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Hurwitz function

ON POLYLOGARITHMS, HURWITZ ZETA FUNCTIONS,
AND THE KUBERT IDENTITIES

by John MILNOR

§1.

Cot

INTRODUCTION

D. Kubert [12] has studied functions f(x), where x varies over Q/Z or R/Z,
which satisfy the identity

(*;)

flx) =m0 f((x+ k)/m)

for every positive integer m. (See also Lang [16-18], as well as Kubert and Lang
[13-15].) Here s is some fixed parameter. Note that (x + k)/m varies precisely over
all solutions y to the equation my = x in the group Q/Z or R/Z. However, the
equation is set up so that it also makes sense for x in the interval (0, 1) or (0, o).
Evidently it would suffice to assume the equation (*,) for prime values of m.
Classical examples of such functions are provided by the uniformly
convergent Fourier series I(x) = Y%, e*™/n® for x € R/Z andRe(s) > 1, the

Cl —s(x)

T+ (x+ 1)+

for 0 < x and Re(s) < 0, and by the Bernoulli polynomial By(x) of degree s for
s =0,1,2,3,..,. See §2.

For each complex constant s, it is shown in §3 that there are exactly two
linearly independent functions, defined and continuous on the open interval
(0, 1), which satisfy these Kubert identities (*,). The two generators may be
chosen so that one is even and one is odd under the involution f(x) — f(1—x).
They are then uniquely determined up to a multiplicative constant. Here is a
table of examples, for small integer values of s.

) —1 0 1 2
Cs(x) + C5(1—x) cscimx Box) = 1| log(2sin mx) |By(x) = x* — x + é
cos mx/sin® mx |{5(x) — {o(1—x)| cotmx | By(x) = x — % A(1x)

L’Enseignement mathém., t. XXIX, fasc. 3-4.
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Here the symbol A stands for the function
A(mx) = — [5"log |2sin 8 ]d6 = ) sin(2nnx)/2n?,
1 .

which is closely related to Lobachevsky’s computations of volume in hyperbolic
3-space. Compare Appendix 3.

Section 4 extends such functions from (0, 1) to the circle R/Z. For any integer
constant s, §5 computes the universal function

u:Q/Z - U,

satisfying the identities (x,). Here U is the abelian group with one generator u(x)
for each x in Q/Z and with defining relations (*,).

Section 6 attempts to study the extent to which the continuous Kubert
functions of §3 are actually universal, when restricted to Q/Z. For example, if
f:(0,1) > R is the essentially unique even [or odd] continuous function
satisfying (*,), where s is an integer, does every Q-linear relation between the
values of f at rational arguments follow from (*,) together with evenness [or
oddness]? The Bernoulli polynomials B(x) provide obvious counterexamples;
but it is conjectured that these are the only counterexamples. This question is
settled in the relatively easy cases where the values of fon Q/Z are known to be
algebraic numbers, or logarithms of algebraic numbers.

There are three appendices, one describing a functional equation relating
polylogarithms and Hurwitz functions, one describing I'(x) and related func-
tions, and one describing the use of dilogarithms to compute volume in
Lobachevsky space. , '

The author is indebted to conversations with S. Chowla, B. H. Gross,
Werner Meyer, and W. Sinnott.

§2. CLASSICAL EXAMPLES

This section describes several well known functions. Since the identities (*,)
are not immediately perspicuous, let me start with some examples where they are
clearly satisfied. For any complex constant ¢ the polynomial t" — c¢ factors as

" —c =[] (¢t-b),
b =

where b varies over all m-th roots of c. Hence, setting t = 1, we see that

log|l —c| = ) log|1l—b].
b =c
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If we define
f(x) = log |1 — e*™| = log|2sin nx|,
then it follows that

f= X fO.

my=xmod 1

Thus fsatisfies the Kubert identities (x,). Note that f(x) is defined and smooth on
the open interval (0, 1). Differentiating (*,), we see that the derivative

f'(x) = m cot nx
satisfies (#,). Similarly, the second derivative

f"(x) = —n? csc? nx
satisfies (* - 1) and so on. A ,
Next let us look at the Hurwitz zeta function ((x) = (s, x), which 1s
defined by the series

(1) C(x) = x4+ (x+1)7° 4+ (x+2)"° + ...

for x > 0. Here s can be any complex number with Re(s) > 1.

An easy computation shows that the function {, _ (x) satisfies the Kubert
identities (*,). (Here x is not an element of R/Z but rather a positive real number.
In fact, it is sometimes useful to let x take complex values also.) It will often be
convenient to work with the function

Bs(x) = _SCl—s(x) g

We will prove the following.

LEMMA 1. This product Byx) = —sC;_({x) extends to a function which is
defined and holomorphic in both variables for all complex s, andforall x inthe
simply connected region C — (— o0, 0].

Hence G, _ (x) is defined and holomorphic in the same region, except at s

= 0. Evidently, by analytic continuation, these functions B, and {, _, always
satisfy the Kubert identities (*,).

Proof. Clearly the function x*~! is defined and holomorphic for x in

C — (— 0, 0] and for all complex s. If Re(s) < 0, then it is easy to check that
the series

Bu(¥) = —s(x* ' + (x+1)7! + )

converges to a holomorphic function. Note that
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(2) OBs(x)/0x = sB;_ 1(x) -
Integrating from x to x + 1, and then substituting s + 1 for s, we obtain
(35) JiT BJ&)dE = x°

whenever Re(s) < — 1. It follows by analytic continuation that this is true when
Re(s) < 0 also. In particular,

(31) j% B(x)dx = 1.

Suppose inductively that B,(x) has been defined so as to be holomorphic in
both variables for Re(s) < n. Then for Re(s) < n + 1 we can set

B(x) = [T sBs-1(E)dE + c,

choosing the constant ¢, so that (3,) is satisfied. Evidently this defines a
holomorphic function which satisfies (2) and (3,), and hence coincides with the
previously defined function in the common range of definition. It follows by
induction that [ is defined for all s. O

The case where s is 2 non-negative integer is of particular interest. Using (2)
and (3,) or (3,) we see inductively that the functions

1

Bl(x) = X —57

5 1
By(x) = x* — x + —, ...
6
are polynomials with rational coefficients. By definition, ,(x) is the s-th Bernoulli
polynomial for s = 0, 1, 2, ... . It can be characterized as the unique polynomial
satisfying the identity

1 Byx)dx = 1° + 2° + .. + (n—1)
for every n. Note the symmetry condition

Bs(l —X) = (_ 1)s Bs(x) s

which can be proved inductively using (3).
For a more explicit computation, define the Bernoulli numbers

1 1
by =0b, = — —, ..
,b3 s Y4 309

, by, =
276

1
bozl,blz _“2’

by the formal power series
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tfe—1) = Z b, t*/k! .
Then

A

D J S\ -
BS(X)—_—eD—Ix —_—;bk<k)x ka

where D stands for the differentiation operator d/dx. For example it follows that

B«(0) = b;.

To prove this formula, simply apply the inverse operator (e” —I)/D to both sides,
noting by Taylor’s theorem that

e — 1
D

Bx) = [37" B(E)dE = x°.

If we substitute x = 1, then the Hurwitz zeta function {(x) reduces to the
Riemann zeta function {(s). Thus our discussion implies the following well
known result. The product

—s{(1—s) = By(1)

can be extended as a function which is holomorphic for all complex s, and takes
rational values for s = 0,1, 2, ....

Next let us study the polylogarithm function, which is defined for any complex
numbers s and z with | z| < 1 by the convergent power series

(4) Pz) =z + 2225 + 23/35 + ...
(Compare [3], [4], [6], [11], [19], [20], [22], [26].)

LEMMA 2. This extends to a function which is defined, and holomorphic in

both variables, for all complex s and all z in the simply connected region
C — [1, o0).

Proof. First note the identity
(5) ZLs-1(2) = 202L(2)/0z .

If Re(s) > 0 and | z| < 1, then according to Jonquiére:

1 o]
(6) P2) = %J et i et
o

This is proved by substituting Xz"¢ ™™ for z/(e' —z), and noting that

j’ao e—ntts—ldt — j'(o)o e—uus—ldu/ns — r(s)/ns.




286 : J. MILNOR

Now if Re(s) > 0, the right side of (6) clearly defines a function which is
holomorphic in both variables for all ze C — [1, o). The extension to other
values of s follows inductively using (5). []

The polylogarithm function satisfies a multiplicative analogue of the Kubert
identities. For any positive integer m:

(7) gs(z) = m" ! Zwm=z gs(w) >

to be summed over all m-th roots of z. This is proved by a straightforward power
series computation when | z | < 1, and by analytic continuation otherwise.
It will be convenient to introduce the abbreviation

I(x) = Z{e*™)

for x e R/Z, x # 0, and for all complex s. Evidently [(x) satisfies the Kubert
identities in their original form (x,), and also the identity

(8) ol(x)/0x = 2mil,_(x).
If Re(s) > 1, then we can write
I(x) = ) cos(2mnx)/n® + )i sin(2nnx)/n®,

where the two summands on the right are the even and odd parts of [(x). (If s is
real; these can be identified with the real and imaginary parts of [(x).)

