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THE CLEBSCH-GORDAN FORMULAS

by Daniel FLATH

0. INTRODUCTION

The explicit decomposition of tensor products of irreducible representations
is of fundamental importance in many applications of representation theory.
For finite dimensional representations of the Lie algebra sl, definitive results
are contained in the famous Clebsch-Gordan formulas which are constantly
and routinely used by physicists in applying the quantum theory of angular
momentum. We give in this article a presentation and derivation of equivalent
results, Theorems 5.1 and 5.4.

We shall base a study of the representations Hom(V, W) (rather than
V' ® W) for irreducible sl,-representations V and W on the analysis of a Weyl
algebra o/ of polynomial differential operators in two variables. This point of
view 1s one developed in a recent attack on the Clebsch-Gordan problem for
sly [2].

The usefulness of the Weyl algebra in the resolution of the Clebsch-Gordan
problem is well-known. For years physicists have worked with it under the
name “boson calculus” [1]. One mathematical reference is [3]. Nothing in the
present article 1s new except possibly the arrangement of the proofs which has
been made with the benefit of experience gained working with sl;. It seems to
me that this arrangement has a naturalness and simplicity to recommend it.

I would like to thank L. C. Biedenharn for interesting discussions on the
subject of this paper.

1. SOME REPRESENTATIONS OF sl,

Let V = C[X, Y], the vector space of polynomials in two variables X and
Y. For integers m let V,, be the subspace of homogeneous polynomials of
degree m, with V,, = (0) for negative m.

Let SL,(C) act linearly on V as follows:
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DY X —aX 4 oY 4Ny bx 4+ dy 11.
cd -4 ¢ cd - T (1)
g XY = (g- X)g- Y) for g e SL,(C). (1.2)

Each V,, is an SL,(C) subrepresentation of V.

By sl, we denote the Lie algebra of 2 x 2 complex matrices with trace 0.
The representation of SL,(C) on V gives rise, through differentiation, to a
representation of sl, on V.

L d
] e e
d

Lli=o

exp(tL) - v for Lesl,,veV. (1.3)

Choose a basis E ., E_, H of sl, as follows:

E_01 e _ (00 g (1 0 14
T \0 0)° "(1 0)’ _o—1>' (14)

An easy calculation establishes the following equalities of linear endo-
*morphisms of V.

E, = X0y, E_ = Yoy, (1.5)

H = X0y — Y0y. (1.6)

From (1.5) and (1.6) one easily deduces that each V,, is an irreducible
representation of sl, (and of SL,(C)).

We define for integers m, n a representation t of sl, on Homd(V,,, V,) by
means of formula (1.7).

(W(L)- T = L(Tv) — T(Lv)
for Lesl,, T e Homg(V,,, V,),veV,. * (1.7)

The principal result of this article is the explicit decomposition of the
sl,-representations Homc(V,,, V).

2. THE WEYL ALGEBRA &/

Let o/ be the subalgebra of End(V) consisting of polynomial differential
operators on V = C[X, Y]. The algebra o/ is spanned by the elements

i
| D(i,j,a,b) = X'Yid,0,° . (2.1)
}
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The Euler operator J, which acts as scalar multiplication by m on V,,, lies
n <.

J = X0y + Yoy. | (2.2)

The next lemma assures us that .« is large enough for the study of all
spaces Hom(V,,, V).

LEmMMA 2.3. Let U be a finite dimensional vector subspace of V and
let T e Endd(U). Then there exists an element of o/ whose restriction to U
equals T.

N
Proof: The element S = X°Y%0x)%0y)" [[ (J—m) of o maps X°Y” to .

m=0
m¥*a+b

a nonzero multiple of X“Y? and kills all other monomials of degree at most N.
But by enlarging U we may assume that End(U) is spanned by restrictions
of elements of the form S. | O

We use the inclusion of sl, in &/ to define a representation p of sl, on /.

p(L)a = [L, a] for Lesl,,ae o . (2.4)

For integers n let «/" be the set of T in & such that T(V,) = V, ., for
all m.

This defines a grading of ./ which is preserved by the action of sl,.
o = @ A", A" A = A" (2.5)

neZ

o(L)f" < " for all L e s, . (26)

The algebra o7 and representation p have been defined just so that the next
lemma, which is an immediate consequence of Lemma 2.3, will be true.

LEMMA 2.7. For each m, n the restriction map

res: /" - Homd(V,,, V,,4+,)

is a surjective homomorphism of sl, representations. O

The method of this paper is to deduce the decomposition of the repre-

sentations Homg(V,,, V,,+,) from the decomposition of the representation p on
o/ by means of Lemma 2.7.
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3. THE THEORY OF THE HIGHEST WEIGHT

Before decomposing the sl,-space ./ we must review the finite dimensional
representation theory of sl,.

The weight vectors of an sl,-representation W are the eigenvectors of H
in W. The weights of W are the eigenvalues of its nonzero weight vectors.

Every finite dimensional sl,-module is spanned by its weight vectors. The
weights of such a representation are all integers and are thus ordered by the
usual order on R. The largest of a finite set of integral weights is traditionally
referred to as the highest weight.

Two finite dimensional irreducible sl,-representations are isomorphic if and
only if they have the same highest weights, which are necessarily nonnegative.

The element X*Y? of V is a weight vector of weight a-b. This shows that
X™ is a vector of highest weight m in V, and therefore that the V,, for
m > 0 form a set of representatives of the equivalence classes of finite
dimensional irreducible sl,-representations; which is precisely why we are
studying them is this paper.

The last general fact which we will recall without proof is this: every finite
dimensional representation of s, is a direct sum of irreducible representations.

