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MILNOR LATTICES AND GEOMETRIC BASES

OF SOME SPECIAL SINGULARITIES

by Wolfgang Ebeling

Introduction

The subject of this note are certain invariants associated to the topology of a

complex hypersurface singularity/ : (C", 0) -» (C, 0), n 3(4), which are defined

via the Milnor fibration and deformation theory. These invariants are the

homology group of the Milnor fiber of middle dimension n — 1 as an abelian

group (determined by the Milnor number p), the signature (p0, p + p_) of the

intersection form, the homology group of dimension n — 2 of the link of the

singularity as an abelian group, the linking form, the intersection form, weakly
distinguished bases, distinguished bases. The order reflects the relative strength
of these invariants, but it is not always a strict order: the knowledge of the

intersection form turns out to be equivalent to the knowledge of the invariants
I listed before.

The aim of this note is to give a survey of some recent results on these

invariants for special classes of singularities. In [7] we studied some of these

invariants for the singularities of Arnold's lists. Here we summarize these results
and give additional information. We also consider another class of singularities,
namely the minimally elliptic hypersurface singularities as studied by Laufer
[14]. We state some general features about the above invariants for these two
classes of singularities. One of the problems is to find a normal form of the

Dynkin diagrams with respect to bases of a certain type for a whole class of
singularities. We indicate such a form with respect to weakly distinguished bases

for the minimally elliptic hypersurface singularities. But it turns out that all the
I above invariants except the class of distinguished bases are to weak to
J distinguish between singularities of different topological type. We also discuss a
; canonical form of Dynkin diagrams with respect to distinguished bases for the

uni- and bimodular singularities, which are contained in both classes of
singularities mentioned above.

l) This article has already been published in Nœuds, tresses et singularités,
Monographie de l'Enseignement Mathématique N° 31, Genève 1983, p. 129-146.
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The results were obtained by the following method :

a) Find a distinguished basis for the given singularity. This is done using
methods of Gabrielov, especially [11]. But the Dynkin diagrams of these

bases are very complicated and contain many cycles.

b) Transform this diagram into a "nicer" form, where the information one is

looking for is more transparent.

c) Analyse this diagram.

The paper is organized as follows. In section 1 + 2 we recall the definitions of
the invariants and the basic relations among them and discuss the admissible

transformations for b) above. Section 3 is devoted to a study of the weaker

invariants including weakly distinguished bases of the above mentioned

singularities. In section 4 we consider distinguished bases of the uni- and

bimodular singularities.
There are also other invariants associated to singularities such as e.g. the

monodromy groups. For a discussion of the relations among the various
invariants and of their relative strength with respect to geometrical problems we

refer to the expository article of E. Brieskorn [3]. For a description of the

monodromy groups we refer to [8, 9]. There are also other interesting
phenomena related to the above invariants in the class of bimodular singularities
such as an extension of Arnold's strange duality. This is the subject of a joint
paper with C. T. C. Wall, which is in preparation.

This paper is an extended version of the talk given by the author at the

conference on the "Topology of complex singularities" at Les Plans-sur-

Bex/Switzerland, March 27-April 2, 1982. The author thanks the organizers of
this meeting, especially C. Weber, for their invitation. He is also grateful to E.

Brieskorn for helpful discussions, which influenced the presentation in section 2.

The final work on this paper was carried out at the State University of Utrecht
and was supported by the Netherlands Foundation for Mathematics S.M.C.

with financial aid from the Netherlands Organization for the Advancement of
Pure Research (Z.W.O.). The author thanks these institutions for their

hospitality.

1. The Milnor Lattice of a Singularity

Let / : (C, 0) - (C, 0) be the germ of an analytic function with an isolated

singularity at 0. Let Bz denote an open ball of radius 8 in Cn around 0. Then for

sufficiently small ô > 0 and 8 > 0
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V6 f-\b)nBE
is the Milnor fiber of /. The Milnor fiber has the homotopy type of a bouquet of
n — 1-spheres, and therefore its only interesting homology group is

L Hn_ Z),

a free Z-module of rank p. We shall assume throughout this paper that n 3(4).

