annihilate do, (since, as recalled above, A is a basis of
X*(T), hence the da(1 <i<!) form a basis of the dual space to t). Of course, the
differential of any A € X*(T) which is divisible by g in X*(T)1is identically zero on
t. It follows then that

¥ = {ae®|duyu) =.O} .
Let g be the Lie algebra of G and
g, = {xeg|Ad t(x) = o) x(teT)}, (aed) ,
be the (1-dimensional) eigenspace of T corresponding to o[ 1, §14]. The previous

relation implies that

39(11): t@@?’ga

By [1: §14] the Lie algebra of the centralizer
Zgu) = {ge G| Ad g(x) = x, (xeu)},

of uin G is equal to 34(u) ; therefore Z (u) is a semi-simple subgroup satisfying our
conditions.

Remarks. 1) We have used [ 17] only for SL,(€), but it is possible to bypass
[17] in this case and make our proof, and the whole paper, independent of [ 17].
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We need only to prove that SL,(Q) contains a non-commutative free subgroup F.
If Q has characteristic zero, we may take any torsion-free subgroup of SL,(Z).
Let now p = char Q be >0. Then, by the arithmetic method, using division
quaternion algebras over global fields, we can construct a discrete cocompact
subgroup of SL,(L), where L is a local field of characteristic p (cf. A. Borel-G.
Harder, Crelle J. 298 (1978), 53-74). The latter has a torsion-free subgroup F of
finite index (H. Garland, Annals of Math. 97 (1973), 375-423) which is then free,
since it acts freely on a tree, namely the Bruhat-Tits building of SL,(L).

2) For any non-zero n € Z, the power map g +— ¢”" 1s dominant (because it 1s
surjective on any maximal torus [1: 8.9]), hence Theorem 1 is obvious if the sum
of the exponents of one letter in the word w is not zero. (See [11] for a similar
remark in the context of compact groups.)

3) If U and V are non-empty open subsets in a connected algebraic group H,
then H = U - V [1: 1.3]. It follows then from Theorem 1 that if w, w’ are two
words in two letters, say, then the map G* — G defined by

f91, 92, 93, 94) = w(g1, 92) " W(gs, ga)

is surjective. For instance, every element of G(Q) is the product of two
commutators. However, the map f,, itself is not always surjective; for instance
x — x? is not surjective in SL,(C), as pointed out in [11].

4) If K = C,then Theorem 1 implies that Im f,, contains a dense open set in
the ordinary topology. If G is defined over R, then Theorem 1 also shows that
/.{G(R)) contains a non-empty subset of G(R) which is open in the ordinary
topology. However it may not be dense. For instance, it is pointed out in [11]
that for SU,, the image of the map defined by [x?, yxy~!] omits a neighborhood
of —1; however this map is surjective in SO,.

It seems thatlittle is known about the image of f,,, even over R or C. A general
fact however is that the commutator map is surjective in any compact connected
semi-simple Lie group [9].

§2. FREE SUBGROUPS WITH STRONGLY REGULAR ELEMENTS

1. In the sequel, K is a field of infinite transcendence degree over its prime
field. We shall need the following lemma :

LEMMA 2. Let X be an irreducible unirational K- -variety. Let L be a
finitely generated subfield of K containing a field of definition of X, and
V{ieN) a sequence of proper irreducible algebraic subsets of X defined over an
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