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REPRESENTATIONS OF THE SYMMETRIC GROUP,
THE SPECIALIZATION ORDER, SYSTEMS

AND GRASSMANN MANIFOLDS ')

by Michiel Hazewinkel and Clyde F. Martin 2)

Abstract

A certain partial order on the set of all partitions of a given natural number n

describes many containment, specialization or degeneration relations in the,

seemingly, rather disparate parts of mathematics dealing with permutation
representations of Sn, the existence of (0, l)-matrices with prescribed row and

column sums, symmetric mean inequalities, orbits of nilpotent matrices under

similarity, Kronecker indices of control systems, doubly stochastic matrices and

vectorbundles over the Riemann sphere. In this paper we discuss relations
between all these subjects which show why the same ordering must appear all the

time. Central to the discussion is the Schubert-cell decomposition of a

Grassmann manifold and the associated (closure) ordering which is a quotient of
the Bruhat ordering on the Weyl group Sn.

Contents

1. Introduction 54
2. Several Manifestations of the specialization order 56
3. Grassmann manifolds and classifying vectorbundles 59
4. Schubert cells 60
5. Interrelations 62
6. Young's rule, the specialization order, and nilpotent matrices. 65

*) The bulk of the research for this paper was done while the second author was ir
residence at Erasmus University. The hospitality of Erasmus University is gratefulh
acknowledged.

2) Supported in part by NASA Grant # 2384, ONR Contract # NOOO 14-80C-
0199 and DOE Contract # DE-AC01-80RA5256.



54 M. HAZEWINKEL AND C. F. MARTIN

7. Nilpotent matrices and systems 67

8. Vectorbundles and systems 73

9. Vectorbundles, systems and Schubert cells 76

10. Deformations of representation homomorphisms and sub-

representations 81

11. A family of representations of Sn + m parametrized by G„(C" + m) 82

1. Introduction

Let k be a partition of n, k (k15 Km), kx ^ ••• ^ Km ^ 0, Zkf n. We

identify partitions (k j,Km) and(Kx,Km, 0,0). Quite a few classes of objects
in mathematics are of course classified by partitions and often inclusion,
specialization or degeneration relations between these objects are described by a

certain partial order on the set of partitions. This partial order on the set of all

partitions of n is defined as follows :

(k15 Kj > (K15 Km)

(1.1)

r r

iff E k,. s: E k) r 1,m
1=1 i 1

Thus, for example (2, 2, 1) > (3, 2). Ifk > k' we say that k specializes to k' or that

k is more general than k'. The reverse order has been variously called the

dominance order [2], the Snapper order [34, 41] or the natural order [35]. It
occurs naturally in several seemingly rather unrelated parts of mathematics.

Some of these occurrences are the

(i) Snapper, Liebler-Vitale, Lam, Young theorem (on the permutation
representations of the symmetric groups)

(ii) Gale-Ryser theorem (on existence of (0, l)-matrices)

(iii) Muirhead's inequality (a symmetric mean inequality)

(iv) Gerstenhâber-Hesselink theorem (on orbit closure properties of SLn acting

on nilpotent matrices)

(v) Kronecker indices (on the orbit closure, or degeneration, properties of
linear control systems acted on by the socalled feedback group)
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(vi) Double stochastic matrices (when is a partition " an average " of another

partition)

(vii) Shatz's theorem (on degeneration of vectorbundles over the Riemann

sphere)

These will be described in more detail in section 2 below. In addition the same

ordering, via the representation theory of the symmetric groups, plays a

considerable role in theoretical chemistry (in the theory of chiral molecules, i.e.,

molecules that are optically active [10, 15, 17]. Finally the same order plays an

important role in thermodynamical considerations. Consider an (isolated)

system described by a probability vector p (pl5 p2,...), where pt is the

probability that a particle is in state /, evolving according to some "master

equation Then in [36, 37] it is shown that the system evolves in the direction of

increasing p (p%9 p2,...) (with respect to the specialization order), where p is the

unique rearrangement ofp such that p1 ^ p2 ^ This statement is a good deal

stronger, in fact infinitely stronger [38], than the statement that the entropy
X

— £ Pilnpi must always increase.
i 1

Certain occurrences of the specialization order are known to be intimately
related. Thus (i), (ii), (iii) and (vi) are very much related [2, 5, 12], cf. also section 2

below, and so are (v) & (vii) [14] and section 8 below. This paper will show that
all these manifestations of this order are intimately related. Their common
meeting ground seems to be the ordering defined by closure relations of the

Schubert-cells (with respect to a standard basis) of a Grassmann manifold. I.e. a

Schubert-cell SC(X) is more general than SC(X') ; in symbols : SC(X) > SC(X'\ iff
SC(A,) => SC(X'). This order in turn is much related to the Bruhat ordering
(sometimes called Bernstein-Gelfand-Gelfand ordering) on the Weyl group Sn. It
is, in fact, the quotient ordering induced by the canonical map of the manifold of
all flags in Rn + m to the Grassmann manifold of n-planes in (n + m)-space.

It should be said that in all probability there is much more to be said. The
diagram of interrelations between the manifestations of the specialization order
(cf. section 5.1 below) has overlap with another (functorial relationship) diagram
centering around the irreducible quotients of Verma modules for sltv the Jantzen
conjecture (now proved by A. Joseph) and the Bruhat ordering, and involving,
among others, work of Kazhdan-Lusztig, Gelfand-MacPherson (relations with
Schubert cells), Borho-Kraft and the same relation between orbits of nilpotent
matrices and permutation representations which plays a role in this paper. (We
owe these remarks to W. Borho).
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2. Several manifestations of the specialization order

A schematic overview of the various relations of the specialization order to be

described below can be found in section 5 of this paper.

2.1. The Snapper, Liebler-Vitale, Lam, Young theorem (formerly the Snapper

conjecture). Let Sn be the group of permutations on n letters. Let k
(k15 kJ be a partition of n and let SK be the corresponding Young subgroup

SK x x SKm, where SK. is seen as the subgroup of Sn acting on the letters

k1 + + Ki_1 + 1,..., k1 + + Kj-. (If Km — 0 the factor SKm is deleted). Take
the trivial representation of Sk and induce this up to Sn. Let p(ic) denote the

resulting induced representation. It is of dimension n\fkx! kJ and it

can be easily described as follows. Take m symbols au am and consider all
associative (but non-commutative) words of length n in the symbols

au am such that at occurs precisely Kt times. Let W(k1? Km) W(k) denote
this set, then Sn acts on IT(k) by cy~ 1(s1 £„) £a(i)£a(2) - Sow Let K(k) be the

vector space with the elements of VL(k) as basis vectors. Extending the action of
Sn linearly to K(k) gives a representation of Sn and this representation is p(k).

Now the irreducible representations of Sn are also labelled by partitions. Let

[k] be the irreducible representation belonging to the partition k. Snapper [20]
proved that [k] occurs in p(k') only if k < k' and conjectured the reverse

implication. Liebler and Vitale [13] proved that k < k' implies that p(k) is a

direct summand of p(k') which, of course, implies that k < k' which in turn
implies that [k] occurs in p(k'). Another proof of the implication (via a different

generalization) is given in Lam [12]. Still another proof can be based on Young's
rule, cf. section 6 below, and a completely elementary proofcan be found in [6]. It
is probably correct to ascribe the result in the first place to Young.

2.2. The Gale-Ryser Theorem ([18]). Let p and v be two partitions of n.

Then there is a matrix consisting of zeros and ones whose columns sum to p and
whose rows sum to v iff v > p*. Here p* is the dual partition of p defined by

# 1/1 ^ '} For example, (2, 2, 1)* (3, 2).

2.3. Doubly Stochastic Matrices. A matrix M (m^) is called doubly
stochastic if ml7 ^ 0 for all i, j and if all the columns and all the rows add up to 1.

