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REPRESENTATIONS OF THE SYMMETRIC GROUP 67

define K(u, v) as the number of semistandard p-tableaux of type v for any
sequence of nonnegative integers v = (vy, .., ;) such that [v| = n. Let v
= (V,, ..., v,) denote the rearrangement of the v; such that v; > v, > ... = Vs
Then K(u, v) = K(u, V) and from this (non trivial) fact combined with lemma 6.7
itis easy to see that K(p, x) < K(u, A)ifk < A.(Assume A covers k and rearrange
both so that the two changing entries are the first two.) We owe these remarks
(indirectly) to A. Lascoux.

6.11. Nilpotent Matrices and Representations [11]. Let N, be the set of
nilpotent matrices labelled by the partition , cf. 2.11 above. Let N be its closure
and let C be the set of diagonal matrices. Now take the scheme theoretic
intersection of the closed subvarieties N, and C of the scheme of n x n matrices
over C. This is a finite C-algebra with an obvious S,-action. This turns out to be
the permutation representation p(x) and using results from [39] a proof of the
Snapper, Liebler-Vitale, Lam, Young theorem can be deduced. One very nice
thing about this construction is that it also makes sense for the other classical
simple Lie algebras and their Weyl groups. There are also relations with the so-
called Springer representations of Weyl groups, [40-42].

7. NILPOTENT MATRICES AND SYSTEMS

As was remarked in section 5 above the connection A in the diagram above
essentially consists of an almost identical proof of the two theorems. We start
with a proof of the Gerstenhaber-Hesselink theorem. The first ingredient which
we shall also need for the feedback orbits theorem is the following elementary
remark on ranks of matrices.

7.1. Lemmu. Let A(t) be a family of matrices depending polynomially on a
complex or real parameter t. Suppose that rank A(t) < rank A(r,) for all . Then
rank A(t) = rank A(t,) for all but finitely many t.

This follows immediately from the fact that a polynomial in ¢ has only finitely
many zeros.

Let A be a nilpotent matrix. Then of course the similarity type of A4 is
determined by the sequence of numbers.

n; = dim Ker A'.

The numbers e; = n;,; — n; form a partition of n and are dual to the partition
formed by the sizes of the Jordan blocks.
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The key to a simple proof of the Gerstenhaber-Hesselink theorem is in
exploiting this filtration instead of the Jordan form. The following elementary
lemma is the key observation.

7.2. Lemma. Let A be a nilpotent n x n matrix and let F be such that
(7.3) F(Ker AY «c Ker A" Y i=1,2 ..,n.
Then tA + (i —t)F 1s similar to A4 for all but finitely many ¢.

Proof. We show first that
(7.4) Ker(tA + (1—t)F) = Ker A’

for all t. Indeed from (7.3) with i = 1 we see that F(Ker A) = 0 and it follows
that (tA + (1—t)F) (Ker 4) = 0 which proves (7.4) for i = 1. Assume with
induction that (7.4) holds for all i < s. Then

(tA + (1—t)F) Ker A° = (tA + (1—0F) ' (tA + (1—t)F)Ker 4°
c(tA+ (1—0)Ff ' Ker A1 =0

because A Ker A° = Ker A°~!'and F(Ker A%) = Ker A*~ ! by (7.3). This proves
(7.4). Using (7.4) we know by (7.1) that for almost all ¢ (take t, = 1)

(7.5) rank(t4 + (1—¢)F)' = rank(A4)

and because t4 + (1 —¢)F and A are both nilpotent it then follows that the
conclusion of the lemma is satisfied.

Now let A be a nilpotent matrix. We say that Aisoftypek = (ky, ..., k,,) if the
Jordan normal form of A consists of m Jordan blocks of sizes k; x k;,
i = 1,..,m. E.g Ais of type (4, 2) iff its Jordan form is

=
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Consider Ker A, Ker A2, .., Ker A" Then A4 is of type x iff
dim(Ker A) = x¥f + .. +xFi=1..n

where «* is the dual partition of k. Thus in the example the kernel spaces Ker A4°
are spanned by the basis vectors

{ey, es), {ey1, €2, €5, €6}, {€1, €3, €3, €5, €6}, {ey, €5, €3, ey, €5, 6} .
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7.6.  Semistandard Tableaux and Nilpotent Matrices. Let A be a nilpotent
matrix of type k. Let p be another partition of n and suppose that there is a *-
tableaux of type k*. Then there is nilpotent matrix F of type p such that
F(Ker A") « Ker A"~ ! for all i. This matrix F is constructed as follows. First
choose a basis ey, ..., e, of R" such that the first kf + ... + k¥ elements of this
basis form a basis for Ker A, i = 1, ..., n. Now consider a semistandard p*-
tableaux T of type k*. Take the Young diagram of u* and lable the boxes of it by
the basis vectors e, ..., ¢, in such a way that the boxes marked with i in the
semistandard tableaux T are filled with the basis vectors