For integer values of the parameter s, the functions #(z) and [(x) can be
described more explicitly as follows. Summing the series

Polz) =z + 22 + 2> + ..
and using (5 ), we see inductively that the functions

ZLoz) = z[(1-2),

¥ _1(2) = z/(1-2)?,

Z_2) = z(1+2)/(1—2z2) ..

are rational, with rational coefficients, holomorphic in z except for a pole at z
= 1. On the other hand, the series z + z%/2 + ... evidently sums to

Z1(z) = —log(l—2),
and the integral
Ly(z) = j?) L (wydw/w

is the classical dilogarithm function.
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For the function [y(x) = e2™*/(1—e?™*), a brief computation shows that
9) . lo(x) = (=1 + i cot(mx))/2 .

Differentiating this expression, we obtain corresponding formulas for [_(x),
|_,(X), ... Note in particular that 1(x) is either an odd or an even function
according as s — 1 is odd or even, for every negative integer s.

For further information about these functions, see Appendix 1.

§3. CoNTINUOUS KUBERT FUNCTIONS

Fixing some complex parameter s, let ', be the complex vector space
consisting of all continuous maps -

f:0,1) - C
which satisfy the Kubert identity
(*o) () = mT YRS f((xe+k)/m)

for every positive integer m, and every x in (0, 1). We will prove the following.

TuEOREM 1. This complex vector space A", has dimension 2, spanned by
one even element (f(x) = f(1—x)) and one odd element (f(x) = —f(1—x)).
Each function f(x) in A, is necessarily real analytic.

If f (x) satisfies (*,), then evidently the derivative of fsatisfies (*,_ ;). Note that
a non-zero constant function satisfies (x,) if and only if s = 0. Hence an
immediate consequence is the following. (Compare Lemma 5.)

COROLLARY. The correspondence f(x)+— df(x)/dx maps the vector space
A bijectively onto A" _,, except when s = 0. '

The proof of Theorem 1 will yield explicit bases for £ as follows, with
notations asin§2. For s # —1, —2, —3, .., thespace A, isspanned by the
two linearly independent functions I(x) and [{1—Xx). On the other hand,
for s # 0,1,2,.., this space is spanned by the linearly independent functions
Ci-ox) and C,_(1—x).

Thus, for every non-integer value of s, we obtain two alternative bases for the
same vector space. See Appendix 1 for a precise description of the linear relations
between Hurwitz zeta function and polylogarithm which are implied by this
statement.

The proof of Theorem 1 will be based on several preliminary statements. Let
f:(0,1) » C be a continuous function satisfying (*).
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LemMMA 3. If Re(s) > 0, then (§| f(x)|dx is finite.

13
Proof. Let C be an upper bound for | f(x) | on the closed interval [Z’ Z]

and let & = | 2'7%| < 2. Using the identity

) = 220 - f(x +
we see that

< X <

2

-

f0)] < (@+1)C  for %

hence

1 1
| f(x)]| < (*+a+1)C  for 6 S¥<g

and so on. Therefore [§/* | f(x) | dx is less than the finite sum

CG + (x+1)/8 + (a* +a+1)/16 + >

Applying the same argument to f(1 —x), this completes the proof. O

LEMMA 4. (Rohrlich) Let f:(0,1) > C be a non-constant continuous
function satisfying (*,), and suppose that

f61 f(x)|dx < o0 .

Then Re(s) > 0, and f(x) is equal to some linear combination of 1(x) and
I(1—x).

Proof. We will make use of the easily proved fact that a continuous function
on (0,1) with j ol f(x)|dx < oo is uniquely determined by its Fourier
coeflicients

a, = [§ f(x)e™ ™" dx .

Furthermore, according to the Riemann-Lebesgue Lemma, these coefficients
tend to zero as | n| — oo. *
If f satisfies (*,), then a straightforward computation shows that

a,, = a,/m° for m=273 ...
In particular,
Qi = Asy/m.

Furthermore, a, = 0 except in the special case s = 0.
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First suppose that Re(s) < 0. Then the numbers 1/m® are bounded away from
zero. Using the Riemann-Lebesgue Lemma, this implies that f has the Fourier
series of a constant function, and hence is constant, contrary to our hypothesis.

Next suppose that Re(s) > 1. Then the series £ 1/m’ converges absolutely.
Therefore the Fourier series of f

a,, 2;?:1 eZnimx/ms 4 a_, er=l e—Zrcimx/ms
converges uniformly on the circle R/Z to the continuous function
ay l(x) +a_;I(1—x).

It follows that fis equal to this expression.

Finally, suppose that 0 < Re(s) < 1.If Fis any indefinite integral of f; then F
is continuous on [0, 1] by Lemma 3. We can integrate by parts to relate the
Fourier coefficients of f and F; and it follows easily that F equals a linear
combination of [, ;(x) and [, , ;(1 — x) plus a constant. Differentiating, we obtain
the corresponding assertion for f. ]

Proof of Theorem 1 when Re(s)> 0. Let f:(0,1) - C be a non-zero
continuous function satisfying (*,). Then fis non-constant since s # 0. Hence fis
a linear combination of [(x) and [(1 — x) by Lemmas 3, 4. These two functions are
linearly independent since they have independent Fourier expansions. O

REMARK. If Re(s) > 1, then this proof shows also that f extends to a
continuous function on the circle R/Z. Whenever Re(s) > 0, it shows that

[§ f(x)dx =0

We can extend this proof to all values of s except —1, —2, ... by using the
following lemma. Let f : (0, 1) - C be a continuous function satisfying (*,), and
let |

F(x) = | f(x)dx
be any indefinite integral of f.

LEMMA 5. If s # —1, then there is one and only one constant c¢ so
that the function F(x) + ¢ satisfies (*,, ).

Proof. Integrating (x,), we have
F(x) = m* Y 7=d F((x+k)/m) + ¢,

for some constants c,,. Comparing the formulas for different values of m, we see
easily that '
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s+ 1 — ls+1

Clm:m cl+cm Cm+cl7

hence
m** =1, = 1 =1)c,, .

These numbers m**! — 1 cannot all be zero, since s # — 1. Therefore there

exists one and only one ¢ with
¢, = M1 —1)

for every m. Itis now easy to check that F + ¢ has the required property, and that

c is unique. [
Remark. This lemma definitely fails for s = — 1. In fact Gauss’ formula
m* 12 - x + k
109 = gy Lo F< m )

implies that the logarithmic derivative F(x) = I''(x)/I"(x) satisfies

x + k

Fx)y =m 'Yy F( )—i—logm.

Differentiating, we see that F'(x) satisfies the Kubert identities (*_,). (In fact
F'(x) = C,(x).) But there is no constant ¢ so that F + c satisfies (*,). See
Appendix 2 for details.

‘Proof of Theorem 1 for s # —1, —2,... Given any continuous f : (0, 1)
— C satisfying (*,) we can integrate n times, using Lemma 5, to obtain a
continuous function F satisfying (*,,,) with Re(s+mn) > 1. Then

F(x) = als.(x) + bl ,(1—x)

' by Lemmas 3, 4, as above. Differentiating n times, and using (8), we see that f(x)
~ equals a linear combination of /(x) and [(1 —x). These last two functions are
~ linearly independent ; for otherwise applying Lemma 5 n times we would obtain

a contradiction. O
The proof for negative integer values of s will require a precise description of

the behavior of f(x) as x — 0.

LemMA 6. If f:(0,1) - C is continuous and satisfies (x;) with Re(s)

< 1, then there exists a constant A so that f(x) — Ax*~ 1 tends to a finite

- limit as x — O.

¢l
i
i

%
F

Proof. We will first show that the function g(x) = f(x)/x*~! tends to a limit
Aas x — 0. Let ¢,, = f(1/m) + f(2/m) + ... + f((m—1)/m). Then
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S fem) + (e 1ym) + S (e m—1)/m)

f(x) = m*"
m*~ Y f(x/m) + ¢, + o(1))

as x — 0. Hence
g(x) = g(x/m) + O(x' ™9,

and it follows easily that the sequence of functions g(x), g(ﬁc/m), g(x/m?), ...
converges uniformly to a limit A4,,(x). Evidently this limit function is defined and
continuous for all x > 0, and satisfies

A, (x) = A, (x/m).
Further, for any m, n > 1 we have
g(x) = An(x) + o(l) = A,x) + o(l)
as x — 0. Therefore
A, (x) = A,(x) + o(1) = A,(x/n) + o(1) = A4,(x/n) + o(1).
Substituting x/m* for x and letting k — o0, we see that
A, (x) = A, (x/n).

But clearly any continuous function on the positive reals which satisfies all of
these periodicity conditions must be constant. Therefore A = A,(x) i1s
independent of m and x.