Let p and v be two partitions of n. One says that p is an average of v if there is a

doubly stochastic matrix M such that p Mv. Then there is the theorem that p
is an average of v iff p > v in the specialization order.
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2.4. Muirhead'sInequality. One of the best-known inequalities is

(xj •... ' x„)1/n «S n_1(Xi+... + x„)

A far-reaching generalization due to Muirhead [21] goes as follows. Given a

vector p {pup„),Pi> 0, one defines a symmetrical mean (of the

nonnegative variables x....., x„) by the formula

(2.5) [p] (x) («!)"1 X Xi"'1'...
CT

where the sum runs over all permutations a g Sn. Then one has Muirhead's

inequality which states that [p] (x) ^ \_q\ (x) for all nonnegative values of the

variables xl5xn iffp is an average of q, so that in case p and q are partitions of n

this happens iff p > q. The geometric mean-arithmetic mean inequality thus

arises from the specialization relation (1, 1) > (n, 0, 0).

2.6. Completely Reachable Systems. Let Lm n denote the space of all pairs
of real matrices (A, B) of sizes n x n and n x m respectively. To each pair (A, B)

one. associates a control system given by the differential equations

(2.7) x Ax + Bu, x e R", u g Rffl

where the us are the inputs or controls. The pair (A, B\ or equivalently, the

system (2.7), is said to be completely reachable if the reachability matrix R(A, B)

(B AB AnB) consisting of the n + 1 (n x m)-blocks AlB, i 0,..., n, has

maximal rank n. In system theoretic terms this is equivalent to the property that
for any two points x, x' g R" one can steer x(t) to x; in finite time starting from
x(0) x by means of suitable control functions u(t).

Let n denote the space of all completely reachable pairs of matrices (A, B).

The Lie-group F of all block lower diagonal matrices ^ ^, S e GL„(R),

Te GLJR), K an m x n matrix, acts on L% n according to the formula

(2.8) (A, Bf (SAS-*+SBTS-lK, S BT), gQ,

The "generating transformations" (A, B) -+ (SAS_1, SB) (base change in state
space), (A, B) -> (A, BT~:) (base change in input space) and (A, B) -» (A
+ BK, B) (state space feedback), occur naturally in design problems (of control
loops) in electrical engineering. It is a theorem of Brunovsky [30] and Kaiman
[9] and Wonham and Morse [31] that the orbits of F acting on „ correspond
bijectively with partitions of n. The partition belonging to (A, B) e L^r „ is found
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as follows. Let dj be the dimension of the subspace of R" spanned by the vectors

Albr, r 1,m, i ^ j where br is the r-th column of B. Let e} dj
— dj_ 1? d_ 0. The partition corresponding to (A, B) is the dual partition of
(e0, el9 e2,..., en), i.e. k(A, B) (e0, eu en)*. The numbers kx ^ ^ Km

making up k(A, B) are called the Kronecker indices of (A, B). (Because the

problem of classifying pairs (A, B) up to feedback equivalence, i.e. up to the

action of F, is a subproblem of the problem of classifying pencils of matrices
studied by Kronecker: to (A, B) one associates the pencil (A — si B). The

partition (e0,..., en) corresponds to the dimensions of the filtration of
controllability subspaces.

Let 0K be the orbit of F acting on Lcf n labeled by k. Then a second theorem,
noted by a fair number of people independently of each other (Byrnes,

Hazewinkel, Kaiman, Martin,...), but never yet published, states that 0K =5 0K, iff
k > k\ Some of the control theoretic implications of this are contained in
Martin [32].

2.9. Vectorbundles over the Riemann sphere. Let £ be a holomorphic
vectorbundle over the Riemann sphere S2 P1(C). Then according to
Grothendieck [4] E splits as a direct sum of line bundles.

(2.10) E =* L(k,) © © L(KJ

Where L{i) is the unique (up to isomorphism) line bundle over P*(C) of degree i,

L(i) L(l)®', i g Z, where L(l) is the canonical very ample bundle of PX(C).

Thus each holomorphic vectorbundle E over PX(C) defines a m-tuple of integers

k(E) (in decreasing order). The bundle is called positive if k,(£) ^ 0 for all i

1,..., m. Concerning these positive bundles there is now the following
degeneration result of Shatz [19]. Let Et be a holomorphic family of m-

dimensional vectorbundles over P^C). Then for all small enough £, k(Et)

> k(E0). And inversely if k > k' then there is a holomorphic family Et such that

k(£t) k for t small t ^ 0 and k(E0) k'.

2.11. Orbits of Nilpotent Matrices. Let Nn be the space of all n x n

complex nilpotent matrices. Consider SL„(C) or GL„(C) acting on N„ by

similarity, i.e.

As SAS-1, {A eNn, Se GL„(C)).

By the Jordan normal form theorem the orbits of this action are labelled by

partitions of n. Let 0(k) be the orbit consisting of all nilpotent matrices similar to
the one consisting of the Jordan blocks J(Kf), i 1,..., m, where J(Kf) is the vq
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x k;- matrix with l's just above the diagonal and zeros everywhere else. Then the

Gerstenhaber-Hesselink theorem says that 0(k) => O(k') iff k < k'. (Note the

reversion of the order with respect to the result on orbits described in 2.6. above.)

3. Grassmann manifolds
AND CLASSIFYING VECTORBUNDLES

In order to describe how the various manifestations of the specialization
order are connected to each other we need to define Grassmann manifolds, the

classifying vectorbundles over them and their Schubert cell decompositions (in
section 4 below).

3.1 Grassmann Manifolds. Fix two numbers m, n e N. Then the

Grassmann manifold G„(C" + m) consists of all n-dimensional subspaces of Cn + m.

Thus for example Gx(Cm + 1) is the m-dimensional complex projective space
Pm(C). Let C"fg(n + m) be the space of all complex n x (n + m) matrices of rank n.

Let GL„(C) act on this space by multiplication on the left. Then the quotient
space CJ?e*(n + m)/GL„(C) is G„(C" + m). The identification is done by associating to
M e C"fg{n + m) the subspace of Cn+m generated by the rows of M.

Gn(Cn + m) inherits a natural holomorphic manifold structure from cnX{n + m\

For a detailed description of Gn(C" + m) see e.g. [16] or [23].

3.2. The Classifying bundle. We define a holomorphic vectorbundle E,m

over G„(C" + m) as follows. For each x let the fibre over x, £m(x), be the quotient
space Cn + m/x. More precisely define the bundle r[n over G„(C" + m) by

(3.3) q,? - {(x, v) e Gn(C" + m) x Cn+m I ü g x}

with the obvious projection (x, v) ^ x. Then £m is the quotient bundle of the
trivial vectorbundle Gn(Cn + m) x Cn + m over Gn(Cn + m) by Both and q„ can
be used as universal or classifying bundles (cf. [16] for r\n as a universal bundle).
Let E be an m-dimensional vectorbundle over a complex analytic manifold M.
Let T(E) T(E, M) be the space of all holomorphic sections of E, i.e. the space
of all holomorphic maps s : M -+ E such that ps id, where p : E -> M is the
bundle projection. The universality, or classifying, property of in the setting of
complex analytic manifolds now takes the following form. Suppose V c= F(E) is
an (n 4- m)-dimensional subspace such that for each xe M the vectors s(x), se V
span £(x), the fibre of E over x. Now identify V ^ Cn + m and associate to xe M
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the point of G„(C + m) represented by Ker(K £(x)). This gives a holomorphic

map mE\M G„(Cn +
m) such that the pullback of t;m by means of is

isomorphic to E, m — E. It *s universality properties such as this one which

account for the importance of the bundles E,m and in differential and algebraic

topology [16], algebraic geometry and also system and control theory (cf. [22,

23] and the references therein for the last mentioned).
The bundle has a number of obvious holomorphic sections, viz. the

sections defined by 8t(x) et mod x where et is the i-th standard basis vector of
C" + m, i 1,..., n + m. And, as a matter of fact, it is not difficult to show that
T(^m, G„(Cn + m)) is (n + ra)-dimensional and that the el5..., en + m form a basis for
this space of holomorphic sections; cf. subsection 8.1 below.