Then the intersection form < on L is symmetric and satisfies <x, x)e2 Z for
all x g L. Therefore L provided with < is an even lattice, which we call the

Milnor lattice of /. To L is associated a triple of numbers (p0, p+, p_), where

p0, p+, p_ is the number of O's, l's, — l's respectively on the diagonal after a

diagonalisation of the quadratic form over the real numbers.

To L is also associated another invariant, which we define next. Let ker L
denote the kernel of L and L L/ker L the corresponding nondegenerate

lattice. Let L # Hom(L, Z) be the dual lattice ofL, and GL L#/L.ThenGL
is a finite abelian group of order | disc L |. The bilinear form on L induces a

bilinear form
^l - GL x Gl -> Q/Z

on Gl defined by bL(u, v) (u, v) (mod 1) for u, v e L *. This form is called

discriminant bilinearform. Since L is even, there is also an induced quadratic form

qL :GL-> Q/2Z

defined by qL(u) u) (mod 2) for u e L #. It is called discriminant quadratic
form. The pair (GL, bL) can be interpreted geometrically as follows : Let K denote

the link of the singularity /, which is equal to the boundary of V 8,

K dBe n /" 1(0) al>0.

Then GL is the torsion subgroup of //n_2(K, Z) and bL is the classical linking
form (cf. [4]). Moreover p0 is equal to the rank of 7f„_2(X, Z).

There are results in the theory of quadratic forms of Durfee, Kneser, Nikulin
and Wall, that the above invariants are already sufficient to determine the

isomorphism class of the lattice, if the lattice satisfies certain conditions, in

particular is indefinite. From these results V. V. Nikulin has derived the

following theorem (cf. [17]).

Theorem 1.1. The Milnor lattice L is determined as an abstract lattice by

(p0, p+, p_) and the discriminant bilinear form bL (resp. the discriminant

quadratic form qL).

L'Enseignement mathém., t. XXIX, fasc. 3-4. 18
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2. Geometric Bases of the Milnor Lattice

There are certain classes of bases for the Milnor lattice, which are

distinguished by the geometry of the singularity. We shall recall the definition of
these bases (see [12] for more information). For that purpose we shall consider
the semiuniversal deformation of the singularity.

Let Xo / ~ *(()) be the complex analytic hypersurface defined by f Let F :

X - S be a suitable representative of the semi-universal deformation of the germ
(Xo, 0). Denote by D cz S the corresponding discriminant, i.e. the image of the

critical locus of F. Put S' S — D, X' F_1(F) and F F \x.. Then F: X'

- S' is a C°°-fiber bundle, where each fiber is diffeomorphic to the Milnor fiber.

Choose a generic complex line in the affine space containing S, which
intersects S in a complex disc A. Then A intersects the discriminant D in p points
cl9..., cM, which lie in the interior of A. Choose a basepoint s0 on the boundary
of A. Let XSq denote the fiber of F over s0. Then Hn_1(XSQ, Z) is isomorphic
to L and will also be denoted by L. We shall construct bases of L. Each

path c|)f in A' A — {cl9..., from ct to s0 determines an element of L as

follows. The fiber over ct has only one singular point which is an ordinary
double point. Near this point, the fibers are given locally by an equation

The real sphere zx + + zn r

S"'1 {(*!, xn) I x\ + + x2n r2} zf + iyt,

represents after the choice of an orientation a homology class in a fiber over a

point of <\)j near cf. Transport along the path (j>t gives an element e e L satisfying
(e9 e} —2. Such an element is called vanishing cycle. Let A* denote the set

of vanishing cycles. Choosing a path <\)t for each c,- yields a system of p vanishing
cycles.