Now takem = 2,and definef(0) by the equationf(0) = 2°~'(f(0) + f(1/2)).
(Compare §4.) Subtracting this from f(x) = 2°7Y(f(x/2) + f((x+1)/2)) and
dividing by x*~! we obtain

f(x) = f0)  f(x/2) — f(0)
x$ 1 - (x/z)s—l

+ o(x!7)

as x — 0. Taking the corresponding statements for x/2, x/4, ..., it follows that

f“(xl; TO _ g 4 oxts,

or in other words

f(x) = Ax*"' + f(0) + o(1)
as x — 0. 0

To illustrate this lemma, note that the Hurwitz zeta function -
Ciogx) = x*71 + (x+1)1 + .

is equal to the sum of x*~! and a function ¢, _ (x+ 1) which is continuous as
x — 0.
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Proof of Theorem 1 for Re(s) < 0. Since f(x) — Ax*~! tends to a finite limit
as x — 0, it follows that f(x) — A{;_(x) also tends to a finite limit as x — 0.
Applying a similar argument to the function f(1 — x), we find a constant B so that
f(x) — BC; _{(1—x) tends to a limit as x — 1. Hence the difference

f(x) — 4G, _(x) — BC, _(1—x)

extends to a continuous function on the closed unit interval. According to
Lemma 4, this function must be constant. Since s # 0, it follows that it is
identically zero. Thus

fx) = AC, _(x) + BC, (1 -x);

where the two functions on the right are linearly independent since one is
continuous and one is discontinuous as x — 0. B

In fact the functions {, _(x) and {, _ (1 —x) are linearly. independent for all
s # 0,1, 2, ..., as one can check by repeated differentiation.

§4. EXTENDING FROM (0, 1) TO R/Z

We will prove the following. Let s be a complex constant.

LEMMA 7. If a function f :(0,1) - C satisfies the Kubert identities (%)
with s # 1, then it extends uniquely to a function R/Z — C satisfying (*,).

Here no mention is made of continuity. If Re(s) > 1 and if f happens to be
continuous, then we have seen that the extension is also continuous. However, if
Re(s) < 1 then the extension cannot be continuous, except in the trivial case of a

constant function with s = 0.

Proof. We must choose f(0) so as to satisfy all of the equations

f(0) = m*~}f(0) + f(1/m) + ... + f((m—1)/n).
Setting
¢ = f(I/m) + .. + f((m—1)/m),
we can write this as
4 (m! =1 f(0) = c,,.
But (*,) implies that
¢, = M Hcpn—Cnm)
hence
Coy = M 75C, + ¢y = 0 S,y + ¢,
and
(m*—5—1), = (n' *—1)c,, .
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Sinces # 1, these factorsm! ™ — 1 cannot all be zero. It now follows easily that

f(0) exists and is unique. O]

For the functions f(x) studied in §2, it is interesting to note that f(0) is always
an appropriate value of the Riemann zeta function. Thus for the version
f(x) = I(x) of the polylogarithm function, the appropriate choice is

f0) = &)

In fact, if Re(s) > 1, then I(x) is continuous on R/Z with [(0) = {(s), so the
required identity

(m* =) = L(1/m) + ... + I((m—1)/m)

holds by continuity as x — 0. It follows by analytic continuation that this
formula is true for all s # 1. (Since the right side is holomorphic for all s, this
identity provides an alternative proof that {(s) extends to an holomorphic
function for s # 1.)

Similarly, if f(x) = {, _{(x) for 0 < x < 1, then by continuity as x — 1 the
appropriate choice is

f0) = L1-s).

Note that Lemma 7 is definitely false in the exceptional case s = 1. In the
case of the even function

f(x) = log|2sin x| = log |1 — e2™*|,
which satisfies () in the open unit interval, the identity
(10) fA/m) + f2/m) + .. + f((m—1)/m) = log m # 0

shows that it is not possible to define f(0) so as to satisfy (*,) at zero. This identity
is proved by substituting ¢ = 1 in the equation
m—1

L+t4+ .+t = ] (-89
1

where & = ¢?™™ and then taking the logarithm of the absolute value of both
sides.

On the other hand, for the Bernoulli polynomial
f(x) =x—1/2 for 0<x<1,

the value f(0) can be defined arbitrarily and (*,) will always be satisfied.
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§5. UNIVERSAL KUBERT FUNCTIONS

The results in this section are either due to Kubert, or are minor variations on
results of Kubert.
Let A < Q/Z be a subgroup, and let s be a fixed integer. A function
fA->V

to a rational vector space will be called a Kubert function if it satisfies

() fma) = s z fla+k/m)

for every integer m such that 1/m belongs to A. It will be convenient to say that fis
universal if every Q-linear relation between the values f(a) follows from these
Kubert relations.

Let U(A) be the additive group with one generator u(a) for each element of A,
and with defining relations (*;). Then evidently f is universal if and only if the
induced mapping

u(a) — f(a)
from UJ(A) ® Q to V is injective.

We are primarily interested in the case where A4 is the entire group Q/Z.
However, it is very useful to consider finite subgroups of Q/Z, and requires no
extra work to consider arbitrary subgroups. |

Note that every automorphism of A4 gives rise to an automorphism of U (A).
We will use the notation Hom(A4, 4A) for the automorphism group of A,
identifying it with the group of invertible elements in the ring Hom(A4, A4)
consisting of all homomorphisms from A4 to itself. '

THEOREM 2. The complex vector space UJ(A) ® C splits, under the action
of the automorphism group of A, into a direct sum of 1-dimensional eigenspaces,
with just one eigenspace corresponding to each continuous character

g : Hom(A4, 4A) - C'.

Furthermore, any inclusion A < A" < Q/Z gives rise to an embedding
U(A4)® Cc U(A)® C.

Proofs will be given at the end of this section.

If A = A, is the cyclic group of order m, note that Hom(4, A) can be
identified with the ring Z/mZ, and Hom(A4, A) is an abelian group of order @(m).
In general, Hom(A, A)' is to be topologized as the inverse limit of these groups
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Hom(A,, A,) = (Z/mZ)

as A, varies over all finite subgroups of A. Similarly, the character group of
Hom(4, A) is the direct limit of the corresponding Dirichlet character groups
" Hom((Z/mZ), C).

One interesting consequence of Theorem 2 is the following statement, which
is reminiscent of Galois theory.

COROLLARY. If A c A < Q/Z, then UJ(A) ® Q can be identified with
the subspace of U(A') @ Q which s fixed by all automorphisms of A’ over A.

A proof is easily supplied. ]
Here is another consequence.

LEmMMA 8. If A = A, iscyclicoforder m, then the rational vector space
U(A,) ® Q has dimension @(m). For m > 2 this splits as the direct sum-of
even and odd parts with respect to the involution

u(a) — u(—aj,

where each of these summands has dimension ©(m)/2.

Proof. This follows immediately from the corresponding statement for
U (A) ® C. The two summands have equal dimension since there are as many
even characters (x(—1) = 1) as odd characters (y(—1) = —1) modulo m. [

If s # 1, then Lemma 8 could also be derived from the following more
explicit statement.

LEMMA 9. If s# 1, and if A = A, is cyclic of order m, then
U(A) ® Q has a basis consisting of the o(m) elements u(k/m) with k
relatively prime modulo m. :

However, this statement definitely fails for s = 1.
Another complication whens = 11isthat Lemma 7 fails, so that we must also
consider “punctured” Kubert functions, which are not defined at zero.

Definition. Let Uy(A —0) be the universal group with one generator u(a) for
each a # 0 in A, and with defining relations

m—1

uma) = m*~ ' Y u(a+k/m)
0

for all m and a with ma # 0 and 1/m € A.

If s # 1, then the proof of Lemma 7 can be used to show that the kernel and
cokernel of the natural maps
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UyfAn—0) » U(A4,)

are finite groups of order prime to m. Taking the direct limit over m, it follows
that

U(Q/Z-0) = U(Q/Z).

However, for s = 1 the situation is different.

LEMMA 10. The kernel of the natural homomorphism
Uy(A—0) - U,(4)
is a free abelian group freely generated by the elements

u(1/p) + u(2/p) + ... + u((p—1)/p),

as p rangesover all primes with 1/p € A. The cokernel of this homomorphism is
free cyclic, generated by u(0).

A proofis easily supplied, using formula (10) of §4 to prove that there are no
relations between these generators. O
The precise structure of U(A) can be given as follows.

LemMma 11. If s< 1, orif A is finite, then the group UJA) is free
abelian. In any case, UJ(A) istorsion free, and any inclusion A < A givesrise
to-an embedding of U(A) into UyA).

If s > 2,1t is interesting to note that U(Q/Z) is actually a vector space over

the rational numbers. For this lemma asserts that it is torsion free, and the
relations (*s) clearly imply that it is divisible.

The proof of Theorem 2 will be based on the following. Let s be any complex
number and let x : Hom(4, A) — C be a continuous character.