4. Schubert Cells

4.1. Schubert Cells. Consider again the Grassmann manifold G„(Cm + n).

Let A (A l9..., An) be a sequence of n-subspaces of Cn + m such that 0 ^ A1

a A2 cz c: An with each containment strict. To each such sequence A we

associate the closed subset

(4.2) SC(A) ={xe G„(Cm + ") | dim(xnTt-) ^ z}

and call it the closed Schubert-cell of the sequence A. In particular if

0 < Yi < y2 < < y„ < n + m

is a strictly increasing sequence of natural numbers less than or equal to n + m

then we define (setting y a (y1?..., y„))

(4.3) SC(y) 5C(CTl,C7")

where C is viewed as the subspace of all vectors in C" + m whose last + m — r
coordinates are zero.

4.4 Flag Manifolds and the Bruhat Decomposition. A flag in Cn+m is a

sequence of subspaces F Fx c= c= Fn + m c= Cn+m such that dim Fi i.

Let Fl(Cn + m) denote the analytic manifold of all flags in Cn + m. There is a natural

holomorphic mapping Fl{Cn +
m) Gn(Cn+m) given by associating to a flag Ff its

n-th element Fn. The flag manifold can be seen as the space of all cosets

Bg, g e GL„ + m(C) where B is the Borel subgroup of all lower triangular matrices
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in GL„ + m(C). The mapping GL„ + m(C) - associates to a matrix g the

flag F{g) whose i-th element is the subspace of spanned by the first row

vectors of g.

Now view Sn + m, the symmetric group on n + m letters as a subgroup of

GLn + m(C) by letting it permute the basis vectors (a(ef) ea{i]). Then in

GL„ + JC) we have the so-called Bruhat decomposition.

(4.5) GLn + m(C) u B g B (disjoint union)

Where a runs through the Weyl group Sn + m of GL„ + m(C). An analogous

decomposition holds in a considerably more general setting (reductive groups, cf.

[24], section 28).

4.6. The Bruhat order (also sometimes called Bernstein-Gelfand-Gelfand, or
BGG order The closure of a double coset B g Bis necessarily a union of other
double cosets (by continuity). This defines an ordering on the Weyl group Sn + m

defined by

(4.7) g>T<^BGB^BTB
This ordering plays a considerable role in the study of cohomology of flag spaces

[1] and also in the theory of highest weight representations [25, 26].
Let H be the subgroup of Gn + m(C) consisting of all block lower triangular

m x n matrix. Then, using the remarks made in subsection 4.4 above, one sees

that Gn(Cn +
m) is the coset space {Hg \ g e GL„ + m(C)}. Now let g e Sn + m and let

Yi < < yn be the n natural numbers in increasing order determined by

Then one easily sees that the image of B g B under GL„ + m(C) - Gn(C" + m), i.e.

the set of all spaces spanned by matrices of the form h g b, h e H, b e B, is the

open Schubert cell of all elements in G„(Cn +
m) spanned by the rows of a matrix of

the form

CT

Sn e GL„(C), S22 6 GLm(C), an arbitrary
^22/

e {ei>-,?n},i 1, -, ft.

0... 0 0

* * Q

0

0

* 0...0
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where the last * in each row is nonzero. The closure of this open Schubert-cell is

the Schubert-cell SC{y) defined in (4.3) above.

One easily checks that

(4.8) SC(|i) cz SC(y)<- n,- ^ yhi 1,n
and this order on the Schubert cells SC(y), or the equivalent ordering on n-tuples
of natural numbers, is therefore a quotient of the Bruhat order on the Weyl group
Sn + m. It is the induced order on the set of cosets (Sn x SJcr, a e Sn + m. (Obviously
if X g Sn x Sm, then za(ey) e {eu en} if o(ey) e {el9..., en}.) (And inversely the

Bruhat order is determined by the associated orders of Schubert cells in the sense

that a > T in S„ iff for all k 1,..., n — 1 we have for the associated Schubert
cells in Gk(Cn) that SC(a) SC(x) ; this is a rather efficient way of calculating the

Bruhat order on the Weyl group Sn.)

5. Interrelations

Now that we have defined the concepts we need we can start to describe some
interrelations between the various manifestations of the specialization order we
discussed in section 2 above.

5.1. Overview of the Various Relations. A schematic overview of the

various interconnections is given by the following diagram. In this diagram we
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have put together in boxes the manifestations which are more or less known to be

intimately related and have explicitly indicated the new relations to be discussed

in detail below.

5.2. On the various Relations. The manifestations of the specialization

order in box I are wellknown to be intimately related [2, 5, 10, 12, 18]. In

particular, cf. [5] for the relations between doubly stochastic matrices,

Muirheads inequality and the specialization order, which brings in also the

marriage theorem and the Birkhoff-v. Neumann theorem that every doubly
stochastic matrix is a convex linear combination of permutation matrices. For
the relations of the Gale-Ryser theorem with the more or less combinatorial

entities just mentioned cf. [12, 18] and also [2] which also contains lattice

theoretic information on the partially ordered set of partitions with the

specialization order.
Besides the Snapper conjecture (i.e. the Snapper, Liebler-Vitale, Lam, Young

theorem) the Ruch-Schönhofer theorem [17], cf. also [20] also belongs in box I.

This theorem states that < p(k), p(p) > 1 if and only if k > p* where < >
denotes the usual inner product (which counts how many irreducible

representations there are in common), and where p(p) is the representation of Sn

obtained by inducing up the alternating representation of the Young subgroup
S^. One way to link this theorem with the Gale-Ryser theorem is via Mackay's
intertwining number theorem [10, 28] and Coleman's characterization [27] of
double cosets of Young subgroups, cf. [10]. Another way goes via a beautiful
formula of Snapper which we now explain (in a somewhat simplified case). Let X
— {1, 2,..., n} with Sn acting on it in the natural way. Let Y be a finite set. A

weight on Y is simply a function w : Y - N u {0}. Given a function / : X -*• Y

its weight w(/) is defined by w(f) (y) # f~ *(y), where # denotes cardinality.
For each weight won Y let

I(w) {f : X -+ Y \ w(f) w}

Now Sn acts on Yx the space of functions from Y to Y by cr(/) (x) f(o~ *(x))
and 7(w) is obviously invariant under this action. This associates a permutation
representation p(w) with each weight w on Y Now consider two finite sets Yi and
Y2 with weights wq and w2. Let Y1 x Y2 be the product and nl9 n2 the natural
projections on Y1 and Y2. Define M(wx, w2) as the set of all weights w on Y1 x Y2

such that Wi(yi) w(n^ ^y,-)) for all yf e Yh i 1, 2. Finally let M(wl5 vv2) be the
sum of the characters belonging to the weights w e M(wl5 w2). Then Snapper's
formula says

(5.3) < M (wl5 w2), X > < P(w!)p(w2), x >
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for all characters %. To connect this result with statements on integrals matrices,
it remains to note that < M(wi,-w2), 1 > is the number of integral matrices
with row sums nq and column sums w2 and to prove that < M(wu w2), ô > is

the number of (0, l)-matrices with row sums w1 and column sums w2. Here ô is

the alternating character of Sn.