Given a representation W of sl, which is a sum of finite dimensional
representations one often wishes to write it explicitly as a direct sum of
irreducible representations, that is, of representations isomorphic to the V,,.
A method for doing this is provided by the observation that the space of
weight vectors of highest weight in V,, is the space annihilated by E. and is
one dimensional. Thus for each v € W of weight m such that E,v = 0, there is
a unique sl,-homomorphism from V,, to W taking X™ to v. The explicit
decomposition of W therefore amounts to the determination of a basis
consisting of weight vectors of the kernel of E, in W.

4. THE DECOMPOSITION OF .o/

We apply the procedure of the last paragraph to the representation of
sl, on /. By definition of p the kernel of p(E.) is just the commutant of
E, in «.

Let & be the subalgebra of ./ generated by X, dy, and J.

7|
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ProposITION 4.1. A is the commutant of E, in .

Proof': One easily verifies that E . commutes with X, dy, and J, which shows
that 4 is contained in the commutant of E . ,

Let U be the sl,-subrepresentation of .« generated by #. The considera-
tions of Section 3 show that the inclusion of the commutant of E. in & is
equivalent to the assertion that U equals all of .«/. We proceed to establish
that equality.

The algebra 4 is spanned as a vector space by the elements

JXY0y) with a, b,c = 0. 4.2)
We present two calculations.

[Eﬁ, J“Xb(ay)““]

= — (b+c+ DJ"X(0y)0x + b(J +1—b)J X"~ H(dy) (4.3)
[E_, JaXb+ 1(ay)c]
= (b+ DJ*XP0y)]Y — cJ* X (Oy) b+ 1+ Xy) » (4.4)

From (4.3) one concludes that 4 -0y = U. From that and (4.4) one
concludes that Z- Y < U.
Because E_ commutes with d, and Y, one has that

P(E_Y(B0x) = (p(E_)"SB) - Ox
and that

p(E_Y(B - Y) = (ME_)'B)- Y.
Because V,, = @ E_"(CX™) one knows that U = % p(E_)"#. And thus
n=0 . n=0

U-0y c U, U-YcU. (4.5)
Iterating, we have
UY%0y)° < U for d,e, > 0. (4.6)

But .« is generated as an algebra by X, Y, d,, and dy and so (4.2) and (4.6)
prove that U = /. O

COROLLARY 4.7. o/® is the subalgebra of o/ generated by sl, and J.

Proof: o/° is the sl,-subrepresentation of .o/ generated by /% N 4.
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o/° ~ A is spanned by the elements (4.2) such that b = ¢, all of which are of
the form J°E ,°. ]

We remark that the subalgebra of &/ generated by sl, is canonically
isomorphic to the universal enveloping algebra of sl,. The element J(J + 2)
equals H* + 2(E,E_+E_E_), the Casimir element for sl,. Thus 27° is a little
larger than the enveloping algebra of sl,.

For integers [, n define % <7> to be the set of T € B ~ /" such that

p(H)T = IT.
This defines a grading of 4

n n n n+n'
%z@%(l), g<l>"@<l’>c'@<l+l’>' (4.8)

The generators of 4 fit in as follows:

0 1 1
Je§3<0>, Xe;%’<1> 8Ye=%’< 1). (4.9)

0
ProrosiTioN 4.10. i) 4 <O> = C[J].

ii) 93(?);&0 ifandonlyif 1 2 0,|n| <[, and | = n(mod 2). Ifthese

conditions are met, then
n ttn 1onm
B (l) = C[J] X 2 (dy) 2 (4.11)

Proof: Immediate. O

We note that the condition that % (?) # (0) may be rephrased thus: [ > 0

and n is a weight of V.

5. DecomposiTioN oF Hom(V,,, V. ,)

THEOREM 5.1. Let I,m,n be integers with [ m,m + n > 0. There is
an sl,-subrepresentation of Homc¢(V,,, V,,.,) which is isomorphic to V, if and
[ —n

onlyif |n|<l,n=I(mod2), and m=
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Moreover, when these conditions are wzt there is a unique such sub-
representation. A weight vector of weight 1 in it is given by

l+n l—n

XZ(3y) 2 .

n .
Proof: By Lemma 2.7 and the definition of %4 ( l)’ a weight vector of
weight [ of the subrepresentation sought must be the restriction to V,, of an

element of % <?> By Lemma 4.10i1, all such restrictions are scalar multiples

l+n l—n .
of the restriction of X 2 (dy) 2 to V,,, which restriction is nonzero only when

Il —n O
2 R

Itis interesting to observe that the weight [ weight vector in Homg(V,,, V,,.,)
given by Theorem 5.1 is “independent” of m.

Finally we want to give formulas for the weight vectors in Hom(V,,, V,,.,)
of all weights, not just of highest weight.

Forintegers [, i, jwithl > 0and 0 < i,j < [, define an element A(i, j) of o/ :

N /fi\/[l—i . . .
Aii) = 3 (=1 (1) (k> <I—k> > GRS (L CRLCN

with o = sup{0,i+j—1I} and B = inf{i,j}. (5.2)

e o
LEmMMA 53. p(E_) <z> X'y = j AL, )).

Proof: By induction on j. Use the formula:
[E_, D(i, j, a, b)] = iD(i—1,j+1, a, b) — bD(i,j,a+1, b—1)
with D as in (2.1). , N

THEOREM 5.4. Let I, m,n be such that there is a subrepresentation of
Hom(V,,, V,,+,) isomorphic to V,. Then an inclusion of representations
¢:V, > Homy(V,,, V,,+,) may be given by the formula:

dX' YTy = @Al (FT" j) . (5.5)




346 D. FLATH

Proof: This depends on (5.3) and the calculation in ¥, that

: I o
1 : 1-
E X = (=) X Y. ]
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