LEMMA 12. There is one and, up to a constant multiple, only one function
f=f:A-C
satisfying (%) and satisfying f(ua) = y(u)f(a) for every u in Hom(A, A)
and every a in A.
Proof. To fix our ideas, let us consider only the case 4 = Q/Z, so that

Hom(A4, A) = lim Z/mZ is the profinite completion Z of the integers. The

general case is completely analogous.
Since 7 is continuous, there exists an integer m # 0 so that y is identically
equal to 1 on the congruence class 1 + mZ intersected with Z'". The collection of
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all m with this property forms an ideal % called the conductor of y. Evidently y is
equal to the composition

7 - 2Z/F)y->C
for some Dirichlet character modulo %, and # is the unique largest ideal with
this property. We will use the same symbol y for this characteron(Z/%).If k is
any integer relatively prime to %, it follows that y(k) is a well defined root of
unity.
Any fraction in Q/Z with denominator n can be written as u/n for some unit u
in Z'. In view of the identity

Jlu/n) = yw)f(1/n),

we need only compute the values f(1/n) in order to determine f completely.

Note that the unit u in this equation is well defined modulo nZ. If n‘belongs to
the ideal &, then it follows that the root of unity y(u) is uniquely determined.
However, if n ¢ %, then we can choose u = 1 mod nwith x(u) # 1. This proves
that f(1/n) = O whenever n is not in the ideal %.

The proof will show that fis some constant multiple of the expression

f(l/n) = n— g[ (p — P xe)/(p—1) for n>0nesF.

Here x(p) is a well defined root of unity if the prime p is a unit modulo %, and is to
be set equal to zero otherwise.

First consider the Kubert identity

0 ro(y) =5 ()

forne #.

Case 1. If p|n, theneach 1 + knis a unit modulo pn, with x(1 + kn) =
Hence this equation reduces simply to

)2

Case 2. Ifnisnota multiple of p, then there is exactly one k, between 1 and
p — 1 so that 1 + kyn is some multiple, say Ip, of p. Then

f(l i k"”) _ f(~l) _ x(t)fG),
np n n

where x(I) = y(p)sincelp = 1 mod . Thus the Kubert identity takes the form

(' x(p))f(l) (- l)f(*—>

L’Enseignement mathém., t. XXIX, fasc. 3-4. 20
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Evidently this completes the proof that fis uniquely defined up to multiplication
by a constant.

To prove that the function f defined in this way satisfies all of the Kubert
identities, we must also consider the case where n does not belong to the ideal #,
so that f(1/n) = 0. If pn does belong to &, then the units 1 + kn modulo pn, in
the argument above, range precisely over the kernel of the homomorphism

(Z/pnZ) — (Z/nZ) .

Since y is non-trivial on this kernel, by the definition of &, it follows that

Y x(1+kn) = 0,
taking the sum over all k between 0 and p — 1 with 1 + kn prime to p. Thus both
sides of the required equation (J) are zero. Since every other Kubert identity

follows from one of these by applying an automorphism to Q/Z, this completes
the proof. ]

Proof of Theorem2. 1f A = A,,1s a finite group of order m, then U(A4) & C
is finite dimensional, so it certainly splits under the action of the commutative
group Hom(4, A) into a direct sum of 1-dimensional spaces. According to
Lemypma 12, there is exactly one of these spaces for each character y mod m, so the
conclusion follows.

The general case now follows by passing to a direct limit over finite
subgroups of A. (For any integer n, note that there are only finitely many
characters y whose conductor contains n, hence only finitely many y with
f(1/n) # 0.) This completes the proof. O

Proof of Lemma 9. 1t will be convenient to consider the various vector
spaces Uy(A4,,) ® Q as subspaces of U (Q/Z) ® Q. This is permissible by the
Corollary above (or by Lemma 11)).

Let W,, be the rational vector space spanned by all elements

u(a) € U(Q/Z) ® Q

such that a has denominator precisely m, and hence generates the cyclic group
A,,. We will show that W,  W,,. Assuming this for the moment, it follows
inductively that ‘

W, = Uf4,) ® Q.

Hence the @(m) generators of W,, must be linearly independent, as was to be
proved.
Suppose then that a generates 4,,. If p | m, then the Kubert identity

p—1

wa) = p*~ ) ulla+kyp),

0
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where each (a+k)/p has denominator precisely pm, proves that
u(a) = 0 mod W,,. On the other hand, if p is prime to m, then the relation

pm*
p—1

u(pa) — p* " tu@) = p*~ ' Y, ula+k/p)

1
proves that
u(pa) = p*~ ' u(a) mod W,,, .

Choosing r > 1 so that p” = 1 mod m, it follows that
u(a) = u(pta) = p™*~ " u(a) mod W,

Since s # 1, this proves that u(a) = 0 mod W,,, as required. ]

Proof of Lemma 11. For any a € Q/Z let a, be the p-primary component of
a. Thusa = ) a,, where the denominator of a, is a power of p. Represent each a,
as a rational in the interval 0 < a, < L.

Definition. We will say that a is reduced if 0 < a, < 1 — p~ ! for every
prime p.

Then fors < 1 we will prove explicitly that U (A)is a free abelian group, with
one free generator u(a) for each reduced element a of A. Evidently it suffices to
check that U (A) is generated by these elements. For a simple counting argument
shows that the number of reduced elements in any finite subgroup A4,
= m~'Z/Z is equal to the rank

om) =m[](1—p™")

p|m

of Uy A,
Suppose that aisnot reduced,say 1 — p~
the identity

' < a, < 1forsome prime p. Then

p'*ulpa) = u(a) + u@—1/p) + .. + ula — (p—1)/p)

shows that u(a) is a linear combination of u(pa), where pa has strictly smaller
denominator than a, and elements a — k/p which are reduced at the prime p and

have g-primary component unchanged for g # p. A straightforward induction
now completes the proof in the case s < 1.

If s > 2, this argument shows only that the reduced generators form a basis
for the rational vector space U (4) ® Q. To prove that U(A4,,) is free abelian, we
will show that the tensor product U(A4,) ® Z,1s generated by ¢(m) elements for
any prime q. This will show that there cannot be any torsion.

As free generators, we will choose all elements u(a) where a = > a, is
“reduced” at all primes p other than q. However, we require that the g-primary
component a, should have denominator equal to the highest power of q dividing m.




300 J. MILNOR

The proof that these elements generate over Z, proceeds as above for p # g,
and proceeds as in the proof of Lemma 9 when p = q. Details are easily supplied.

]

§6. ON Q-LINEAR RELATIONS

S. Chowla and P. Chowla have suggested the following conjecture in a
private communication to the author. Let a,, a,, ... be a sequence of integers
which is periodic, a, = a,. ,, for some prime p. Then
(11) : Y P a,/n* #0
except in the special case

al - .. = ap_l = ap/(l'—pz) .
If we use the Hurwitz function

Calk/p) = p*(k™ 2 + (k+p)~% + ..),.

then the inequality (11) can be written as

2% a Cok/p) # 0

and the exceptional case corresponds to the Kubert relation

C(1) = p™2 2% Calk/p) -

Thus the Chowlas’ conjecture is true if and only if the real numbers

Ca(1/p), -, Cal(p—1)/p)

are linearly independent over the rational numbers. More generally, foranym > 2
one might conjecture that the ¢(m) real numbers {,(k/m), where k varies over all
relatively prime integers between 1 and m — 1, are Q-linearly independent.
Using Lemma 9, a completely equivalent statement would be the following.

Conjecture: Every Q-linear relation between the real numbers {,(x), where
x is rational with 0 < x < 1 is a consequence of the Kubert relations (*_,).

In fact, since {,(x+1) = {,(x) mod Q for positive rational x, it might be
more natural to sharpen this conjecture by taking the values of {, modulo Q. In
other words, it is conjectured that the mapping

Q/Z - R/Q

induced by (, isa “universal” function satisfying (*_,). It follows easily from
Theorem 3 below that the corresponding conjecture for the even part,

C2(x) + Co(1—x) = n?/sin® mx,
of {, is indeed true; but the odd part of {, seems difficult to work with.
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One can make analogous and equally plausible conjectures for the Hurwitz
functions (s, Cg, - . In Appendix 2 we will describe analogous conjectures for
certain functions closely related to the gamma function.

Bass [2], studying multiplicative relations between cyclotomic units, has
proved the following result. Let

folx) = log |1 — ™| = log(2 sin nx)
for 0 < x < 1. Note that fo(1—x) = fo(x).

THEOREM OF BaAss. Every Q-linear relation between the numbers fo(x) for
rational x € (0, 1) is a consequence of the Kubert relations (%), together with
CVenness.

A proof will be indicated at the end of this section. _

Note that this is the exceptional case in which Lemma 7 does not apply, so
that f,(0) cannot be defined.