Relation A in the diagram is essentially established by giving two virtually
identical (but dual) proofs of the theorems, and these results can then be used to
give natural continuous isomorphisms between feedback orbits of systems and

similarity orbits of nilpotent matrices. More details are in section 7 below. For
connection B one associates to a system S g „ a vector bundle E(L) of
dimension m over P^C). The construction used is a modification of the one in
[14], cf. section 8 below. It has the advantage that one sees immediately that
k(Z) ä k(E(Z)). For connection C one uses the classifying morphism : P^C)
— G„(C" + m) attached to a positive bundle E over P^C) (cf. section 3.2 above). It
turns out that the invariants of E can be recovered from by considering the

dimensions of the spaces A l5..., An such that ImA*E c= SC(A cf. section 9 below.

To establish a link between representations of Sn + m and Schubert-cells we

construct a family of representations of Sn + m parametrized by G„(Cn + m), which

can be used to give a deformation type proof of the Snapper conjecture (in the

Liebler-Vitale form) (cf. section 12 below). This is not the shortest proof but it
contains in it a purely elementary proof which uses no representations theory at
all [6]. Combining the links A, C, D gives of course a link from the Gerstenhaber-
Hesselink theorem to the Snapper conjecture, albeit a tenuous one. However,
there is also a very direct link, due to Kraft [11], cf. section 6 below, and this gives

yet another proof of the Snapper conjecture.
One possible approach to the Snapper conjecture is, of course, via Young's

rule (discussed below in section 6), which states that the irreducible

representation [k] occurs in p(^) with a multiplicity equal to the number of
semistandard K-tableaux of type X. This can be made the basis of a proof and

gives yet another link between the Snapper, Liebler-Vitale, Lam, Young theorem

and the Gerstenhaber-Hesselink theorem. Both can be seen as consequences of
the statement that there exists a semistandard ^-tableau of type ji iff X < p, cf.

section 7.6 below.

Finally let us remark that the proof of the increasing mixing character

theorem for thermodynamic processes of Ruch and Mead follows readily from
the theorem about doubly stochastic matrices described in 2.3 above.
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6. Young's rule,
THE SPECIALIZATION ORDER AND NILPOTENT MATRICES

6.1. Young Diagrams and Semistandard Tableaux. LetK (k15 Km) be a

partition of n. As usual we picture k as a Young diagram; that is an array of n

boxes arranged in m rows with Kj boxes in row i, as in the following example

(6.2) k (4, 3, 3, 2)

Let k (k j,..., kj be another partition of n. Then a semistandard K-tableaux of

type k is the Young diagram of k with the boxes labelled by the integers 1,..., s

such that i occurs kt times, i 1,..., s and such that the labels are nondecreasing
in. each row of the diagram and strictly increasing along each column. An
example of a (5, 3, 2)-tableaux of type (4, 2, 2, 2) is

(6.3) 111142 2 3
3 4

We shall use K(k, à) to denote the number of different semistandard K-tableaux

of type k; these numbers are sometimes called Kostka numbers.

6.4. Young's Rule. Let [p] denote the irreducible representation
associated to the partition p. Then Young's rule (cf. [29]) says that

6.5. Theorem. Let k and k be partitions of n. Then the number of times that
the irreducible representation [k] occurs in the permutation representation p(k)
is equal to the number K(k, k) of semistandard À-tableaux of type k.

6.6. The Specialization order and Semistandard Tableaux. The implication
k > k <- p(À) is a direct summand of p(k) follows easily from this. First, however,

we state a lemma which is standard and seemingly unavoidable when dealing
with the specialization order. Its proof is easy.

6.7. Lemma. Let k (ku km) and k (k1? kJ be two partitions of
n and suppose that k > k and (À > p > k) => (À p or p k) for all partitions p.

Then there are an i and a j, i < j such that

Kj kt + 1, kt < Vi, Kj kj - 1, k, > kj+1, ks Às, s ^ /', j.

L'Enseignement mathém., t. XXIX, fasc. 1-2. 5
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Pictorially the situation looks as follows

That is a box in row j which can be removed without upsetting
# (row j) ^ # (row j-f 1) (which means that we must have had Xj > Xj+1) is

moved to a higher row i which is such that it can receive it without upsetting
# (row i) ^ # (row i— 1) (which means that we must have had Xt < x). We
will say that X covers k. Of oourse not all transformations of the type described
above result in a pair X, k such that there is no p strictly between X and k.

6.8. Lemma. Let X and k be two partitions of n and suppose that there
exists a semistandard ^-tableaux of type k. Then k > X.

Proof. In a semistandard ^-tableaux of type k all labels i must occur in the

first rows (because the labels in the columns must be strictly increasing). The
number of labels j with j ^ i is k1 4- + Kt- and the number of places available
in the first i rows is Xx + + Xt. Hence

+ + Xi ^ + + Kj-

for all i so that X < k.

6.9. The Implication [k] occurs in p(X) => k < X. Now suppose that

[k] occurs in p(A,). Then there is a semistandard K-tableaux of type X by Young's
rule so that k < X by lemma 6.8.

This implies, of course, that : p(k) is a subrepresentation of p(A,) - (k < X).

Because there is obviously a semistandard k- tableaux of type k (in fact precisely

one).

6.10. The Implication k < X => p(k) is a subrepresentation of p(>.). To
obtain this implication it suffices by Young's rule to show that the Kostka
numbers satisfy K(p, k) ^ K(p, X) if k < X for all p. To see this it is convenient to
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define K(\i, v) as the number of semistandard p-tableaux of type v for any

sequence of nonnegative integers v (vl5vs) such that | v | n. Let v

(v1?vs) denote the rearrangement of the vf such that vx ^ v2 ^ ^ vs.

Then K(p, v) K(\i, v) and from this (non trivial) fact combined with lemma 6.7

it is easy to see that K(\i, k) ^ K(ja, X) if k < X. (Assume X covers k and rearrange

both so that the two changing entries are the first two.) We owe these remarks

(indirectly) to A. Lascoux.

6.11. Nilpotent Matrices and Representations [11]. Let NK be the set of

nilpotent matrices labelled by the partition k, cf. 2.11 above. Let NK be its closure

and let C be the set of diagonal matrices. Now take the scheme theoretic
intersection of the closed subvarieties NK and C of the scheme of n x n matrices

over C. This is a finite C-algebra with an obvious S^-action. This turns out to be

the permutation representation p(k) and using results from [39] a proof of the

Snapper, Liebler-Vitale, Lam, Young theorem can be deduced. One very nice

thing about this construction is that it also makes sense for the other classical

simple Lie algebras and their Weyl groups. There are also relations with the so-
called Springer representations of Weyl groups, [40-42].

7. Nilpotent matrices and systems

As was remarked in section 5 above the connection A in the diagram above
essentially consists of an almost identical proof of the two theorems. We start
with ei proof of the Gerstenhaber-Hesselink theorem. The first ingredient which
we shall also need for the feedback orbits theorem is the following elementary
remark on ranks of matrices.

7.1. Lemma. Let A(t) be a family of matrices depending polynomially on a

complex or real parameter t. Suppose that rank A(t) ^ rank A(t0) for all t. Then
rank A(t) rank A(t0) for all but finitely many t.

This follows immediately from the fact that a polynomial in t has only finitely
many zeros.

Let A be a nilpotent matrix. Then of course the similarity type of A is
determined by the sequence of numbers.

nt dim Ker A1.

The numbers et ni + 1 - nt form a partition of n and are dual to the partition
formed by the sizes of the Jordan blocks.
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The key to a simple proof of the Gerstenhaber-Hesselink theorem is in
exploiting this filtration instead of the Jordan form. The following elementary
lemma is the key observation.

7.2. Lemma. Let A be a nilpotent n x n matrix and let F be such that

(7.3) F(Ker A) a Ker A1' \ i 1, 2,..., n

Then tA -h (1 — t)F is similar to A for all but finitely many t.