In order to get a basis of vanishing cycles, there are several possible

restrictions on the choice of paths. In order to define these restrictions and the

corresponding classes ofbases, we need the notion of a simple loop corresponding
to a path c\>i from ct to s0. This is the element of tc1(A/, s0) represented by the loop

xi going from s0 to a point sufficiently near to cL along the path ((% going once

around cf in the positive direction (counterclockwise) and returning to s0 along
the path <()£. This loop induces an automorphism of L, the Picard-Lefschetz-

transformation corresponding to the path cj)^ It is given by the reflection se. on
the orthogonal complement of the vanishing cycle et corresponding to fyi9 i.e. se. is

defined by
Sg.(x) x + <x, e^ßi for x g L
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1) Distinguished Bases

Choose the paths <j)f non-selfintersecting, let any two have only s0 as a

common point and number the paths in the order in which they arrive at s0,

counted clockwise beginning from the boundary of A. Then the corresponding
system of vanishing cycles forms a basis, and a basis of L obtained in this way is

called a distinguished basis. Let denote the set of all distinguished bases of L.
On J** there is an operation of the braid group ZM in p strings, where a

generator af operates as follows: Let B {eu eJ e f* be a distinguished
basis defined by the system of paths {(j^,..., <f)J. The operation is induced by
the following elementary operation on the level of paths (cf. Fig. 1) :

M>1, •••' 4>M) * (4*15 —9 4*i — 1 4)i+lTi? 4>i9 4)i + 2' —9 4)n) •

The operation a,- is then given by

(el9.., ej - (e1?..., ^_1? sei(ei + 1), ef, ei + 2,..., ej

The inverse operation af1 is also denoted by ßi + 1.

A distinguished basis does not only depend on the choice ofpaths, but also on
the choice of orientation of the cycles. The change of orientation of a cycle et
corresponds to an operation yf given by y^.) ej for j # i and yfa) -e\.
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Therefore there is in addition an operation'of (Z/2Z)M on Together one has

an operation of the semidirect product

z* - xi (Z/2Zy

on (both factors considered as subgroups of the symmetric group of ^*).

Proposition 2.1. The operation of Z* on is transitive.

For a proof see [12].

Proposition 2.2. If contains a basis B {el9..., ewith
(ei9 ef) g {0, 1, —1} for i ^ j, then already ZM operates transitively on

&*.

Proof It suffices to show that any basis B g can be transformed into B

by ZM. By the previous proposition there exists an element of Z* which
transforms B to B. We show that for each i there exists an element g Zm such

that ji(B) at(B). If (ej9 ej+1} s, 8 ±1, then a]2 id and

ocf(B) - yi+1(B), ocr3e(B) - y/B).

Now let k be the smallest integer such that <ef, ei+k) / 0, k ^ 0. We consider
the case k > 0, the case k < 0 is analogous. If k 1, we apply the previous
remark. Otherwise the transformation (ai+k_2° - ° ai) (B) interchanges and

and leaves all other basis elements fixed. Hence one can now apply the

above remark. This proves the proposition.
Let B {el9..., ef$ be a distinguished basis. Then

h sei oSeo...o sCm

is the classical monodromy operator of the singularity.

2) Weakly Distinguished Bases

We now impose the only condition on the system of paths that the

corresponding simple loops generate 7r1(A/, s0). Then it can be shown that the

corresponding system of vanishing cycles forms again a basis, and a basis

obtained in this way is called a weakly distinguished basis. Let J10 denote the set of
all weakly distinguished bases.

Since the numbering does not play a role for a weakly distinguished basis, we

have on also an operation of the symmetric group ^ of degree p. Let Z° be
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the group generated by Z* and There are some special elements in Z°

defined as follows : Let B {el9ej be a weakly distinguished basis defined

by a system of paths {cj>1?cj>M}. Let {ij be the corresponding system of simple

loops. For i / j we define a transformation a ,•(/) on the different levels as follows :

4>m) —» (4> 1, fyjT'b 4*/+l> • '

(Tj_, T^) —> (Tj, tjtp ^j + 1 •••> ^fi)

(é?!, —> (é?l5 •••, &j-li Se.(£j), G + 1 ' '

The inverse transformation is denoted by ß,(/). In the case n 3(4) it coincides

with ai(j) on the homology level. Now Z° is generated by the transformations

ocf(/), and change of orientation operations.

Conjecture 2.3 (Gusein-Zade). The operation of Z° on &° is

transitive.