Bass’ theorem is equivalent, using the results of §5, to the following classical
statement. Fixing some integer m > 3, let & = ™™ and let V,, be the
multiplicative group generated by the elements

| — g1 — 82 1 —¢gm!

in the cyclotomic field Q[&]. Elements of the intersection V,, n Z[£] are called
circular units (or cyclotomic units).

COROLLARY. Thisgroup V, n Z[E] of circular units has finite index in the
group Z[E] consisting of all units of the cyclotomic field.

Compare Hilbert [8], as well as Sinnott [25].

Proof. Let m = g, ... g, be the factorization of m into powers of distinct
primes. By Lemmas 8 and 10, Bass’ theorem is equivalent to the statement
that the additive group generated by the elements

folk/m) = log |1 — &F|

has rank @(m)/2 + n — 1. Since each generator of V,, is equal to a real number
multiplied by a root of unity, this is equivalent to the statement that V. has rank
o(m)/2 + n — 1. However it 1s not difficult to check that V,, splits as the direct
sum of the group of circular units and a free abelian group genefated by the
elements 1 — e>™/4j, Hence Bass’ theorem is also equivalent to the statement that
the group of circular units has rank @(m)/2 — 1. According to the Dirichlet unit
theorem, this implies that it has finite index in the group of all units of Z[£].

[




302 J. MILNOR

The author [21] has conjectured that the function Q/Z — R defined by
x b Alnx) = —f log |2 sin 0| dO

1s a universal odd function satisfying (*,). This seems very difficult. However, W.
Sinnott has pointed out to the author this the situation for the derivatives of
log 2 sin 0 is much easier to analyze.

Let f(x) be the t-th derivative of log | 2 sin 0 |, evaluated at 6 = nx. For
example fi(x) = cot(nx), f5(x) = —csc*(nx). Note that fi(1—x) = (— 1) fi(x).
The values at x = 0 are to be defined as in §4.

THEOREM 3. For each fixed t = 1,2, .., the function

/1 Q/Z - R
is a universal even or odd function satisfying (*,_,).

That 1s every Q-linear relation between the values f,(x) for x in Q/Z follows
from (*, _,), together with evenness or oddnes according as t is even or odd.

Fixing some integerm > 3,let§ = e2™/™ Iftiseven, the proof will show that
the values

span the real part of the cyclotomic field Q[£]. Similarly, if ¢ is odd, the values
if (k/m) span the totally imaginary subspace of Q[£]. In either case, these values
span a rational vector space of dimension @(m)/2, as required by Lemma 8.
Compare Ewing [ 7] for an analogous discussion of the values of csc(nx) and
its derivatives at rational x.
The proof will depend upon well known properties of Dirichlet L-functions.
Fixing some positive integer m, let

Y (Z/mZ)y - C
be an arbitrary Dirichlet character modulo m. We allow the degenerate case m
= 1 with the understanding that the only character modulo 1 is the constant

function (k) = 1. Recall that such a character is primitive (or has conductor
generated by m) if it cannot be factored through the projection

(Z/mZ) — (Z/dZ)

for any divisor d < m. As usual, we set (k) = 0 if k is a non-unit modulo m.
The associated L-function is defined by

L(s, x) = Zx )/k*

—
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for Re(s) > 1. In terms of the Hurwitz function
C(k/m)m® = k™% + (k+m)™° + ...

we can clearly write this as a finite sum

(12) Lis, %) = ix(k) Cefmyjm® .

It follows that L(s,) extends to a function which is holomorphic in s for all
complex s, whenever 7y # Y, Foritiseasy to check that the difference ((x)
— (s—1)" 'isholomorphicin s;and the (s— 1)~ ! terms cancel whenever x # Xo-
On the other hand, for the trivial character y,, evidently L(s, ) is equal to
the Riemann zeta function, with a pole at s = 1.
Now let us restrict to integer values of s.

LEMMA 13. For primitive <y # %o, and for integer values of s, the
function L(s,y) is zero if and only if s <0 and y(—1) = (—1).

For s > 1, the statement that L(s, x) # 1 1s fairly easy to ijrove, while for s
= 1 it is a basic result of Dirichlet. See for example [5] or [23]. For s < 0, this
lemma is proved using the functional equation relating L{(s, x) and L(1—s, ).
(Compare [10].) Details of this last argument may be found in Appendix 1.

[

In the case of the trivial character y,, this lemma remains true except for
anomalous behavior ats = 0(where {(s)is non-zero)and s = 1(where {(s) hasa
pole). |

These Dirichlet L-functions can also be expressed as finite linear
combinations of polylogarithms, via Fourier analysis, as follows. Let § = e*™/™.

LemMMma 14. If vy # yo is primitive modulo m, then

Lis, %) = Z Y (k/m)/

where

= 1(y) = ﬁx(k)&k

is a complex constant with absolute value ﬁ

In the case of the trivial character Y, this lemma remains true provided that
I(1) is interpreted as in §4.

Proof of Lemma 14.  Since both sides are holomorphic in s for all complex s,
it will suffice to consider the case Re(s) > 1. First note that the “Fourier
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transform” of the complex valued function  on the finite ring Z/mZ is equal to
1y ; that is

(13) 2, e = k).

jmod m

If k is a unit modulo m, this follows from the equation x(j) = y(k)x(ik), while if k is
a non-unit modulo m then, using the hypothesis that y is primitive, it is not
difficult to check that both sides of this equation are zero. Now dividing both
sides by k* and summing over all positive integers k, we obtain

2. XNLLE) =Lis, %) -

jmodm

Since Z(£’) = I(j/m), this implies the required equation.
To compute | T | combine (13) with the complex conjugate equation to obtain

my(n) = . %()) 2’; g = ;i"‘" 2 KEY
= 2};&_"" (k) = TTy(n);
hence m = 17 as asserted. O

Remark. Similar arguments prove that the Fourier transform of the
Hurwitz function {(j/m) on the finite ring Z/mZ. is a multiple of [(k/m). More
generally, one can show that any function on Z/mZ. satisfies (*,) if and only if its
Fourier transform satisfies (¥, _).

Proof of Theorem 3. We will work with the polylogarithm function
Z(E) = I(k/m)

where & = e*™/™ Ifs = 1 — tisanon-positive integer, recall from §2 that Z (z)
1s a rational function with rational coefficients. Hence [(k/m) takes values in the
cyclotomic field Q[&]. _

The Galois group G of Q[&] over Q can be identified with (Z/mZ) . Evidently
the mapping

Ud4,) - Q[&]

induced by [, is G-equivariant, in the sense that the automorphism
u(k/m) — u(gk/m) of Uy(A4,,) corresponds to the automorphism f(&) — f(£%) of
Q[&] for every g in G = (Z/mZ). Tensoring both sides with the complex
numbers, each splits into a direct sum of 1-dimensional eigenspaces under the
action of G. Hence, to compute the rank of this map, we need only decide how

many eigenspaces are mapped non-trivially.
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For each character y mod m,lety : (Z/dZ) — C be the associated primitive
character, where d | m generates the conductor of x. Evidently the sum

Y. I(kid) ® x'(k)

kmod d

belongs to the x-eigenspace under the action of G on Q[E] ® C. By Lemmas 13
and 14, its image Y x/(k)l{(k/d) in C is zero if and only if y(—1) = (—1)*; except
for the single anomalous case when s = 0 and x, = 0. Thus the rank of this
mapping

UyAn) — Q[E]

is at least @(m)/2 for s < 0, and at least 1 + @(m)/2 when s = 0.

It follows that the image 1(A,,) spans the real part of the cyclotomic field
Q[&] when s =1 —1t <0 isodd, and the totally imaginary part of Q[E]
when s is even. Here I is related to the real valued functions f, of Theorem 3
by the identity

li-x) + £i(x)/20) =0

for t > 2; which follows from (8) and (9). Similarly, for t = l,x'the image of the
function

ify(k/m) = 2lo(k/m) + 1

spans the totally imaginary subspace of Q[&].
Since the dimension ¢(m)/2 of this image is the maximum allowed by Lemma
8, this completes the proof of Theorem 3. ]

Proof of Bass’ Theorem. Recall that V,, is the multiplicative group in Q[&]
spanned by the 1 — E*. Evidently the Galois group G of Q[£] operates on V,,.
Since each generator is the product of a real number and a root of unity, G
operates also on the additive group log | V,, |, generated by the images

folkfm) = log |1 — &¥|.

Note that fy(x) is precisely the even part —(Iy(x) + I;(—x))/2 of the function
—1(x) = log(l —e*™x),
As in the proof of Theorem 3, we can consider the map

Uy(4,—0) = log | V, |

induced by f,, and split both sides into eigenspaces under the action of G
= (Z/mZ). For each even character x # 7y, with conductor generated by d | m,
the corresponding L-function

Y Kk folkjd) = = ¥ AR (k/d) = —TL(1, %)

k mod d k mod d
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is non-zero according to Dirichlet. Thus we obtain a contribution of
—1 + @(m)/2 to the rank coming from the non-trivial even characters.