Proof. We show first that

(7.4) Ker(L4 + (1 -t)F)1 => Ker A1

for all t. Indeed from (7.3) with i 1 we see that F(Ker A) — 0 and it follows
that (tA 4- (1 — f)F) (Ker A) 0 which proves (7.4) for i 1. Assume with
induction that (7.4) holds for all i < s. Their

(tA + (1 -t)F)s Ker As (tA + (1 -t)T)s_1 (tA + (l-f)F)Ker As

C: (tA + (l-t)Fy-1 Ker As~1 0

because A Ker As c= Ker T5_1andF(Ker As) c Ker A5'1 by (7.3). This proves
(7.4). Using (7.4) we know by (7.1) that for almost all t (take t0 1)

(7.5) rank(L4 + (1 -t)Ff rank (A1)

and because tA + (1 — t)F and A are both nilpotent it then follows that the

conclusion of the lemma is satisfied.

Now let A be a nilpotent matrix. We say that A is of type k (ku Km) if the

Jordan normal form of A consists of m Jordan blocks of sizes Kt x Kh

i 1,..., m. E.g. A is of type (4, 2) iff its Jordan form is

0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 1

0 0 0 0 0 0

Consider Ker A, Ker A2,..., Ker An. Then A is of type k iff

dim(Ker A1) kJ5 + + Kf, i 1,..., n

where k* is the dual partition of k. Thus in the example the kernel spaces Ker A1

are spanned by the basis vectors

{<?i, e5}, {elt e2,e5,e6j, {eu e2,e3,e6j, e2, e3, eA, e5, e6}
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7.6. Semistandard Tableaux and Nilpotent Matrices. Let A be a nilpotent

matrix of type k. Let p be another partition of n and suppose that there is a p*-
tableaux of type k*. Then there is nilpotent matrix F of type p such that

F(Ker A') c= Ker Ä'1 for all i. This matrix F is constructed as follows. First

choose a basis el9..., en of R" such that the first k? + + kf elements of this

basis form a basis for Ker A\ i 1,..., n. Now consider a semistandard p*-
tableaux T of type k*. Take the Young diagram of p* and lable the boxes of it by

the basis vectors eu en in such a way that the boxes marked with i in the

semistandard tableaux T are filled with the basis vectors

eK^ + ---+Kf_ + 1> "•> eK% + — +K.f

This can be done because T is of type k* so that there are precisely kf boxes

labelled i in T. Call this new p*-tableaux T. Now define F by F(et) ep if ej is

just above et in the p*-tableaux T and F(e3) 0 if e} occurs in the first row
of T. Then obviously

dim Ker Fl — p* + + pf^

so that F is of type p and F(Ker A1) a Ker A1'1 because the p*-tableaux T was
semistandard which implies that the labels are strictly increasing along columns.

An example may illustrate things. Let k* (2, 2, 2), p* (4, 1, 1). A p*-
tableaux of type k* is then

112 3

2

3

Inserting eu e6 in such a way that eu e2 are put into boxes marked with 1,

e3, £4 in boxes marked with 2 and e5, e6 in boxes marked with 3 gives for example

^
which yields an F defined by F(e6) e4, F(e4) el9

F(et) F(e2) F(e3) F(es) 0

7.7. Proof of the Gerstenhaber-Hesselink Theorem. (Cf. 2.11 above for a
statement of the theorem.)
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The implication ->• is immediate. Indeed if At e 0(k) converges to A0 e 0(X) as

t 0 then rank (A{) ^ rank (Aq) for small t and all i 1,n. Hence

dim(Ker Aty ^ dim(Ker Al0)

for small t so that

KÎ + + K* < + + X?

for all i, hence k* > X* and k < X.To prove the opposite implication it suffices

to show this in case that k is obtained from X by a transformation of the type

described in lemma 6.7. (Because if0(k) 0(X)and0(X) =d 0(p), then 0(k) =5 O(^),

and hence 0(k) ^ 0(p).) Then X* is obtained from k* by a similar transformation.
Recall the picture

Now take the unique semistandard K*-tableau of type k* and transform the box
\x\ together with its label. The result is obviously a semistandard X*-tableau
of type k*. Let A be a nilpotent matrix of type k. Then by the construction
of 7.6 above there is an F of type X such that F(Ker A1) a Ker A1'1. Then
tA + (1 — t)F is similar to A for almost all t by lemma 7.2 so that there is a

sequence of A's in 0(k) converging to F e O(^), proving that 0(À,) c: 0(k), which
finishes the proof of the theorem.

Incidentally it is quite easy to describe F directly without resorting to
semistandard tableaux [7].

7.10. Kronecker Indices of Systems. Let (A, B)eLc^n be a completely
reachable pair of matrices. Recall that this means the matrix R{A, B)

(B AB AnB) has rank n. Recall that the Kronecker indices k(A, B) of the pair
(A, B) are defined as follows. Let for i 1,..., n

(7.11) Vi(A, B) — space spanned by the column vectors of

AjBJ 0,..., i - 1
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and k{A, B) is defined as the dual partition of n.

(7.12) k(A, B) e(A, B)*

where e(A, B) (el9..., en).

The orbits of the feedback group (cf. 2.6 above) acting on „ are precisely

the subsets of n with constant k{A, B). Let U(k) be this orbit. The

"degeneration of systems theorem" now says

7.13. Theorem. U(X) => U(k) X > k.

Here follows a proof which is virtually identical with the proof of the

Gerstenhaber-Hesselink theorem given above. First if (Ap Bt) (A0, B0) as

1 "" °'
(A„ Bt) e U(X), (A0, B0) e k)

for small t. Hence e(At, Bt) < e(A0, B0) for small t and k(At, Bt) > k(A0, B0) for
small t which proves the implication =>.

To prove the inverse implication it suffices to prove this in the case k is

obtained from X by a transformation as described in lemma 6.7 (exactly as in the

case of the Gerstenhaber-Hesselink theorem). Now let (A, B) e U{X). Choose a

basis eu en for R" such that the first Xf + + Xf elements of el9..., en form a

basis for V^A, B), i 1,..., n. Now write in the el7..., en in X* in the standard way
and transform X* backwards to k*, moving [x] together with its label, cf. the
picture in section 7.7 above. E.g. if k* (4, 3, 2, 2, 1) and X* (4, 4, 2, 1, 1)

then this would give

then

rank (A[ 1Bt;...; AtBt \ Bt) ^ rank(Al0 lB0;...; A0B0; B0)

for small t. Hence

dim V£At, Bt) ^ dim V{A0, B0)

el e2 e3 e4

e5 ?6 e7

e9 el0
el 1 e8

e 12

el e2 e3 e4

e5 e6 e7 e8

e9 Go

Gi
e 12
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The vectors in the first i rows of X* are a basis for Vt(A, B). Now define a pair
(F, G) in terms of k* as follows. G consists of the vectors in the first row of k* (plus
a zero vector in case kJ < and F is defined by F(^) ev if er occurs just
below et in k* and F(ef) 0 otherwise. Note the similarity with the construction
in 7.6. One could put this in "Young tableaux" terms too. The relevant "Young
tableaux" are then the inverse semistandard ones with labels strictly decreasing
from left to right along rows and decreasing from top to bottom along columns.
Then (F, G) has the following properties (all immediate)

(i) (F, G) e U(k) c LZ,n

(ii) V£F, G) e V^A, B)

(iii) FV^B) cz vi + 1 (A,B)

(of course (ii) follows from (iii) together with V^F, G) c= V^A, B)). Now consider

At tA + (1 — t)F, Bt tB + (1 — t)G. Then

(7.14) V£At, Bt) c= V£A, B) for all t

(7.15) Vi(At, Bt) Vt(A, B) for all but finitely many t.

