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294 J. MILNOR

§5. UNIVERSAL KUBERT FUNCTIONS

The results in this section are either due to Kubert, or are minor variations on
results of Kubert.
Let A < Q/Z be a subgroup, and let s be a fixed integer. A function
fA->V

to a rational vector space will be called a Kubert function if it satisfies

() fma) = s z fla+k/m)

for every integer m such that 1/m belongs to A. It will be convenient to say that fis
universal if every Q-linear relation between the values f(a) follows from these
Kubert relations.

Let U(A) be the additive group with one generator u(a) for each element of A,
and with defining relations (*;). Then evidently f is universal if and only if the
induced mapping

u(a) — f(a)
from UJ(A) ® Q to V is injective.

We are primarily interested in the case where A4 is the entire group Q/Z.
However, it is very useful to consider finite subgroups of Q/Z, and requires no
extra work to consider arbitrary subgroups. |

Note that every automorphism of A4 gives rise to an automorphism of U (A).
We will use the notation Hom(A4, 4A) for the automorphism group of A,
identifying it with the group of invertible elements in the ring Hom(A4, A4)
consisting of all homomorphisms from A4 to itself. '

THEOREM 2. The complex vector space UJ(A) ® C splits, under the action
of the automorphism group of A, into a direct sum of 1-dimensional eigenspaces,
with just one eigenspace corresponding to each continuous character

g : Hom(A4, 4A) - C'.

Furthermore, any inclusion A < A" < Q/Z gives rise to an embedding
U(A4)® Cc U(A)® C.

Proofs will be given at the end of this section.

If A = A, is the cyclic group of order m, note that Hom(4, A) can be
identified with the ring Z/mZ, and Hom(A4, A) is an abelian group of order @(m).
In general, Hom(A, A)' is to be topologized as the inverse limit of these groups
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Hom(A,, A,) = (Z/mZ)

as A, varies over all finite subgroups of A. Similarly, the character group of
Hom(4, A) is the direct limit of the corresponding Dirichlet character groups
" Hom((Z/mZ), C).

One interesting consequence of Theorem 2 is the following statement, which
is reminiscent of Galois theory.

COROLLARY. If A c A < Q/Z, then UJ(A) ® Q can be identified with
the subspace of U(A') @ Q which s fixed by all automorphisms of A’ over A.

A proof is easily supplied. ]
Here is another consequence.

LEmMMA 8. If A = A, iscyclicoforder m, then the rational vector space
U(A,) ® Q has dimension @(m). For m > 2 this splits as the direct sum-of
even and odd parts with respect to the involution

u(a) — u(—aj,

where each of these summands has dimension ©(m)/2.

Proof. This follows immediately from the corresponding statement for
U (A) ® C. The two summands have equal dimension since there are as many
even characters (x(—1) = 1) as odd characters (y(—1) = —1) modulo m. [

If s # 1, then Lemma 8 could also be derived from the following more
explicit statement.

LEMMA 9. If s# 1, and if A = A, is cyclic of order m, then
U(A) ® Q has a basis consisting of the o(m) elements u(k/m) with k
relatively prime modulo m. :

However, this statement definitely fails for s = 1.
Another complication whens = 11isthat Lemma 7 fails, so that we must also
consider “punctured” Kubert functions, which are not defined at zero.

Definition. Let Uy(A —0) be the universal group with one generator u(a) for
each a # 0 in A, and with defining relations

m—1

uma) = m*~ ' Y u(a+k/m)
0

for all m and a with ma # 0 and 1/m € A.

If s # 1, then the proof of Lemma 7 can be used to show that the kernel and
cokernel of the natural maps
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UyfAn—0) » U(A4,)

are finite groups of order prime to m. Taking the direct limit over m, it follows
that

U(Q/Z-0) = U(Q/Z).

However, for s = 1 the situation is different.

LEMMA 10. The kernel of the natural homomorphism
Uy(A—0) - U,(4)
is a free abelian group freely generated by the elements

u(1/p) + u(2/p) + ... + u((p—1)/p),

as p rangesover all primes with 1/p € A. The cokernel of this homomorphism is
free cyclic, generated by u(0).

A proofis easily supplied, using formula (10) of §4 to prove that there are no
relations between these generators. O
The precise structure of U(A) can be given as follows.