On the other hand, for the eigenspace corresponding to the trivial character,
using formula (10) of §4 we obtain a contribution equal to the number of primes
dividing m. Lemmas 8 and 10 of §5 now complete the proof. OJ

APPENDIX 1

RELATIONS BETWEEN POLYLOGARITHM AND HURWITZ FUNCTION

For every complex number s, it follows from Theorem 1 that there exists a
linear relation between the even [or the odd] part of the function I(x) and of the
function {; _ (x) or B(x) = —sC,_(x). This appendix will work out the precise
form of these relations. Compare [3], [19], [27].

For integer values of s, the required relation can be obtained as follows.
Recall from formula (9) of §2 that

lo(x) = (—1+1i cot mx)/2
hence
lo(x) + lo(1—x) + Bo(x) = 0.

Integrating, we see that
Li(x) — L,(1—x) + 2mi By(x)/1! = 0O
(x) + L,(1—x) + (2mi)*B,(x)/2! = 0

and so on, for0 < x < 1. Foreven values of the subscript, specializingtox = 0
as in §4, this yields Euler’s formula

2(2k) + (2mi)*b,,/(2k)! = 0.

1
In particular, it follows that {(0) = — > and that the numbers b,, — by, b,

— by, ... are strictly positive. On the other hand, differentiating the formula for
lo(x), we obtain

I_(x) = —csc*(nx)/4 .

This is an even function satisfying (*_,), so it must be some multiple of {,(x)
+ {,(1 —x). Comparing asymptotic behavior as x — 0, we obtain the classical
formula

(o(x) + §o(1—x) = ©?/sin? nx = (2mi)?l_(x)/1! .
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Differentiating, we see that
—G3(x) + G0 —x) = 2mi)*1_ ,(x)/2!
Calx) + Ca(1—x) = (2mi)*1_ ;5(x)/3!

and so on.
Fors # 0,1, 2, .. we know from §3 that there is some relation of the form

(14) I(x) = AG:-x) + BL;-(1—x)

for 0 < x < 1; where A, and B, are certain uniquely determined constants.
Expressing each of these functions of x as the sum of an even part and an odd
part, we see that

05 £900) = (A, BILS0)
l;)dd(x) = (As_Bs)C(id:is(x) :

Evidently the functions s+ A, + B, are meromorphic, taking finite non-zero
values for all se C — Z. Differentiating with respect to x, we see that

(16) A; £ B, = s(As4, + B,y y)/2mi) .

Forintegral values of s, using the discussion above, we easily obtain the following
table of values, where 0! = 1.

-2 —1 0 1 2 3
B 0 21 0 (2mi)? |
T (2mi)? 21
220 2.0 o7 ) 2ni)?
{ — Bs == _—3 O | — A o0
(2mi)° | 2mi 2-0 2-2!
‘ |

Now suppose that we specialize to x = 0, by the procedure of §4. Then
equation (14) reduces to a form

Cs) = (As+ BJ)L(1—s)
of Riemann’s functional equation. It follows that
(As+By)(A;_s+By_)) = 1,
and hence using (16) that
(A;—By)(A,_—B;_y) = —1.
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This discussion gives all of the information about A, + B, which we will need.
However, it is possible to compute precise values as follows. Let {, _ (e*™x) be the
result of analytic continuation in a loop circling the origin. Then evidently

Cy-de*™x) — Gy _(x) = (2™ —1)x*" 1.

Using the integral formula (6), computation shows that
I(e*™x) — I(x) = —(2mi)*x*"}/I(s).

Comparing these two eXpressions, and noting that {; _ (1 —x) is holomorphic
throughout a neighborhood of x = 0, we can solve for 4. The result after some
manipulation is
i(21) —nis/2
Al i(2m) e. |
21°(s) sin(ms)

Now comparing the behavior of [, and {; _, under complex conjugation we see
easily that

o i(zn)senis/Z

2I'(s) sin(ms)

B, = A. =
In particular, it follows that

(2my i(2m)*

Ay + 8o = 2I°(s) cos(ms/2)’ A= B, = 2I°(s) sin(ms/2)

As an application of formula (15), let us prove the corresponding functional
equation for a Dirichlet L-function. Recall from Lemma 14 that for any primitive
Dirichlet character x modulo m the function

m

L(s, ) = ., w(k)Cok/m)/m

1
satisfies

L(s, x) Zx(k )(k/m)/ .

Here we may just as well use either the even or the odd parts of {; and [ according
as y(—1)is +1 or —1. Therefore, it follows from (15) that

L(s, x) = (A;+ B ; X(K)C s - s(k/m)/T
= m(A,+ By)L(1—s, )/t .
Thus we have proved the functional equation

(17) L(s, x) = m' ™4, + x(— DBJL(1—s, x)/t(x) -
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Here the factor m! %/t is never zero or infinite, while A, + B, 1S zero or
infinite only at certain integer values, as indicated in the table above.
The proof of Lemma 13 can now easily be completed as follows. If s < Oisan
integer, then L(1—s, %) # 0, so it follows that L(s, 5—() equals zero if and only if
A, + B, is zero, as indicated in the table. [

APPENDIX 2

SOME RELATIVES OF THE GAMMA FUNCTION

This appendix will describe certain functions y,(x), v(x), ... which satisfy a
modified form of the Kubert identities, with a polynomial correction term. (See
(22) below.) They are defined as partial derivatives of the Hurwitz function by the
formula

(18) Yi-dx) = 0C(x)/0t.

We will show that vy, is related to the classical gamma function via Lerch’s
identity

(19) ¥:(%) = log((x)/y/2m).

(Compare [27, p. 60].) As a bonus, we will give a self-contained exposition of the
basic properties of the gamma function, based on formulas (18) and (19).

Let us begin with equation (18), which defines y,(x) as an analytic function of
both variables for all s # 0 and all x > 0. Recall that the Hurwitz function
G(x) = x7' + (x+1)"! + ... (analytically extended in ¢ for t # 1) satisfies

Clx+1) = Clx) — x7".

Differentiating with respect to ¢, and then substituting t = 1 — s, we obtdin

(20) Yx+1) = vd(x) + x* ! log x.

In particular,

Yix+1) = v(x) + log x.
Note that

Clx) = —tC, 4 1(x)

hence
(%) = tt+1)C 4+ (%),
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where the prime stands for the derivative with respect to x. By analytic
continuation, this last equation holds also at ¢t = 0. Differentiating with respect
totatt = 0, we obtain

(21) Vi(x) = Colx).

In particular, it follows that vyi(x) > 0 for all x > 0.
Let us define the gamma function as follows. (Compare Artin [1].)

LEMMA. 15 (Bohr and Mollerup). There is one and only one twice
continuously differentiable function T'(x) > 0 for x > 0 which satisfies

Mx+1) = x[(x), T(1) =1, and (logT(x)' >0.

Proof. Evidently it suffices to show that there is one and, up to an additive
constant, only one C?-function

f(x) = log I'(x) + ¢

for x > 0 which satisfies the two conditions

f(x+1) = f(x) + log x
and

f(x) = 0.

Existence is clear, since the equation v,(x) satisfies both of these conditions. To
prove uniqueness, let us differentiate twice to obtain

frx+1) = f'(x) — 1/x*,
hence
f'x+n+l) = f'(x) = x> = (x+1)"? — . — (x+n)" > =0,

Taking the limit as n — oo, it follows that

(%) = Calx).

On the other hand, note that the difference f(x) — v,(x) 1s periodic, of period 1.
Hence its second derivative f"(x) — {,(x) is periodic, and has average [§ (f"(x)
— Cz(x))dx equal to zero. Clearly it follows that f"(x) = {,(x) everywhere.
Integrating twice, we see that

f(x) = yix) + ax + b.

Subtracting the corresponding equation for f(x+ 1), we see that a = 0, which -
completes the proof. ]
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This argument shows that
11(x) = log(T(x)/C)

for some constant C, whose precise value will be computed later.
Remark : The customary definition of the gamma function is the expression

[(x) = [§et* 'dr

which was used in §2 and Appendix 1. Here is an outline proof that this
expression does indeed satisfy the conditions of Lemma 15. Integration by parts
shows that I'(x+ 1) = xI'(x). Note that a twice differentiable positive function
satisfies (log f(x))” > 0 if and only if the matrix

[f (x) f ’(X)}
f'x) f(%)
is positive semi-definite, for all x. But the collection of all 2 x 2 positive semi-

definite matrices forms a convex cone. It follows that the sum f(x) + g(x) of any
two functions which satisfy this condition will also satisfy it. Similarly the

integral
I I'(x ® 1 log t
,(X) ”( )| _ g et
Ix) I'(x) o | logt (logt)
is a positive semi-definite matrix. Hence (log I'(x))” > 0 as required. O
Now consider the Kubert identity

m—1

tht(x) = Z C,((x+k)/ m) .

0

If we differentiate both sides with respect to ¢, then substitute t = 1 — s and
&, = —By/s, we obtain

22) Yx) = (log mByx)/s + m*~! gvs((x+k)/m>.