Indeed obviously V1 (At, Bt) cz V^A, B) because of (ii) above for I 1. Now
assume that (7.14) holds for all i < r. Then

Vr(At,Bt) (tA + (l-OF)^.^,^) + K-M.Bt)
CZ tAVr_x{A,B) + (1 -t)FVr^{A9B) +
CZ Vr(A, B) + Vr(A, B) + K^iA, B) Vr(A, B)

This proves (7.14) and (7.15) follows by means of lemma 7.1 (with t0 1) because

dim Vi(At, Bt) rank (A\~1Bt;...; Bt)

Now (At, Bt) (F, G) e U(k) as t -* 0 and by (7.15) (and the theorem that the

orbits under the feedback group are classified by the Kronecker indices) all but

finitely many of the (At, Bt) are feedback equivalent to (A, B). Thus (F, G) e U(k)

and (F, G) g U(k) proving the theorem.

7.16. Remarks. The two proofs are very similar (up to duality in a certain

sense). This can be given more precise form as follows. For a nilpotent matrix

NeN"let
s_(N){(A, B) e LZ,„ I N'AlB0, ; 1,

and for (A, B) e L^_ „ let

t_{A, B) {NeNn\N'A'-10, 1,n}
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Then using the results above one shows that

t s(öw) ööcj,£t(i/(K)) Tm

so that t and s set up a bijective correspondence between the closures of orbits in

the two cases and hence induce a bijective order preserving correspondence

between the sets of orbits themselves.

8. Vectorbundles and systems

This section contains a modified version of the construction of Hermann-

Martin [14] associating a vectorbundle £(X) over the Riemann sphere P^C) to

every X (A, B) g Lcnru n. This version makes it almost trivial to see that £(X)

splits as a direct sum of line bundles L(Kf), i 1,m where k (kx, kJ is

the set of Kronecker indices of X.

The first thing needed is some more information on the universal

bundle c,m.

8.1. On the Universal Bundle £m - G„(C" + m). Let L be a complex n + m

dimensional vector space and L* Homc(K C) its dual vector space. Given

x g Gn(C" + m) define x* {y g L* | < y, p > =0 for all x g V) where < >
denotes the usual pairing L* x V -> C. Then x* is m-dimensional and x^x*
defines a holomorphic isomorphism

(8.2) d:Gn(V)^Gm(V*).

Now v g V/x defines a unique homomorphism vT : x* C as follows :

vT{a) < a, v > for all a e x*, where v g V is any representative of v. This is

well defined because < a, b > 0 for all b g x if a e x*. This defines an

isomorphism between the pullback (d~x) ^m and the dual of the subbundle rjm on
Gm(L*) defined by

{(x*5 w) e Gm(L*) X K* I WG X*}

It follows that £m is a subbundle of an n + m dimensional trivial bundle
G„(C" + m) x Cn + m. Because G„(CM + m) is projective (compact) all holomorphic
maps Gn(C" + m) C are constant so that the space of holomorphic sections

r(G„(C"+m) X Cn +
m, Gn(Cn + mj) is of dimension n + m. As a subbundle of a

trivial (n + m)-dimensional bundle ^m can therefore have at most (n + m) linearly
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independent holomorphic sections. But we have already found (n + m) linearly
independent sections viz. the el5..., s„+m defined by s,(x) et mod a where e{ is

the i-th standard basis vector of Cn + m. Therefore

(8-3) dim r(Çm, Gn(Cn + mj) n + m

Now let A e GL„+m(C). Then A induces a holomorphic automorphism A* of
Gm(C" +

m) defined by x i— Ax. Then, of course, there is an induced isomorphism
A~1 : Cn + m/Ax -> Cn + m/x which for varying x induces an isomorphism

(8.4) ^4eGL„+m(C)

8.5. The Line Bundles L(i) over P^C). The Riemann sphere P1(C)
S2 can be obtained by gluing together two copies of C along the open subsets

C\{0} by the isomorphism

C\{0} -+ C\{0}, s I— t - s"1

A line bundle over P:(C) is then obtained by giving a holomorphic isomorphism
C\{0} x C h* C\{0} x C linear in the second variable compatible with the

above isomorphism. Obviously the only possibilities are (s, v) -> (s-1, slv) for
i e Z. This gives us the following commutative diagram identifications

C x C

t
C\{0} X C

(s, v) - (s slv)

C _v 1

C\{0) xCcCxC

t
I C ^ C\{0} C\{0} C "

The corresponding holomorphic line bundle is denoted L( — i). A section of L( — i)

consists of two holomorphic mappings s1; s2 of the form s - (s, /(s)), t (t, g(t))

such that slf(s) g(s~l). It readily follows that f(s) must be a polynomial of
degree ^ —i. Thus

(8.6)

(8.7)

dim r(L(i)) 0 if i < 0

dim T(L(0) /+! if i > 0

8.8. The (modified) Hermann-Martin vectorbundle of a system. Let £
(A, B) be a pair of real or complex matrices of sizes n x n and n x m. Then

(A, B) is completely reachable (cr) iff the n x (n + m) matrix (si — A ; B) is of rank

n for all complex values of s. So if E (A, B) is cr one can define a holomorphic

map vJ/j by
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(8.9) \|/s : P^C) G„(C"+m), s i-* Row(sI-A;B), oo Row(/; 0)

where Row(M) for an n x (m + n) matrix M denotes the subspace of Cn + m

generated by the rows of M. The vectorbundle £(X) over P*(G) is now defined by

(8.10) £(X)

8.11. Proposition. E(L) depends only on the feedback orbit of X.

Indeed one easily checks that X (A, B\ X' (Ä, B') e Lc„t „ are feedback

equivalent (cf. 2.6 above) iff there are constant invertible matrices P, Q such that

P(sl — A ; B)Q (sI-A'iB').
Now Row(PM) Row(M) and postmultiplication with Q changes \|/E to

° tyz and

E(S') ^ (^(U EÇL))

by 8.4 above, proving the proposition.
Thus to determine £(X) we can assume that X (A, B) is in Brunowsky

canonical form which means tha

0 1 0

0

1

0 0

0 1

0

0 0

in case m 3, where (kx, k2, k3) k(A, B) are the Kronecker indices of X
(A, B). (The general case is evident from this example) ; every (A, B) e U(k) is

feedback equivalent to such a pair [30, 9]. The matrix (sI~A ; B) is now easily
written down, and one observes that for all

s ^ 0, oo, ex e2 eKl en + 1 mod Row(sI — A ;B),

it A, B takes the form

0 1 0

1

0 0

0 0 0

0

1 0 0

0 0 0

0

0 1 0

0 0 0

0

0 0 1
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i.e. mod v|/z(s) and for s — 0, e2 eK1 en + l =0 but e1 ^ 0 and for
s oo, ex eKl 0 and en + 1 ^ 0. It follows that the vectors

ei(*Ms)), -, eKl(Ws)), en+i(v|/r(s))

span a one-dimensional subspace of £>m(\|/x(s)) for all s so that £(X) ~ i|f^m
contains a line bundle Ll which admits at least k1 + 1 linearly independent
holomorphic sections viz. the sl5..., sKl, £„ + 1. Similar relations hold for

^Kl 4 + Kj - 1 + 1? i ^Ki >,,,. + Kj' + 1

for all i 1,..., m giving us subbundles Lh i 1,..., m which admit at least Kt-

+ 1 linearly independent holomorphic sections. This exhausts the st- and
because the 8n + m(x) span ^(x) for all x e G„(C" + m) it follows that E(L)

© Lj. As the pullback of the bundle E(L) itself is a subbundle of an (n -f m)-

dimensional trivial bundle. Because PX(C) is projective it follows (as before) that
EÇL) has at most n + m linearly independent holomorphic sections. But Lt has at
least K; + 1 linearly independent sections, hence © Lt has at least E(kf+ 1) n

+ m linearly independent sections which proves that Lt has precisely Kt + 1

linearly independent sections and hence identifies Lt as the bundle L(k;)
described above in (8.5). We have reproved the theorem of Hermann and

Martin [14].