This conjecture can be reduced to a problem in pure combinatorial group
theory, see [12]. It is not known to the author, whether the conjecture is true.

The monodromy group T of the singularity / is the image of tc1(A', s0) under
the natural representation

p : 7t1(A,) s0) — Aut(L).

It is generated by the reflections corresponding to the elements of a weakly
distinguished basis.

The matrix of the bilinear form on L with respect to a basis B of vanishing
cycles is described in the usual way by a graph with (possibly multiple) edges

weighted by + 1 or — 1, where we indicate negative weight by a dotted line.
This graph is called the Dynkin diagram with respect to B.

3. Milnor Lattices and Weakly Distinguished Bases

of Some Special Singularities

We shall consider the Milnor lattices of some specific singularities, namely
the singularities of Arnold's lists and the minimally elliptic hypersurface
singularities. By the singularities of Arnold's lists we mean the singularities, for
which Arnold has given normal forms in [1], i.e. the singularities of the series A,
D, J, £, X, Y, Z, W, T, Q, S, U and V. Most of these series contain singularities
with arbitrary number of moduli. The minimally elliptic hypersurface
singularities can be defined as follows (cf. [5]) : They are the singularities / :
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(C3, 0) -> (C, 0) with p0 + p+ =2. They have been classified by Laufer (cf.

[14]). Both classes of singularities contain in particular all uni- and bimodular
singularities.

By the methods of [11] one can show that all the above singularities have a

distinguished basis B {eu eJ satisfying (eh e}> e {0, 1, — 1} for i ^ j, i.e.

satisfy the conditions of Prop. 2.2. Using the operation of Z°, we look for other
elements of the sets which reveal more of the structure of the Milnor lattice.

In [7] we have listed weakly distinguished bases for the singularities of Arnold's
lists except the series V, which give rise to certain orthogonal splittings of the

corresponding Milnor lattices. From these results we also derived that the

monodromy groups of almost all of these singularities can be characterized

arithmetically, which is even true for a much larger class of singularities (cf.

[8, 9]). The orthogonal splittings enable one to compute in an easy way the

discriminant quadratic forms of the corresponding Milnor lattices. In particular
one gets the following result. Let X(GL) denote the minimal number of generators
of Gl.

Theorem 3.1. The following is true for all singularities of Arnold's lists :

(i) p0 < 2, p_ ^ 5(p0 + p+) -4.
(ii) The number p0 + p + grows proportional to the number of moduli within

each series.

(iii) X(GL) < 3.

For the minimally elliptic hypersurface singularities one can derive the

following result. We first define a graph-theoretical invariant. Let F be a

graph. For a vertex v e H, the degree of v, deg v, is the number of edges

incident with v. Let z(H) be the number of cycles of H of the form

v0, vi9 vr v0, where there exists a number k, 1 ^ k < r, with deg Vi ^ 3

for 1 ^ i ^ k and deg vt 2 otherwise. Define

CT(if) £ (deg
veH

deg v ^ 3

Theorem 3.2.

(i) Let f be a minimally elliptic hypersurface singularity with \i+ 2 (hence

po 0). Then there exists a weakly distinguished basis B {eu e^} of f
satisfying the following properties :

a) Oi,e2> 1»

<e1? ety 0, <^2, et} (e3, et} for 3 < i ^ p.
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b) For Uj g {3,p), i / j, (eh ef) e {0, 1},

(7hematrix (-(eh is therefore an indecomposable symmetric

Cartanmatrix of negative type in the sense of 113]).

c) Let H denote the subgraph of the Dynkin diagram with respect to

{e3,.., ej. Then
1 g{H) < 4

(ii) For all minimally elliptic hypersurface singularities

HGl) ^ 4

More information about the Milnor lattices of these singularities will be

given in a forthcoming paper. Dynkin diagrams corresponding to weakly

distinguished bases satisfying (i) are given for the unimodular singularities in

[10] (here o(H) 1) and for the bimodular in [7].

Theorem 3.3. For each bimodular singularity p0 0, p + 2, X(GL) ^ 3.