€K>i<+...+xzk_ 1+ 19 o9 eK’i‘+...+K?‘

This can be done because T is of type k* so that there are precisely k¥ boxes
labelled i in T. Call this new p*-tableaux T". Now define F by F(e;) = e, if ¢; 1s
just above e; in the u*-tableaux T' and F(e;) = 0 if e; occurs in the first row
of T'. Then obviously

dim Ker F' = p¥ + .. + W,

so that F is of type p and F(Ker AY) c Ker A" ! because the p*-tableaux T was
semistandard which implies that the labels are strictly increasing along columns.

An example may illustrate things. Let x* = (2,2, 2), p* = (4, 1, 1). A p*-
tableaux of type x* is then

Inserting ey, ..., es in such a way that e,, e, are put into boxes marked with 1,
e3, e, in boxes marked with 2 and e;, e in boxes marked with 3 gives for example

which yields an F defined by F(es) = e4, F(ey) = e,
F(ey) = F(e;) = F(es) = Fles) = 0.

1.7.  Proof of the Gerstenhaber-Hesselink Theorem. (Cf. 2.11 above for a
statement of the theorem.)
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The implication — is immediate. Indeed if A, € 0(x) converges to A, € O(A) as
t — 0 then rank (4]) > rank (A4}) for small ¢ and all i = 1, ..., n. Hence

dim(Ker A4;) < dim(Ker A})

for small ¢t so that
K¥+ ..+ k¥ <A+ ..+ AF

for all i, hence x* > A* and k¥ < A. To prove the opposite implication it suffices
to show this in case that k is obtained from A by a transformation of the type

described in lemma 6.7. (Because if @ > 0(A) and@ > 0O(p), thenm - @,

and hence 0(x) = O(n).) Then A* is obtained from k* by a similar transformation.
Recall the picture

Now take the unique semistandard x*-tableau of type x* and transform the box
together with its label. The result is obviously a semistandard A*-tableau
of type x*. Let A be a nilpotent matrix of type x. Then by the construction
of 7.6 above there is an F of type A such that F(Ker A") « Ker A'"!. Then
“ A + (1 —t)F 1s similar to A for almost all ¢t by lemma 7.2 so that there is a
sequence of A’s in 0(x) converging to F € O(A), proving that O(A) < @, which
finishes the proof of the theorem. |

' Incidentally it is quite easy to describe F directly without resorting to
semistandard tableaux [7].

7.10. Kronecker Indices of Systems. Let (A, B)e L;, , be a completely
reachable pair of matrices. Recall that this means the matrix R(A4, B)
= (B AB ... A"B)hasrank n. Recall that the Kronecker indices k(A4, B) of the pair
(A, B) are defined as follows. Let fori = 1, .., n

(7.11) VA, B) = space spanned by the column vectors of
AB,j=0,.,i— 1.
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Let
d; = dim V{(A, B),e; = d; — d;_y,do = 0.

Then
e

1

<e_pi=1.,n—-1,
and «(A, B) is defined as the dual partition of n.
(7.12) k(A, B) = e(A, B)*

where e(A, B) = (e, ..., €,).

The orbits of the feedback group (cf. 2.6 above) acting on L;; , are precisely
the subsets of L& , with constant (4, B). Let U(x) be this orbit. The
“degeneration of systems theorem” now says

7.13.  Theorem. (A) o U)o A > K.
Here follows a proof which is virtually identical with the proof of the
Gerstenhaber-Hesselink theorem given above. First if (4,, B,) = (4q, Bo) as

t - 0, (A,, B,) € U(A), (Ag, By) € U(x),

then
rank (A7 'B,; ..; A,B,; B)) = rank(Ay 'By; ..; AoByg; Bo)

for small ¢. Hence
dim V{(A4,, B,) = dim V{(A,, B)

for small t. Hence e(A4,, B,) < e(A,, B,) for small t and «(A,, B,) > «(A,, B,) for
small ¢ which proves the implication =.