8.12. Theorem. Keeping the notations introduced above in (8.10) and (8.5)
m

we have E(L) ~ © L(Kt).
i 1

Still another proof of this theorem, using the Riemann-Roch theorem is

found in Byrnes [33].

8.13. The Correspondence B. (cf. the diagram in section 5 above). The

mapping Z i— E(L) is obviously continuous. Thus the result U(k) => U(k) k
> X can be deduced from Shatz's theorem (cf. 2.9). Inversely Shatz's theorem for

positive bundles over P^C) can be deduced from the result on feedback orbits
because every positive bundle arises as an E(L). By tensoring with a suitable L(r),

r high enough, the result is then extended to arbitrary bundles over P^C).

9. Vectorbundles, systems and Schubert cells

9.1. Partitions and Schubert-cells. Let k be a partition of n. To k we

associate the following increasing sequence of n numbers t(k).
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(9.2) T(K) — (2, 3,..., Ki + 1, Kx 4- 3,..., Kj + K2 + 2,

"V-
k2

ka + + + m + 1, Kx + + Km + m)
N

v /

Let t/k), j 1,..., n, be the j-th element of this sequence. It is an easy exercise to
check that

(9.3) k > X Tî(k) > Ti(k) for all i 1,..., n

Thus the specialization order is a suborder of the inclusion ordering between

closed Schubert cells, because

SC(t) a SC(x') <-> T| ^ t-, i 1,..., n

And in turn, as we saw above in section 4, the Schubert-cell order is a quotient of
the Bruhat order on the Weyl group Sn + m.

9.4. Systems and Schubert Cells. Let (A, B) e n
be a system and as in

section 8.8 consider the associated holomorphic morphism i|/£ : P*(Q

- G„(C" + m). Suppose that (A, 5) are in Brunovsky canonical form. Then simple
inspection of the matrix (si —A ; B) (cf. the example below proposition 8.11)
shows that Im \|/£ c= SC(t(k)), where k k(A, B). Now let (A, B) be any system
in L% n. Then it is feedback equivalent to one in Brunovsky canonical, form so
that (si — A ; B) P(sl — A0 ; B0)Q for certain constant invertible matrices P, Q
where (T0, B0) is a canonical pair. Premultiplication with P does not change v|/z

and postmultiplication with Q induces an automorphism of G„(C" +
m) taking

Schubert-cell 5C(t(k)) into another Schubert-cell of the same dimension type.
Thus we have shown :

9.5. Theorem. Let E e L£f „, k - k(Z) and let \|/£ : P^C) G„(C" + m)

be the Hermann-Martin morphism of £. Then there is a Schubert-cell SC(A
A_ (Au An). such that Im v|/£ c= SC(A) and dim At T;(k), where t^k)
is defined by (9.2).

We will now show that the Schubert-cell SC(T_) obtained in 9.5 is the smallest
possible in the sense of the associated sequence of dimension numbers. We first
prove a technical lemma.
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9.6. Lemma. Let X(s) be the matrix, defined by a partition

Ki ^ K2 > ^ + 4- Km =* n

consisting of blocks X,-(s) where

ATf<s)

s — 1

s — 1

0 0

0

0

-1
s 1

K, X (Kf+ 1)

and

X(s)
Xi(s) 0

o XM
n x (n + m)

Let ß be an (m + n) x x matrix of rank x. Then X(s)B has rank greater than or
equal to x — t for almost all 5 where t is the largest number such that

*m + Km + + Km_t+1 + Kl.
Proof. We first consider the case that there is only one k, i.e., m — 1. We can

assume that B is in column echelon form by postmultiplying by a nonsingular
matrix if necessary. So B has the following form :

0

h
x
0

0

x

^2

0

0

0

0

X 0 0

-° K
X

K

The x's stand for possibly nonzero blocks. Write

X(s) s

0 1 0

+

0 -1 0

-1
0 1

sAi -f A2
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and write B

Now X{s)B

b i

bfi +1

sb1 — b2

sbn-i - bn

sbn + bn+i

where b{ is the i-th row.

We need to prove that X(s)B has the required rank. Assume that B has rank x and

x ^ n. Let x be a x vector and assume that

X(s)Bx - 0

We will show that either x 0 or the equation only holds for finitely many
values of s. We first note that

b2x shxx

bnx sn~1b1x

bn + 1x — snbxx

Thus if bxx Othen btx 0 for all x. But since B has full rank this implies that

x 0. Thus we may assume that bxx 1 and thus that r1 0. So we have that

Xl 1, x2 s,..., xXl s^1-1. If r2 0, B is of the form and the result

is obvious, so we can assume r2 ^ 0. Then we have

sbXlx bll + 1x

so that
5X1 b\! +1,1 + ^! + I,25 +•- + bXl + 1Xlsu 1

and this question is satisfied for only finitely many s. Therefore we have shown
that if there is a nonzero solution of X(s)Bx 0thenhxx ^ 0 and the solution
can exist only for finitely many values of s. Thus in this case the rank of X(s)B is

equal to x for almost all s. If B is invertible (rank of B equal to n + 1) then the
rank of X(s)B is equal to n rank X(s) (rank B) — 1.

Now let m be greater than or equal to two. Again put B into column echelon
form and partition B in such a way that the pieces Bu Bm are still in column
echelon form.
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B1 0 0

x B2 0
K1 + 1

K2 + 1

x x B,
m Km + 1

The product X(s)B has the form

X^B, 0

X2(s)B2 0

0

0

xmm
It follows that the rank of X(s)B is equal to the sum of the ranks of the Xi(s)Bi.
From before we have that rank ^(s)#, rank Bt for all but finitely many s

unless Bt is invertible in which case A^s)#, rank Bt — 1. This proves the

proposition. We can now prove the theorem that relates the ordering on the
Schubert cells to the ordering on the orbits of the feedback group.

9.7. Theorem. Let (F, G) be a controllable pair and let v|/ be the associated

morphism from P^C) into Gn(C" + m). Let Ax An be a sequence of subspaces of
Cn + m such that iJ/fP^C)) is contained in the Schubert cell SC(AU An). Let

k15 Km be the Kronecker indices of (F, G) and for each i let p(i) j iff

Then dim At ^ i + p(i) t{(k).

Proof. It is a simple matter to check that t,(k) (cf. (9.2) above) is equal to i

+ p(i). We can assume that (F, G) is in Brunovsky canonical form. Suppose that
dim Ai t < i + p(i). Then

At {x e Cn + m
: < bp x > 0J 1,..., n + m — t]

for certain linearly independent bj. Let B be matrix whose columns are the bls.
Let P(s) be the space spanned by the rows of 2f(s). Since \|/(P1(C)) is contained
in SC(AU An) we must have that dim(y4f n P(s)) ^ i. Thus the dimension

of P(s)B is less than or equal to n — i which is the same as

Now by the previous proposition rank X(s)B ^ n + m — t — I where / is the

largest number such that

Kq + + kj < i ^ Kq -f- + Kj+1

rank X(s)B ^ n — i.

Km + Km_! + + Km_i+1 + I a n + m - t.
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So we have the following

(1) t < i 4- p(i) (by hypothesis)

(2) n — i ^ n + m — t — I or equivalently i ^ t 4- I — m

(3) Km 4- 4- Km_z+1 4- I ^ n 4- m - t

(4) kx + + Kpii) < i ^ kx 4- 4- Kp(i)+i

Using (2) and (3) we have that

km 4- 4- Km_/+1 ^ n - i Kj + + Km - i

so we have i ^ 4- 4- Km_, which implies m — / ^ p(i) + 1 thus

p(i) + i < m — I 1 + i ^ (m — /—^1) 4- (t+l — m) t — 1

which contradicts (1). This proves the theorem.