Moreover there exists a weakly distinguished basis satisfying Th. 3.2 (i) with

a(H) 2.

Example. Consider the following two bimodular families of singularities :

£is: *3 + y10 + z2 + aoxy1 +

Ôi8: x3 + kz2 + y8 + a0xy6 + a^xy1

No member of the class E18 is topologically equivalent to a member of the class

Q18, since the resolution graphs are different and by Neumann's result [16] the

corresponding links are not diffeomorphic. This implies in particular that the

corresponding Milnor fibers are not diffeomorphic. But the singularities of both
families have the same discriminant 3 and the same signature (p0, p+, p_)

(0, 2, 16). By a result in the theory of-quadratic forms [7, Satz 2.2], there is up
to isomorphism only one lattice with these invariants. So both singularity classes

have the same Milnor lattice L, and an explicit description of L is e.g. given by

L E61E81U1U.
Moreover the sets coincide in both cases, implying also that the

monodromy groups T are the same. Dynkin diagrams with respect to weakly
distinguished bases satisfying the conditions of Theorem 3.2 are given by the
graph of Fig. 2, where the quintuples (a, h, c, d, e) are listed in Table 1. These are
also the only possibilities of a graph of the form of Fig. 2 to be a graph of the
above lattice L. The graph of Fig. 2 satisfies a 2.



272 W. EßELING

However, the sets are different for the two classes of singularities, because
the classical monodromy operators have different orders, namely 30 for E18 and
48 for ß18.

Table 1

a b c d e

2 3 9 2 3

2 3 8 3 3

2 5 6 3 3

3 3 5 3 5

Remark. There are also examples of singularities with different numbers of
moduli which have isomorphic L, T and @}°. Moreover J. Wahl has informed me

that H. Laufer has found an example of two singularities of different topological
type which even have the same resolution graph and hence dififeomorphic links,
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isomorphic Milnor lattices and by [8] isomorphic monodromy groups. These

are the singularities given by

z3 + x4 + y36

and

z2 + y(x12 + y18) •

The resolution graph is in both cases

[3] [0] [0]

• •
-1 -2 -2

where the number in brackets denotes the genus, the other the selfmtersection

number of the corresponding cycle. Here (p05 f*+> H_) (6, 42, 162). However,
the orders of the classical monodromy operators are 36 resp. 38.

4. Distinguished Bases for the Bimodular Singularities

We have seen in the last section that there are bimodular singularities which
have the same Dynkin diagrams with respect to weakly distinguished bases, but
not with respect to distinguished bases. We now turn our attention to the sets

for these singularities. Let us first look at the unimodular case. All exceptional
unimodular singularities have a weakly distinguished basis with a Dynkin
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diagram in Gabrielov's canonical form given by the graph of Fig. 2 setting à

e 1. One can show that these graphs provided with the numbering of Fig. 3

also correspond to distinguished bases. (The graph with this numbering is

obtained from the graph in [7, Abb. 15] by the following transformations: We

indicate only the transformations for the first branch, the other branches are

treated in an analogous manner: ß7, ß6, ß5, ß4, ß3; ß8, ß7, ß6, ß5, ß4;...; ßp+4,

ßp+3, ßp + 2, ßp+i> ßP; y2, y3, -, YP-i). We call this graph Spqr.

Figure 4

The graph R%cde
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A natural form for the Dynkin diagrams of elements of for the bimodular

singularities E18 and g18 is given in Fig. 2. Not all bimodular singularities have a

Dynkin diagram of this type, one has to allow additional edges between eA and e5

and between e6 and e7 (see [7]). But one can show by the methods introduced

later in this section that none of the diagrams of Fig. 2/Table 1 equipped with any

numbering corresponds to a distinguished basis of any of these singularities.

However, there are elements of with a Dynkin diagram of a form which is

very close to the form of Fig. 2 : one has to add only one dotted edge to this

diagram. More precisely we have the following theorem :

Theorem 4.1. All bimodular singularities have a distinguished basis with the

Dynkin diagram shown in Fig. 4, where the values k, X, a, b, c, d, e are

given in Table 2.