Thus v, satisfies the Kubert identity (%), except for a correction term
involving the Bernoulli polynomial Byx), for s = 1,2,3,....

If we work modulo the logarithms of positive rational numbers, then the
function

Q/Z - R/Qlog Q*

induced by vy, actually satisfies (*,). It seems natural to conjecture that this is a
universal Kubert function on Q/Z for integers s > 1.
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Fors = 1, the “even” part of this conjecture can easily be proved using Bass’
theorem, together with the classical identity

vi(x) + v4(1—x) + log(2 sin nx) = 0

for 0 < x < 1, which is proved below, and the fact that y,(1) = log(l/\/%)
where m 1s transcendental. For the odd part of y,, Rohrlich has conjectured
universality even if we work modulo the logarithms of all algebraic numbers. See
[17, p. 66].

In the case s = 1, formula (22) takes the form

| 1
(23) 71(x) = (log m) (x - 5) + Y8 (e ky/m)
Hence the derivative v)(x) = I''(x)/I'(x) satisfies
(24) Yi(x) = logm + m™ ' Y 57" vi((x +k)/m).

Note that yi(x+ 1) = vi(x) + 1/x = v}(x) mod Q, if x is positive and rational.
We may conjecture that v induces a universal function Q/Z — R/(Q
+Q log QF) satisfying (). (It can be shown that /(1) is equal to the negative
of Euler’s constant. Thus even at x = 1 the number theoretic properties of v(x)
are not known.)

As a typical application of (23), taking x = 1 we obtain the equation

vi(l/m) 4+ ¥,2/m) + ... + vi((m—1)/m) = log(1/y/m).
In particular, y,(1/2) = log(l/ﬁ).
As a further application of (23), we will prove the classical formula
(25) vi(x) + v,(1—x) + log(2 sin nx) = 0

for0 < x < 1.Ifwe add (23) to the corresponding formula for y,(1 — x), then the
correction terms cancel out. Hence the sum v,(x) + v,(1 — x) satisfies the Kubert
identities (*,) in their original form. By Theorem 1, this implies that

v.i(x) + v(1—x) = c log(2 sin mx)

for some constant ¢. One way to evaluate ¢ would be to differentiate twice:
{o(x) + ((1—x) = —cn?/sin? nx

and to note that both {,(x) and n?/sin? nx are asymptotic to 1/x* as x — 0.
(Compare Appendix 1.) Another would be to substitute x = 1/2, noting that

1 : :
v.(1/2) = — 3 log 2 while log(2 sin /2) = log 2. Using either method, one

finds that ¢ = —1, proving equation (25). 0
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Next let us prove Lerch’s identity (19). We showed during the proof of
Lemma 15 that y,(x) = log(I'(x)/C) for some constant C > 0. Exponentiating
(25), we obtain

I'ix) '1—x) _ .
— 2sinmtx = 1.
C
Since
I(x) ~ x~ 1, r(1—x) ~ 1, and 2 sin mx ~ 2mx
as x — 0, it follows that C = /2m, as required. O

This argument also proves the classical Euler functional equation
I'x)I'(l—x) = mn/sin nx .

Taking x = 1/2, it proves that I'(1/2) = ﬁ
Similarly, exponentiating (23), we obtain the classical Gauss multiplication

formula
I(x) [((x + k)/m)

As an example, taking x = 1 and m = 2, we obtain another proof that I'(1/2)

= /.
‘Note that each vy, , is essentially just an indefinite integral of y,, up to a
constant factor and a polynomial summand. More precisely, differentiating the

— mx— 1/2 1—[15:—1

equation
Glx) = —1tG4 1(x)
with respect to t and setting s = —t, we find that
(26) Yor1(X) = 0¥s+1(x)/0x = sy{x) + Bdx)/s.

The function exp(y,(x)) can be thought of as a kind of higher order gamma
function, satisfying
exp(ydn+1) — v{1)) = R
(Compare Shintani [24].)
As a final remark, let us apply these methods to derive the Stirling asymptotic
series for y,(x) as x — oo. Using (26), together with (3) and (20), we have

(31 yy(w)du = xlog x — x.
As in the discussion of Bernoulli polynomials in §2, the left side of this equation
can be expanded as a Taylor series
e — 1
D

710 = gv"vl(x)/(m— 1,

L’Enseignement mathém., t. XXIX, fasc. 3-4. 21
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which converges whenever v,(x) is analytic throughout a unit disk centered at x,
or in other words whenever x > 1. Here D stands for d/dx. Recall from §2 that
the inverse operator is given formally by

D 0
= ) b,D"/n!.
5] %’, /n

Hence, applying this inverse operator to both sides of the equation

el — I
D

v1(x) = xlog x — x,

we might hope that

?
Yi(x) =

D _ | (x log x—x) = ) b,D"(x log x—x)/n! .
. 0

Unfortunately, this series does not converge. However, if we truncate, setting
N
sy(x) = ) b,D"(x log x—x)/n!
0

for some integer N > 1, then we will prove that
Y1(X) = sy(x) + O(x~ ")

as x — 00. This is the required asymptotic series. More explicitly, we can write it
as

(27) v(x) = (x log x—x) — 1log X + i b(,,x - + O(x™M).

' 2 > n(n—1)
(For a more precise description of the error term, see [ 1, p. 31]. Using (19) this
yields the corresponding asymptotic formula for I'(x).)
To prove this formula, substitute the identity

0 Dm
logx —x =Y — —
x log x — x ;(mﬁ—l)! 71(x)

in the definition of sy(x) to obtain a double series

N @ pD" D"

sy(x) = Z z

Eonso ml (m1)

() ,

which converges absolutely whenever x > 1. If we collect terms involving the
same total power of D, then evidently all the terms involving D', D?, ..., DY must
cancel. Since

D™y,(x) = +(n—1)IC,(x)
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for n > 2, it follows that the resulting series has the form

e}

sy(x) = v1(x) + Z a,5,(x)

N+1
for suitable constants a,. Setting

E(x) = i ax ",

N+1

we can write the error term as
sy(x) — v4(x) = E(x) + E(x+1) + ...
Note that all of these series converge absolutely for x > 1. Evidently

E(x) = O(x~ V71
as x — oo, for any fixed N, so
sp(x) — v1(x) = O(x~")
as required. O
This argument yields similar asymptotic series for related functions such as
£ (%), v4(x), and y4(x). Such estimates work also for complex values of x, as long as
x stays well away from the negative real axis. '

APPENDIX 3
VOLUME AND THE DEHN INVARIANT IN HYPERBOLIC 3-SPACE

We will describe some constructions in hyperbolic space involving the
dilogarithm function %#,(z) and its Kubert identity (7). Further details may be
found in the paper “Scissors Congruences, II” by J. L. Dupont and C.-H. Sah (J.
Pure Appl. Algebra 25 (1982), 159-195).

Using the upper half-space model for hyperbolic 3-space, consider a totally
asymptotic 3-simplex A. In other words, we assume that the vertices a, b, ¢, d of A
all lie on the 2-sphere of points at infinity, which we identify with the extended
complex plane C U co. Then A is determined up to orientation preserving
isometry by the cross ratio

z=(ab;c,d) = (c—a)(d—b)/(c—b)(d—a).

[The semicolon is inserted in our cross ratio symbol as a remainder of its
symmetry properties, which are similar to those of the four index symbol R, ; in

Riemannian geometry.] In particular, the volume of A can be expressed as a
function of the cross ratio z.
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THEOREM (S. Bloch and D. Wigner). If z belongs to the upper half-plane,
Im(z) > 0, then this volume V = V(z) is equal to the imaginary part of the
dilogarithm  ¥,(z) plus a correction term of log|z|arg(l—z). The
correspondence z+> V(z) for Im(z) > 0 extends to a function which is single
valued and real analytic throughout C — {0, 1}, and continuous throughout
Cu oo.

Here we use the branch — 7 < arg(1—z) < = of the many valued function
arg(l —z) in the region Im(z) > 0.

Proof. For the first assertion, it suffices to consider the simplex A with
vertices oo, 0, 1, z; where we assume that Im(z) > 0. The image of A under
vertical projection from the point oo to the boundary plane C is just the
Euclidean triangle with vertices 0, 1, z. Let

0, = arg(z), 0, = arg(1/(1—2)), 6; = arg((z—1)/z)

be the angles at these three vertices, equal to corresponding dihedral angles of the
hyperbolic simplex A. Note that 26, = n. We will assume the volume formula

(28) | V(z) = ZA@By),
to be summed from 1 to 3, where
A(B) = —jo log(2 sin 6)d0 .
This is proved for example in [21]. Using the law of sines
sin@,:sin0Q,:8in0; = |1 —z|:|z]|:1
and the equation X d6, = 0, we see that
dV(z) = —Z log(2 sin 6,)d6,
is equal to —log |1 — z|dB; — log|z|dB,; or in other words
(29) dV(z) = log|z|darg(l—z) — log|1 — z|d arg(z).
On the other hand dZ,(z) = —log(l —z)d log(z), hence,
dIm Z,(z) = —log|1 — z|d arg(z) — arg(l—z)d log | z]|.
The required formula
(30) V(z) = Im Z,(z) + log |z | arg(l —2z)

then follows since both sides of this equation have the same total differential, and
since both sides tend to the limit zero as z tends to any point of the real interval
(0, 1).
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As an example of this formula, note the identity
V(e*®) = Im Z,(e*®) = 2A(0) .