9.7. Vectorbundles and Schubert cells. Because every positive
vectorbundle over P1(C) arises as the bundle E(L) of some system 2 one has the
obvious analogues of theorems 9.5 and 9.6 for positive bundles over P1(C). Here
the morphism \|/E must, of course, be replaced by the classifying morphism (cf.

section 3.2 above) of a positive vector bundle E, and n + m and m are determined
respectively as dim r(£, P^Q) and dim E.

10. Deformations of representation homomorphisms
AND SUBREPRESENTATIONS

10.1 On proving Inclusion Results for Representations. Suppose we have

given a continuous family of homomorphisms of finite dimensional

representations over C of a finite group G

(10.2) nt : M -> V

Suppose that Im nt ^ p for t ^ 0 (and small) and that Im n0 ~ p0. Then the

representation p0 is a direct summand of the representation p. This is seen as

follows. Because the category of finite dimensional complex representations of G

is semisimple there is a homomorphism of representations 4>0 : Imn0 -> M such

that 7i0 ° c|)0 id. Then 7if ° <t>0 : Im cj)0 -» Im nt is still injective for small t (by
the continuity of nt) which gives us p0 as a subrepresentation and hence a direct
summand of p.

It is almost equally easy to construct a surjective homomorphism Im nt

-> Im 7t0.

L'Enseignement mathém., t. XXIX, fasc. 1-2. 6
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10.3. The Inverse Result. Inversely if p0 is a subrepresentation of p then
there is a family of representations (10.3) such that Im nt ~ p for t # 0 and
Im 7i0 ~ p0, and if p is generated (as a C[G]-module) by one element one can
take for M in (10.2) the regular representation. Indeed if p0 is a subrepresentation
of p then p p0 © px. Let n : M -* p p0 © Pi be a surjective map of
representations. Let 7c0, n1 be the two components of n. Let 5 (s0, sx) be a

section of 71. Then 7i050 id,n1s1 id,n0s1 0, k^q 0 and it follows that
n(t) consisting of the components n0 and tn1 is still surjective. Hence Im n(t) p

and Im rc(0) p0.

11. A FAMILY OF REPRESENTATIONS OF Sn + m

PARAMETRIZED BY Gn(Cn + m)

11.1. Construction of the Family. Let M be the regular representation of
Sn + m. That is M has a basis ea, a e Sn + m and Sn + m acts on M by the formula x(ea)

exu, for all x e Sn + m. Now consider the universal bundle over G(C" + m) and

the n + m holomorphic section £x,..., en + m
defined by

£i (x) et mod x e Cn + m/x

where et is the i-th standard basis vector. Take the (m + n)-fold tensor product of
^m and define a family of homomorphisms parametrized by Gn(C" +

m) by

(11.2) Kx :M->+ 6„-iH s0(1)(x) <s>... <S> e0(B,(x)

More precisely (11.2) defines a homomorphism of vectorbundles

(11.3) G„(C" + m) x M +

The group Sn+m acts on ^m(x)®(n+w) by permuting the factors and it is a

routine exercise to see that nx is equivariant with respect to this action, i.e. that

kx(tv) tkx(v) for all veM,xeSn+m. (Here the product xa g Sn+m is

interpreted as first the automorphism a of 1,..., n + m and then the

automorphism x.)

Thus Im nx tt(x) is a representation of Sn+m for all x giving us a family of
representations parametrized by Gn(C"+m). Fixing a point x0 e G„(Cn + m) and

choosing m independent sections of in a neighbourhood U of x0, this gives us

families of homomorphisms of representations
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M * (Cm)®in + m\ xeU c Gn(Cn + m)

83

such that Im n'x ~ n(x) for x e U.

11.5. Permutation Representations and Schubert-cells. (On connection

D.) Let a e G„(C"+ m) be a subspace of + spanned by the rows of a matrix

of the form in 3, n5)

**0000000**0000000**00000000**0000000**0
where all the *'s are nonzero. Then obviously the representation of S* is

isomorphic to p(ic) with k (4, 3, 1). Note that a is in the standard Schubert-cell

SC(x(k)), with k (3, 2, 0). This holds in general and it is not difficult to extend

this to

11.6. Proposition. Let k be an m-part partition of n, k O^-hl, Km

+ 1). Then for almost all x e SC(t(k)), the representation of tc(x) of Sn + m contains

the representation p(k) and for some x g SC(t(k)), tc(x) ~ p(ic).

Conjecturally the reverse holds also. That is if for almost all x in a standard
Schubert-cell SC(k) we have that tt(x) contains p(ic) then ^ t^k), i 1, n.

And I am even inclined to believe that if x g SC(X) and 7t(x) contains (or is equal

to) p(ic) then ^ Tj(k).

Note also that the matrices (11.5) are precisely the type of matrices (si —A; B)

for a system £ (A, B) in feedback canonical form (s ^ 0, oo) suggesting that
there is a natural representation of Sn + m attached to £ awaiting interpretation.

11.7. On a proofof the Snapper, Liebler-Vitale, Lam, Young Theorem via the

Universal Family (11.2). The structure of the family of representations (11.2)
rather quickly suggests a way of proving the Snapper etc. theorem by
deformation arguments as in 10.1. The argument is, however, more complicated
than one would like perhaps. It is perhaps best illustrated by means of an
example.

Consider an x g G3(C5) spanned by the rows of a matrix of the form

1-1 0 00
0 1-1 00
z 0 0-1 t
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Let fu /5 be the images of the standard basis vectors eu e5 in C5/x. Then

/i fi h ^ A zfi + tfs so that and f5 are a basis for C5/x for all
values of z and t. Let (1) e S5 be the identity permutation. The image of e(1)e M in
(C5/x)®5 is by the definition (11.2) equal to

(11-8) — Zf11115 T 1/11155

Where is short for fx % /x (g) fx ® fl 0 /5 and similarly for other 5-

tuples of indices. Symmetrizing the element (11.8) with respect to the

permutation (45) gives us

(1L9) z(/mi5 + /11151) + ^1/11155

Let 1/ be the subrepresentation of Im nx generated by the element (11.9). (The

representation Im nx is the subrepresentation of (C5/*)®5 generated by (11.8).)

Now (11.9) is invariant under the Young subgroup S3 x S2. Hence

dim V1 ^ 5!/3!2L On the other hand, if t ^ 0 then setting z 0 in (11.9) (which
corresponds to the surjective map mentioned just above 10.2 associated to a

family of representations) obviously maps Vl onto the vector space with as basis

all symbols / with three of the indices equal to 1 and 2 equal to 5. This is p(3, 2)

of dimension 5Î/3Î2! so that Vi ~ p(3, 2) if 1 ^ 0. Now for z ^ 0 set t 0 in
(11.8) to obtain a homomorphism of representations

Im nx - 7u(4, 1)

It is now not hard to prove that (cf. [6] for a detailed proof).

11.10. Proposition. The composed homomorphism of representations

p(3, 2) ~ V1 c= Im nx p(4, 1)

is surjective.
This then proves that p(4, 1) is a direct summand of p(3, 2). The argument

generalizes without difficulty for partitions k > X such that X is obtained from k
by a transformation of the type described in 6.7 above.

This is by no means the easiest way to prove this theorem. It is perfectly easy

to describe the morphism p(k) - p(^) directly and then the general analogue of
proposition 11.10 yields the Snapper, Liebler-Vitale, Lam, Young result. This

proof uses no representation theory at all (except the definition of the

permutation representations p(k); cf. [6] for details).
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11.11. Remarks. It is conceivable that the family (11.2) contains all the

families of representations one needs to prove the Snapper etc. result by means of

deformation arguments. Quite generally we would like to pose the question

which representations occur in this family and investigate universal

families (for continuous families) of homomorphisms of representations from

some fixed representation space into another.
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