The graph Rllcde is defined for a, b, c ^ 2, d, e ^ 1, k, X e {0, 1} and X ^ k.

Here k 0( 1 means that there is no edge (is an edge) between ed + e and ea+d + e(X

0(1) analogously). In Table 2 the values of d and e can be interchanged and for

k d e 1, X 0 all values b\ c' > 2 with b' + c' b + c (b, c in the

table) are possible. Finally i, j, k ^ 0.

We shall examine the graph Ralcde more closely. Such a labelled weighted
graph defines in an obvious way a lattice and a basis in this lattice (setting
<<?t, et} — 2 for all vertices e£). The rank rk(R*lcde) and discriminant disc(Rabcde)

of the lattice defined by R^lcde are given by the following general formulas :

rk(R*lcde) a + b + c + d + e— 1 |i,
disc (Ralcde)•

{[(1 + k +A,)c — 1] (ab — a — b) — (1 +K + X)ab — Ka(c+ 1)

-Xb(c + 1) + (k -X)c} de - [(c-I)ab-c(a + b)](d + e).

Such a graph R also defines a Coxeter element CR which is by definition the

product of reflections corresponding to the vertices eh

sei °... o

In the case that the graph is the Dynkin diagram of a distinguished basis, the
Coxeter element CR corresponds to the classical monodromy operator. Now by
[2, Ch. V.6, Exercice 3] the characteristic polynomial PR(t) of CR can be
computed as follows
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Table 2

Sing. K X a bed e Sing. K X a b c d e

J3 i 0 0 2 3 8+i 2 2 E.8 0 0 2 3 9 2 3
J J 1

0 0 2 3 8 2+i 2 0 0 2 3 8 3 3

Z1 i 0 0 2 4 6+i 2 2 E.9 0 0 2 3 10 2 3
1 1

0 0 2 4 6 2+i 2 0 0 2 3 9 2 4

Q2,i 0 0 3 3 5+i 2 2
0 0 2 3 8 3 4

0 0 3 3 5 2+i 2 E20 0 0 2 3 1 1 2 3

W] i 0 0 2 5 5+i 2 2
0
n

0
f)

2
0

3
q

9
o

2
q

5

1
> 1

1 0 2 6 6 I +i 1
u u z J o J D

W i>0 0 0 2 5 5 2+i 2 Z1 7
0
0

0

0
n

2

9

4
/.

7
c

2
q

3
qJ 1

i=j+k-8
1

1

0

0

2

2
2+j 2+k 1

5 7 1+i
1

1

Z1 8

u

0

Z

2 4

0

8

J

2

J

3

0 0 2 4 7 2 4

S1 i 0 0 3 4 Vi 2 2
0 0 2 4 6 3 4

J 0 3 5 5 J+i 1 Z19

^16

0 0 2 4 9 2 3

si,i- 1>0

i=j+k-6

0
1

1

0

0

0

3

3

3

4 4 2+i
2+j 2+k 1

4 6 ] +i

2

1

1

0
0

0

0

0

0

2

2

3

4

4

3

7

6

6

2

3

2

5

5

3'
0 0 3 3 5 3 3

Ul,i
i=j +k-5

]

1

0

0

4

4
2+j 2+k I

4 5 1+i
1

1

3.7 0

0

0

0
0

0

3

3

3

3

3

3

7

6

5

2

2

3

3

4

4

Ui 1

J J 4 5 5 1 1

Q18 0 0 3 3 8 2 3
1 >1 0

0

0

0

3

3

3

3

6

5

2

3

5

5

W.7 0 0 2 5 6 2 3
1 0 2 6 7 1 2

W18 0 0 2 5 7 2 3

]

1

0

0

2

2

7

6

7

7

1

1

2

3

S16 0 0 3 4 5 2 3
1 0 3 5 6 1 2

S17 0 0 3 4 6 2 3
1

1

0

0

3

3

6

5

6

6

•1

1

2

3

U16
1

1

0
1

4

5

5

5

5

5

1

1

2

1



MILNOR LATTICES AND GEOMETRIC BASES 277

PR(t) det(r. 1 — CR)

1 + t -<el5 e2> t -(e1, eP) t

1 + t~~ (e2> el

In particular

PR( 1) (-If disc(R).

