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The condition on H and the second alternative hold either if K is

algebraically closed or if K R and G(K) is compact. In that last case,

l(G(K\ H(K)) « x(G(K)/H(K)) by [10], and Theorem A follows.

I wish to thank D. Sullivan for having sent me a preprint of [8], which was the

starting point of the present paper, and D. Kazdhan and G. Prasad for having
pointed out two errors in a previous proof of Theorem B for SL„.

Notation and conventions. In the sequel, G is a connected semi-simple
algebraic group over some groundfield, and p the characteristic of the

groundfield. For unexplained notation and notions on linear algebraic groups,
we refer to [1]. In particular, in such a group, the word "torus" is meant as in [1],
i.e., refers to a connected linear algebraic group which is isomorphic to a product
of GL/s. In a compact group however it means a topological torus (product of
circle groups).

If H is a group, and A, B are subsets of H, then

BA {bab~l \ a e A, b g B}, NH(A) {h e H | hAh~1 A}

Tvh(A, B) {heU\ h.A.h-1 B}

If T acts on a space X, the isotropy group of F at x is

U {y e r I y • X x}

We recall that a morphism / : X Y of irreducible algebraic varieties is

dominant if its image is not contained in any proper algebraic subvariety. If so,
then Im / contains a Zariski-dense open subset of Y [1 : AG 10.2]. If the
groundfield has characteristic zero, then, since / is separable, the differential of/
has maximal rank on some non-empty Zariski open subset of X [1 : AG, 17.3].

§1. Proof of Theorem B

Let m be an integer ^ 2. Let w w(Xl5..., Xm) be a non-trivial element in the
free group F(XU Xm) on m letters Xh i.e., a non-trivial reduced word in the
Xi s, with non-zero integral exponents [3 ; 1.81, Prop. 7]. Then given a group //,
the word w defines a map fw : Hm - H by the rule

(1) fw({h!,hm}) w(huh,{h.eH ; 1 gi^m).
If H is an algebraic group, then fwisa morphism of algebraic varieties which is
defined over any field of definition for H. In the case where we want to
prove



154 A. BOREL

Theorem 1. The map fw: Gm -> G is dominant.

This is a geometric statement. To prove it, we shall identify G with G(£2),

where Q is some universal field. We have then to prove that fw(G{Q)m) is Zariski-
dense in G(Q).

The Zariski closure Z of Imfw is irreducible (since Gm is) and is invariant
under conjugation, since Im fw is obviously so. Since the semi-simple elements of
G are Zariski-dense, and all conjugate to elements in some fixed maximal torus T,

it suffices to show that Z id T.

a) We first consider the case where G SLn(n^2). Let us prove that G(£2)

contains a Zariski-dense subgroup H, no element of which, except for the

identity, has an eigenvalue equal to one. This statement and its proof were
directly suggested by [8].

One can find an infinite field L of the same characteristic as Q over which
there exists a central division algebra D of degree n2. We may for example take
for L a local field (see e.g. XIII, §3, Remarque p. 202 in [14]). We may assume L
c= Q. Let 3l be the algebraic group over L whose points in a commutative L-
algebra M are the elements of reduced norm one in D ®L M. Then 31 is an

anisotropic L-form of SL„. Of course, D splits over Q and the isomorphism
D (g)L Q M„(L>) yields an isomorphism of 3l(Q) onto G(£2). We let H be the

image of D1 31(L) under such an isomorphism. The group H is Zariski-dense
since L is infinite. The fact that any h e H — {1} has no eigenvalue equal to one is

then proved as in [8] : the element h — 1 is a non-zero element of D, hence is

invertible, hence has no eigenvalue zero and therefore h has no eigenvalue one.

This proves our assertion. Let p0 be the characteristic exponent of Q (p0 1 if
char £2 0 and p0 char £2 otherwise). If p0 1, then H consists of semi-

simple elements ; if not, then hq(q pn0~ *) is semi-simple for any h e G. Let fqw : Gm

- G be defined by fqw(g) fw(g)q• Then fqw{H) consists of semi-simple elements.

Let Zq be the Zariski closure of Im fqw. Since x i— xq is dominant, we have shown :

(*) Let V he the set of semi-simple elements in G(f2) which have no

eigenvalue equal to one. Then {1} u {Vnlmfqw) is Zariski-dense in Zq.

We now prove the theorem for SL„(n^2) by induction on n. It suffices to
show that fqw is dominant and, for this, that Zq T. Let n 2. The group SL2

has dimension three and the conjugacy classes of non-central elements have

dimension two. If Zq # G, then dim Zq S 2 and Zq is contained in the union of
the set U of unipotent elements of G and of finitely many conjugacy classes of
semi-simple elements / 1. Those are closed, disjoint from U. Since Zq is

irreducible and contains 1, it should then be contained in U. On the other hand,
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Zq ^ 11} since G contains non-commutative free subgroups, as follows from

[17] (see also Remark 1 below). We then get

U

but this contradicts (*), whence the Theorem for SL2.

Assume now n > 2 and our assertion proved up to n — 1. This implies in

particular that Zq contains all subgroups of G isomorphic to SL„_ l5 hence that

ZqnT contains the subtori of T of codimension one consisting of the elements

of T which have at least one eigenvalue equal to one. Call Y their union. Assume

that Zq n T / T. Then we may write Zq n T — Y u Y', where Y' is a proper
algebraic subset of T not containing any irreducible component of Y. Let Q be

the Zariski-closure of the set GY' of conjugates of elements of Y'. We claim that
Y <f Q. In fact, the subsets Y and Y' are stable under the Weyl group W

N(T)/T (which may be identified with the group of permutations of the basic

vectors of Q"). Let J c= Q[7/kL] be the ideal of Y'. The algebra Q[T/W^\ is

isomorphic, under the restriction mapping, to the algebra S of regular class

functions on G [16]. Let J' be the ideal of S corresponding to J under this

isomorphism and R the variety of zeroes of J'. We have then Q a R, but Y R,
whence Y f Q.