LemMma 11. If s< 1, orif A is finite, then the group UJA) is free
abelian. In any case, UJ(A) istorsion free, and any inclusion A < A givesrise
to-an embedding of U(A) into UyA).

If s > 2,1t is interesting to note that U(Q/Z) is actually a vector space over

the rational numbers. For this lemma asserts that it is torsion free, and the
relations (*s) clearly imply that it is divisible.

The proof of Theorem 2 will be based on the following. Let s be any complex
number and let x : Hom(4, A) — C be a continuous character.

LEMMA 12. There is one and, up to a constant multiple, only one function
f=f:A-C
satisfying (%) and satisfying f(ua) = y(u)f(a) for every u in Hom(A, A)
and every a in A.
Proof. To fix our ideas, let us consider only the case 4 = Q/Z, so that

Hom(A4, A) = lim Z/mZ is the profinite completion Z of the integers. The

general case is completely analogous.
Since 7 is continuous, there exists an integer m # 0 so that y is identically
equal to 1 on the congruence class 1 + mZ intersected with Z'". The collection of
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all m with this property forms an ideal % called the conductor of y. Evidently y is
equal to the composition

7 - 2Z/F)y->C
for some Dirichlet character modulo %, and # is the unique largest ideal with
this property. We will use the same symbol y for this characteron(Z/%).If k is
any integer relatively prime to %, it follows that y(k) is a well defined root of
unity.
Any fraction in Q/Z with denominator n can be written as u/n for some unit u
in Z'. In view of the identity

Jlu/n) = yw)f(1/n),

we need only compute the values f(1/n) in order to determine f completely.

Note that the unit u in this equation is well defined modulo nZ. If n‘belongs to
the ideal &, then it follows that the root of unity y(u) is uniquely determined.
However, if n ¢ %, then we can choose u = 1 mod nwith x(u) # 1. This proves
that f(1/n) = O whenever n is not in the ideal %.

The proof will show that fis some constant multiple of the expression

f(l/n) = n— g[ (p — P xe)/(p—1) for n>0nesF.

Here x(p) is a well defined root of unity if the prime p is a unit modulo %, and is to
be set equal to zero otherwise.

First consider the Kubert identity

0 ro(y) =5 ()

forne #.

Case 1. If p|n, theneach 1 + knis a unit modulo pn, with x(1 + kn) =
Hence this equation reduces simply to

)2

Case 2. Ifnisnota multiple of p, then there is exactly one k, between 1 and
p — 1 so that 1 + kyn is some multiple, say Ip, of p. Then

f(l i k"”) _ f(~l) _ x(t)fG),
np n n

where x(I) = y(p)sincelp = 1 mod . Thus the Kubert identity takes the form

(' x(p))f(l) (- l)f(*—>

L’Enseignement mathém., t. XXIX, fasc. 3-4. 20




298 J. MILNOR

Evidently this completes the proof that fis uniquely defined up to multiplication
by a constant.

To prove that the function f defined in this way satisfies all of the Kubert
identities, we must also consider the case where n does not belong to the ideal #,
so that f(1/n) = 0. If pn does belong to &, then the units 1 + kn modulo pn, in
the argument above, range precisely over the kernel of the homomorphism

(Z/pnZ) — (Z/nZ) .

Since y is non-trivial on this kernel, by the definition of &, it follows that

Y x(1+kn) = 0,
taking the sum over all k between 0 and p — 1 with 1 + kn prime to p. Thus both
sides of the required equation (J) are zero. Since every other Kubert identity

follows from one of these by applying an automorphism to Q/Z, this completes
the proof. ]

Proof of Theorem2. 1f A = A,,1s a finite group of order m, then U(A4) & C
is finite dimensional, so it certainly splits under the action of the commutative
group Hom(4, A) into a direct sum of 1-dimensional spaces. According to
Lemypma 12, there is exactly one of these spaces for each character y mod m, so the
conclusion follows.

The general case now follows by passing to a direct limit over finite
subgroups of A. (For any integer n, note that there are only finitely many
characters y whose conductor contains n, hence only finitely many y with
f(1/n) # 0.) This completes the proof. O

Proof of Lemma 9. 1t will be convenient to consider the various vector
spaces Uy(A4,,) ® Q as subspaces of U (Q/Z) ® Q. This is permissible by the
Corollary above (or by Lemma 11)).