One can associate a directed graph R' to R as follows: Replace each edge

between vertices et and ej with i < j by an arrow of the same type (dotted or not)
pointing to ep and omit the numbering of the vertices. Then PR(t) depends only
on R' and not on the special admissible numbering. Using the methods of [6], we
have calculated PR(t) for R R*£cde and obtained the following result. Let /

{a, h, c, d, e) and for J c I define SJ to be the formal expression

P 0 — (1 + K T X,)f4 + 3t3 — 6£2 + 41 — 1

P{a} ~ (1+k)U — (1 — K + 2A,)t3 + (3 —K + 2A,)t2 — 31 + 1 — X,

P{b} ~ (l+7,)t4 — (1+K)t3 + (3 + X)t2 — (3 — k + X)t 4- 1—k,
P{c} — (K + X,)f4 — It3 + (2 + K + X,)f2 — (1+K -\-X)t,

P{d} P {e) — (l+K + ^)t4,

P{a, b}
t4 — (1—K — X)t3 — (K + ?i)t2 + It — (1— K — À,)

P {a, c}
Kf4 + (1—K + À,)t3 — (1 +^)t2 + (1 + K.)t + X

P{b,c} ^t4 + t3 — (1—K + 2A.)t2 -f (1—K + 2A,)f + K,

Li-
je J

Then the formal expression for PR(t) is

pR(t) (t-iy5

where



278 W. EßELING

P{a, d} — P{a, ej ~ (1+k)£4 — (1+K —2X)t3 + (1 + k — 2X)t2 + X,

P{b, d} — P{b, e} — (1+X)t4 — (1— K)f3 + (1 —X)t2 — (K — X)t + K,
P{c,d} P{c, e} (K + + (2 — K — X)t2 — (2 — K — X)t + 1,

P{d, e) — (K + + t3
•

Now given the characteristic polynomial of the classical monodromy
operator of a bimodular singularity, one can compute the values of k, X, a, b, c, d, e

for which the polynomial above coincides with it. In this way one gets

Supplement to Theorem 4.1. Table 2 (the remarks after Theorem 4.1 taken

into account containsfor each bimodular singularity all possible values k, X, a, b,

c, d, e such that the graph Ralcde a Dynkin diagram with respect to a

distinguished basis of the singularity.

The graph Spqr is related to the graph Ralcde in the following way. The group

Z* - xi (Z/2ZY

acts also on the set of all labelled graphs weighted by ± 1 with \x vertices. We

denote equivalence under Z* by Then

Pabcle ^P-a°b, c+ 1,1, e-1 (ß^2)
n 00 o
*^abc 11 ^ ^a, b, c + 1

Pabcdl ~ Pa°b, c+ 1, d- 1, 1 (d^ 2)

(Proof: ß3, ß4,..., ßp ßM, ßM_i, yp-2).

Therefore Theorem 4.1 and the supplement above imply in particular that

none of the bimodular singularities has a distinguished basis with a Dynkin
diagram of type Spqr.

A closer study of Table 2 yields the following observation, with which we

want to conclude. Let R^cde be a graph of a singularity X of Table 2. Substract 1

from one of the following parameters :

c, d, e for the E/J-, Z-, Q- series

b, c, d, e for the W-, S- series

a, b, c, d, e for the U- series

such that the new parameters a, b, c, J, e still satisfy a, b, c ^ 2, (7, e ^ 1. Then

either R?---^ is again a graph of Table 2, say of the singularity 7, and we relate X
and 7 by an arrow X -> 7. Or it is equivalent under Z* to a graph of the form
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Spqr which does not correspond to a distinguished basis of any unimodular
singularity. So the graphs of the bimodular singularities cannot be simplified by
the action of Z* to a graph Spqr, but the graphs immediately "below" them can.
On the other hand the relations one gets by the arrows are exactly the adjacency
relations of Laufer [15] between bimodular singularities with the difference of
the Milnor numbers being equal to 1.
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