To prove the inverse implication it suffices to prove this in the case k is
obtained from A by a transformation as described in lemma 6.7 (exactly as in the
case of the Gerstenhaber-Hesselink theorem). Now let (A4, B) € U(A). Choose a
basis e, ..., e, for R" such that the first AT + ... + A} elements of ey, ..., ¢, form a
basis for Vi(A, B),i = 1, .., n. Now writein thee, .., e,in A* in the standard way
and transform A* backwards to k*, moving [X] together with its label, cf. the
picture in section 7.7 abéye.. Eg if x* =(4,3,2,2,1) and A* = (4,4,2, 1, 1)
then this would give

€, ) €3 €4 €1 e, e ey
B e e, es e e, eg
€9 €10 €9 €10

€11 €g €11
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The vectors in the first i rows of A* are a basis for V{(A4, B). Now define a pair
(F, G)in terms of k* as follows. G consists of the vectors in the first row of k* (plus
a zero vector in case k¥ < A¥), and F is defined by F(e;) = e; if e; occurs just
below e; in x* and F(e;) = 0 otherwise. Note the similarity with the construction
in 7.6. One could put this in “Young tableaux” terms too. The relevant “Young
tableaux” are then the inverse semistandard ones with labels strictly decreasing
from left to right along rows and decreasing from top to bottom along columns.
Then (F, G) has the following properties (all immediate)

(1) (F,G)eU(x) = Lg ,
() V{F, G) = V(4, B)
(i) FV(A, B) = Vii4(4, B)

(of course (ii) follows from (ii1) together with Vi (F, G) = V;(4, B)). Now consider
A, =tA + (1-t)F, B, = tB + (1—t)G. Then

(7.14) V(A,, B,) = Vi(A, B) for all ¢
(7.19) V(A, B,) = V(A, B) for all but finitely many t¢.

Indeed obviously V,(4,, B,) < Vi(A, B) because of (ii)) above for i = 1. Now
assume that (7.14) holds for all i < r. Then

VA, B) = (tA + 1—=0)F)V,_ (A, B) + V,_ (A, B)

< tAV,_ (A, B) + 1—t)FV,_(A, B) + V,_,(A, B)

< V(A4, B) + Vi(A, B) + V,_,(4, B) = V/(4, B)
This proves (7.14) and (7.15) follows by means of lemma 7.1 (with t, = 1) because
dim V(A,, B,) = rank (4;"'B,; ..; B))

Now (A4,, B,) — (F, G) e U(k) as t — 0 and by (7.15) (and the theorem that the
orbits under the feedback group are classified by the Kronecker indices) all but
finitely many of the (4,, B,) are feedback equivalent to (A4, B). Thus (F, G) € U(x)

and (F, G) € U(LA) proving the theorem.

 7.16. Remarks. The two proofs are very similar (up to duality in a certain
| sense). This can be given more precise form as follows. For a nilpotent matrix

 NeNt Ny - (4, Bye LS | NS B = 0,i = 1, )
and for (4, B) € Li; , let
t(A,B) = {NeN,|N‘'A"'B=0,i=1,..,n}.
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Then using the results above one shows that

t 5(0(x)) = 0O(k), s 1(U(x)) = Ulx)

so thatt and s setupa bijective correspondence between the closures of orbits in
the two cases and hence induce a bijective order preserving correspondence
between the sets of orbits themselves.

8. VECTORBUNDLES AND SYSTEMS

This section contains a modified version of the construction of Hermann-
Martin [14] associating a vectorbundle E(X) over the Riemann sphere P(C) to
every £ = (A, B) e L ,. This version makes it almost trivial to see that E(X)
splits as a direct sum of line bundles L(x;), i = 1, .., m where k = (Ky, ..., K,,) 1S
the set of Kronecker indices of . |

The first thing needed is some more information on the universal
bundle &,

8.1. Onthe Universal Bundle &, — G, (C""™). LetV beacomplexn + m
dimensional vector space and V* = Hom¢(¥, C) its dual vector space. Given
x € G,(C""™) define x* = {yeV*| < y,0 > = Oforall xe V} where <, >
denotes the usual pairing V* x V — C. Then x* is m-dimensional and x +— x*
defines a holomorphic isomorphism

(8.2) d: G, (V) - G, (V*).
Now v € V/x defines a unique homomorphism v” : x* — C as follows:

vI(a) = < a, v > for all a e x*, where 0 € V is any representative of v. This is
well defined because < a,b > = 0 for all be x if ae x*. This defines an

isomorphism between the pullback (d~ 1) €, and the dual of the subbundle n,, on
G, (V*) defined by

Mw = {(x*, W) € G(V*) x V¥ | we x*)

It follows that &, is a subbundle of an n + m dimensional trivial bundle
G, (C"™™) x C""™ Because G,(C"™™) is projective (compact) all holomorphic
maps G,(C""™) — C are constant so that the space of holomorphic sections
[(G,(C"™™) x C**™ G,(C"™™) is of dimension n + m. As a subbundle of a
trivial (n + m)-dimensional bundle &, can therefore have at most (n+ m) linearly
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