Let W,, be the rational vector space spanned by all elements

u(a) € U(Q/Z) ® Q

such that a has denominator precisely m, and hence generates the cyclic group
A,,. We will show that W,  W,,. Assuming this for the moment, it follows
inductively that ‘

W, = Uf4,) ® Q.

Hence the @(m) generators of W,, must be linearly independent, as was to be
proved.
Suppose then that a generates 4,,. If p | m, then the Kubert identity

p—1

wa) = p*~ ) ulla+kyp),

0
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where each (a+k)/p has denominator precisely pm, proves that
u(a) = 0 mod W,,. On the other hand, if p is prime to m, then the relation

pm*
p—1

u(pa) — p* " tu@) = p*~ ' Y, ula+k/p)

1
proves that
u(pa) = p*~ ' u(a) mod W,,, .

Choosing r > 1 so that p” = 1 mod m, it follows that
u(a) = u(pta) = p™*~ " u(a) mod W,

Since s # 1, this proves that u(a) = 0 mod W,,, as required. ]

Proof of Lemma 11. For any a € Q/Z let a, be the p-primary component of
a. Thusa = ) a,, where the denominator of a, is a power of p. Represent each a,
as a rational in the interval 0 < a, < L.

Definition. We will say that a is reduced if 0 < a, < 1 — p~ ! for every
prime p.

Then fors < 1 we will prove explicitly that U (A)is a free abelian group, with
one free generator u(a) for each reduced element a of A. Evidently it suffices to
check that U (A) is generated by these elements. For a simple counting argument
shows that the number of reduced elements in any finite subgroup A4,
= m~'Z/Z is equal to the rank

om) =m[](1—p™")

p|m

of Uy A,
Suppose that aisnot reduced,say 1 — p~
the identity

' < a, < 1forsome prime p. Then

p'*ulpa) = u(a) + u@—1/p) + .. + ula — (p—1)/p)

shows that u(a) is a linear combination of u(pa), where pa has strictly smaller
denominator than a, and elements a — k/p which are reduced at the prime p and

have g-primary component unchanged for g # p. A straightforward induction
now completes the proof in the case s < 1.

If s > 2, this argument shows only that the reduced generators form a basis
for the rational vector space U (4) ® Q. To prove that U(A4,,) is free abelian, we
will show that the tensor product U(A4,) ® Z,1s generated by ¢(m) elements for
any prime q. This will show that there cannot be any torsion.

As free generators, we will choose all elements u(a) where a = > a, is
“reduced” at all primes p other than q. However, we require that the g-primary
component a, should have denominator equal to the highest power of q dividing m.
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The proof that these elements generate over Z, proceeds as above for p # g,
and proceeds as in the proof of Lemma 9 when p = q. Details are easily supplied.

]

§6. ON Q-LINEAR RELATIONS

S. Chowla and P. Chowla have suggested the following conjecture in a
private communication to the author. Let a,, a,, ... be a sequence of integers
which is periodic, a, = a,. ,, for some prime p. Then
(11) : Y P a,/n* #0
except in the special case

al - .. = ap_l = ap/(l'—pz) .
If we use the Hurwitz function

Calk/p) = p*(k™ 2 + (k+p)~% + ..),.

then the inequality (11) can be written as

2% a Cok/p) # 0

and the exceptional case corresponds to the Kubert relation

C(1) = p™2 2% Calk/p) -

Thus the Chowlas’ conjecture is true if and only if the real numbers

Ca(1/p), -, Cal(p—1)/p)

are linearly independent over the rational numbers. More generally, foranym > 2
one might conjecture that the ¢(m) real numbers {,(k/m), where k varies over all
relatively prime integers between 1 and m — 1, are Q-linearly independent.
Using Lemma 9, a completely equivalent statement would be the following.

Conjecture: Every Q-linear relation between the real numbers {,(x), where
x is rational with 0 < x < 1 is a consequence of the Kubert relations (*_,).

In fact, since {,(x+1) = {,(x) mod Q for positive rational x, it might be
more natural to sharpen this conjecture by taking the values of {, modulo Q. In
other words, it is conjectured that the mapping

Q/Z - R/Q

induced by (, isa “universal” function satisfying (*_,). It follows easily from
Theorem 3 below that the corresponding conjecture for the even part,

C2(x) + Co(1—x) = n?/sin® mx,
of {, is indeed true; but the odd part of {, seems difficult to work with.
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