Since the right side of (29) is a well defined smooth closed 1-form, everywhere
on C — {0, 1}, we need only check that its integral in a loop around zero or one
vanishes, in order to check that V(z) extends as a single valued function. But the
expression (30) shows that V(z) extends to a single valued function near zero,
and also that V(z) tends to zero as z — 0. Using the identity

Viz) + V(1—2z) =0

which follows from (29), we see that the samg 1s true for z near 1.
Now consider the fractional linear automorphism of period three

z—> 1/(1—2)—>(z—1)/z+> 2
which carries the upper half-plane to itself. The expression (28) shows that

Viz) = V(1{1—2) = V(z—1)/z).

Since O — 1 — oo +— 0, it follows that V(z) also tends to zero as z » 0. .[J
Note that V(z) 1s strictly positive in the upper half-plane for geometrical
reasons. The identity

V(@) = = V()

shows that V(z) is negative on the lower half-plane and zero on R U oo0. Note also
the identities

(31) V(l—z) = V(1/z) = — V(2),

which are equivalent to the statement that the expression V(a, b; c, d) is skew
symmetric as a function of four variables.

This function V(z) satisfies the multiplicative Kubert identity
(32) V(z") = nX V(wz),

to be summed over all n-th roots of unity, w” = 1. This follows easily since both
Z,(z) and log | z | arg(l —z) satisfy this same identity for z near zero.
Another important property is the cocycle equation

(33) S (= 1) V(ag, oy Gy s ag) = 0,

for any five distinct points ay, .., a, in C U co. Geometrically, this is true since
the convex body in hyperbolic space spanned by five vertices can be expressed as
a union of simplices with disjoint interiors in two different ways. Analytically, it
can be proved using the Abel functional equation




318 J. MILNOR

LAxxXyy) = Lyxy) + Loyx) + Lo(—xx) + Ly(—yy) + log’(x'/y)/2,

where x’ stands for 1/(1 —x). Still another proof will be sketched later.

Dupont and Sah show that the Kubert identity can be proved as a formal
consequence of this cocycle equation. Hence it has a geometric interpretation in
terms of cutting and pasting of simplices. As a geometric corollary, they prove
that the “scissors congruence group” for hyperbolic 3-space is divisible. That is
any hyperbolic polyhedron can be cut up and reassembled into n pieces which
are isometric to each other, for any n.

Another geometric invariant associated with a hyperbolic simplex is the
Dehn invariant. For a finite 3-simplex, this is defined to be the six fold sum

2 cages length @ (dihedral angle)

in the additive group R ® (R/2nZ), taking the tensor product over Z. For a
simplex with one or more vertices in C U o0, the definition is the same except
that we must first chop off a horospherical neighborhood of each infinite vertex
before measuring edge lengths. The result does not depend on the particular
choice of horospheres.

LEMMA (Dupont and Sah). For a totally asymptotic simplex, with dihedral

angles 0., 8,, 65 along the edges meeting at a vertex, this Dehn invariant is equal
to 2% log(2 sin 6,) ® 0,.

If we express this as a function of the associated cross ratio z, using the law of
sines as above, the formula becomes

1 .
EDehn(z) =log|l — z| ® arg(z) — log|z| @ arg(l—z).

This function also satisfies the Kubert identity (32), and it is clear from its
geometric definition that it satisfies the symmetry condition (31) and the cocycle
equation (33).

To prove this lemma, we first choose one particular horospherical
neighborhood of each vertex. It is convenient to choose that horosphere which is
tangent to the opposite face. Consider, for example, a simplex with vertices
0, V;, V,, V3. The preferred horosphere through v; can be described as a
Euclidean sphere, tangent to the boundary plane C at v;, and tangent to the
orthogonal plane which passes through the other two vertices v v,. The
Euclidean radius r; of this sphere is equal to the distance of v; from the line
through v, v,. In other words r; is equal to an altitude of the triangle vy, v,, vs.
Hence r; is inversely proportional to the edge length | v; — v, |, and inversely
proportional to sin 6;; say r; = c¢/sin 9;.

i
]
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This horosphere intersects the line from v; to co at Euclidean height h = 2r,
On the other hand, the preferred horosphere through the point co intersects each
vertical line at some constant height h = ¢'. If we integrate the hyperbolic length
element dh/h along the line from v; to co between these two intersection points,
we obtain

(34) truncated edge length = | dh/h = log(2 sin ;) + ¢”
2r;

where ¢” = log(c'/4c) is constant. (Here negative lengths must be allowed.) The
corresponding contribution to the Dehn invariant is

log2sin 6,)®6; + " ®H;.

There is an identical contribution from the opposite edge v;, v,. In fact the
symmetry property ‘

(a,b;c,d) = (c,d; a, b)

of the cross ratio implies that there is an isometry of A carrying ny given edge to
the opposite edge. Now, summing over all six edges, since the ¢’ ® 0; terms
cancel, we obtain the required formula

(35) Dehn(A) = 233 log(2 sin 0) ® 0, . ]

Remark. The curious similarity between the two equations (28) and (35) can
be explained by a theorem of Schlafli. For a family of simplices A in the n-
dimensional spherical space of constant curvature K > 0, Schlidfli’s equation
can be written as

(n—1K dV,(A) = X V,_,(F)db,

to be summed over all (n—2)-dimensional faces F, where V,_,(F) is the (n— 2)- |
dimensional volume and 6 1s the dihedral angle along F. In other words, we
have

(n—1)K 0V,/00r = V,_,(F).

For a proof, also in the case K < 0, see Kneser, “Der Simplexinhalt in der
nichteuklidischen Geometrie”, Deutsche Math. 1 (1936), 337-340. In the case n
= 3, K = —1, the Schlifli equation takes the form

—2dV3(4) = Eedges Vi(E)dOg .

For a family of 3-simplices with one or more vertices at infinity, this equation
remains valid providing that we cut off a horospherical neighborhood of each
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infinite vertex before measuring edge lengths. It follows that we can prove
equation (34) simply by differentiating (28), or conversely that we can prove (28)
by integrating (34), using the identity A(0) = A(r) = 0 to fix the constant of
integration.

Although the cocycle equation for the Dehn invariant is an immediate
consequence of its geometric definition, it may be of interest to give an analytic
proof. Let us introduce the skew-symmetric bimultiplicative symbol

(x|y) = log | x| ® arg(y) — log | y| ® arg(x),

for x and y in the multiplicative group C’, with values in the additive group
R ® (R/2rZ). Then

1 1
7 Dehn(z) = 3 Dehn(a, b; ¢, d)

is equal to (1 —z|z). Expressingzand 1 — z = (a, c; b, d) as 4-fold products and
using the bimultiplicative property, we can expand (1 —z|z) as a sum of sixteen
terms, of which four cancel. The remaining twelve can be grouped as

(I1—zlz) = f(b,c,d) — fla,¢,d) + f(a, b, d) — f(a, b, ¢),
where f stands for the skew function
fla, b,c) = (a—blb—c) + (b—c|lc—a) + (¢c—ala—D).

This proves that the function Dehn(a, b; c, d) is a coboundary, and hence a
cocycle.

We can define a sharpened Dehn invariant by this same formalism, using the
expression

log(x) A log(y),

with values in A 2(C/2riZ) in place of our symbol (x|y). If we split this exterior
power into eigenspaces under the action of complex conjugation, then the
component of

log(x) A log(y)

in the — 1 eigenspace can be identified with (x|y).

The cocycle equation for the volume function V(a, b; ¢, d) can also be proved
by this formalism. We must simply replace (x|y) by the differential form valued
symbol

log | x | d arg(y) — log | y| d arg(x).

Details will be omitted.
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Dupont and Sah show that the volume function and the sharpened Dehn
invariant can be incorporated into a single function p, as follows. Let

p(z) = 1 A L(z) — 1 A L(1—2) 4+ (z) A I(1—2),
with values in A 2C, where (z) = log(z)/2ni and

Lz) = Z,(z)/4n? = [ 11—2)dl(z).

This expression is certainly well defined in the strip 0 < Re(z) < 1, and satisfies
n(z) + p(1—z) = 0.If we analytically continue each of its constituent functions
in a loop around zero or one, then the expression p(z) remains unchanged. Hence
p is well defined as a mapping from C — {0, 1} to A*C. They show that p
also satisfies the symmetry condition (31), the Kubert identity (32), and the
cocycle equation (33).
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