The difference Y' — (Ynf) contains a conjugate of every semi-simple
element of Zq not having any eigenvalue equal to one. Therefore (*) implies that
Zq {1} u Q. But this contradicts the fact that Y T Q. Therefore T c= Zq and
the theorem is proved for SL„.

b) In the general case we use induction on dim G. If p : G' - G is an isogeny,
then the theorem for G' implies it for G, hence we may assume G to be simply
connected. It is then a direct product of almost simple groups, whence also a
reduction to the case where G is almost simple. By a), it suffices to consider the
case where G is not isomorphic to SL„ for any n. But then it contains a proper
connected semi-simple subgroup H of maximal rank (see lemma below). By
induction Z contains a maximal torus of H, hence one of G, and therefore T.

We have just used the following lemma:

Lemma 1. Assume G to be almost simple, and not isogeneous to SL„ for
any n. Then G contains a proper connected semi-simple subgroup ofmaximal
rank.

For convenience, we may assume G to be isomorphic to its adjoint group. Let
<t> 0>(G, T) be the root system of G with respect to and A {o^,a,} a
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basis of <D. Since G is adjoint, A is also a basis of the group X*(T) of rational
characters of T. Let d be the dominant root and write

dX rf/ot,-.
I — 1

The di s are strictly positive integers. By assumption, O is not of type Am for any
m. Therefore, by the classification of root systems, one of the d- s is prime (see e.g.

[4]). Say dx q, with q prime. Let ¥ be the set of elements in ® which, when

expressed as linear combination of simple roots, have either 0 or ±q as

coefficient of ax. This is a closed set of roots. In fact, it is a root system with basis

oc2,az and —d [2]. We claim that there exists a closed connected subgroup H
of G containing T with root system T.

Let first q # char. K. Then there is an element t e T, t # 1, such that

d(t) af{t) 1 (i 2,..., I).

It has order q, and T is the set of roots which are equal to one on t. Then the

identity component of the centralizer of ^satisfies our condition.
Let now q char. Q. Let t be the Lie algebra of T and u be the subspace of t

which annihilates the differentials dat of the roots oct- (i 2,..., /). It is one
dimensional and does not annihilate dal (since, as recalled above, A is a basis of
X*(T), hence the daz(l form a basis of the dual space to t). Of course, the

differential of any X e X*(T) which is divisible by q in X*(T) is identically zero on
t. It follows then that

T {oc e ® I dat(u) - 0}

Let g be the Lie algebra of G and

ga {x e g I Ad t(x) a(t) • x(teT)} (ae<L),

be the (1-dimensional) eigenspace of T corresponding to a[l, §14]. The previous
relation implies that

3g(u) f © © 9a •

ae\J/

By [1 : §14] the Lie algebra of the centralizer

ZG(u) {geG I Ad x, (xeu)},

of u in G is equal to 3g(u) ; therefore ZG(u) is a semi-simple subgroup satisfying our
conditions.

Remarks. 1) We have used [17] only for SL2(Q), but it is possible to bypass

[17] in this case and make our proof, and the whole paper, independent of [17].
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We need only to prove that SL2(Q) contains a non-commutative free subgroup F.

If Q has characteristic zero, we may take any torsion-free subgroup of SL2(Z).

Let now p char Q be >0. Then, by the arithmetic method, using division

quaternion algebras over global fields, we can construct a discrete cocompact
subgroup of SL2(L), where L is a local field of characteristic p (cf. A. Borel-G.

Harder, Crelle J. 298 (1978), 53-74). The latter has a torsion-free subgroup F of
finite index (H. Garland, Annals of Math. 91 (1973), 375-423) which is then free,

since it acts freely on a tree, namely the Bruhat-Tits building of SL2(L).
2) For any non-zero ne Z, the power map g i— gn is dominant (because it is

surjective on any maximal torus [1: 8.9]), hence Theorem 1 is obvious if the sum
of the exponents of one letter in the word w is not zero. (See [11] for a similar
remark in the context of compact groups.)

3) If U and V are non-empty open subsets in a connected algebraic group H,
then H U • V [1: 1.3].. It follows then from Theorem 1 that if w, W are two
words in two letters, say, then the map G4 -> G defined by

fig1,01,03,04-) M.0U • w'(g3, 04.)

is surjective. For instance, every element of G(Q) is the product of two
commutators. However, the map fw itself is not always surjective; for instance
x i-> x2 is not surjective in SL2(C), as pointed out in [11].

4) If K C, then Theorem 1 implies that Im fw contains a dense open set in
the ordinary topology. If G is defined over R, then Theorem 1 also shows that
/W(G(R)) contains a non-empty subset of G(R) which is open in the ordinary
topology. However it may not be dense. For instance, it is pointed out in [11]
that for SU2, the image of the map defined by [x2, yxy

~ *] omits a neighborhood
of — 1 ; however this map is surjective in S03.

It seems that little is known about the image of /w, even over R or C. A general
fact however is that the commutator map is surjective in any compact connected
semi-simple Lie group [9].

§2. Free subgroups with strongly regular elements

1. In the sequel, K is a field of infinite transcendence degree over its prime
field. We shall need the following lemma:

Lemma 2. Let X be an irreducible unirational K-variety. Let L be a
finitely generated subfield of K containing a field of definition of X, and
Vi{ieN) a sequence ofproper irreducible algebraic subsets of X defined over an
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