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MILNOR LATTICES AND GEOMETRIC BASES
OF SOME SPECIAL SINGULARITIES %)

by Wolfgang EBELING

INTRODUCTION

The subject of this note are certain invariants associated to the topology of a
complex hypersurface singularity /' : (C", 0) — (C, 0),n = 3(4), which are defined
via the Milnor fibration and deformation theory. These invariants are the
homology group of the Milnor fiber of middle dimension n — 1 as an abelian
group (determined by the Milnor number p), the signature (o, B4, p-) of the
intersection form, the homology group of dimension n — 2 of the link of the
singularity as an abelian group, the linking form, the intersection form, weakly
distinguished bases, distinguished bases. The order reflects the relative strength
of these invariants, but it is not always a strict order: the knowledge of the
intersection form turns out to be equivalent to the knowledge of the invariants
listed before.

The aim of this note is to give a survey of some recent results on these
invariants for special classes of singularities. In [7] we studied some of these
invariants for the singularities of Arnold’s lists. Here we summarize these results
and give additional information. We also consider another class of singularities,
namely the minimally elliptic hypersurface singularities as studied by Laufer
[14]. We state some general features about the above invariants for these two
classes of singularities. One of the problems is to find a normal form of the
Dynkin diagrams with respect to bases of a certain type for a whole class of
singularities. We indicate such a form with respect to weakly distinguished bases
for the minimally elliptic hypersurface singularities. But it turns out that all the
above invariants except the class of distinguished bases are to weak to
distinguish between singularities of different topological type. We also discuss a
canonical form of Dynkin diagrams with respect to distinguished bases for the
uni- and bimodular singularities, which are contained in both classes of
singularities mentioned above.

') This article has already been published in Neeuds, tresses et singularités, Mono-
graphie de ’Enseignement Mathématique N° 31, Genéve 1983, p. 129-146.
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The results were obtained by the following method:

a) Find a distinguished basis for the given singularity. This is done using
methods of Gabrielov, especially [11]. But the Dynkin diagrams of these
bases are very complicated and contain many cycles.

b) Transform this diagram into a “nicer” form, where the information one is
looking for is more transparent.

¢) Analyse this diagram.

The paper is organized as follows. In section 1 + 2 we recall the definitions of
the invariants and the basic relations among them and discuss the admissible
transformations for b) above. Section 3 is devoted to a study of the weaker
invariants including weakly distinguished bases of the above mentioned
singularities. In section 4 we consider distinguished bases of the uni- and
bimodular singularities. A

There are also other invariants associated to singularities such as e.g. the
monodromy groups. For a discussion of the relations among the various
invariants and of their relative strength with respect to geometrical problems we
refer to the expository article of E. Brieskorn [3]. For a description of the
monodromy groups we refer to [8,9]. There are also other interesting
phenomena related to the above invariants in the class of bimodular singularities
such as an extension of Arnold’s strange duality. This is the subject of a joint
paper with C. T. C. Wall, which is in preparation.

This paper is an extended version of the talk given by the author at the
conference on the “Topology of complex singularities” at Les Plans-sur-
Bex/Switzerland, March 27-April 2, 1982. The author thanks the organizers of
this meeting, especially C. Weber, for their invitation. He is also grateful to E.
Brieskorn for helpful discussions, which influenced the presentation in section 2.
The final work on this paper was carried out at the State University of Utrecht
and was supported by the Netherlands Foundation for Mathematics S.M.C.
with financial aid from the Netherlands Organization for the Advancement of
Pure Research (Z.W.0O.). The author thanks these institutions for their
hospitality.

1. THE MILNOR LATTICE OF A SINGULARITY

Let f:(C" 0) — (C, 0) be the germ of an analytic function with an isolated
singularity at 0. Let B, denote an open ball of radius € in C" around 0. Then for
sufficiently small 6 > 0 and € > 0
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Vi=f"®)nB,

is the Milnor fiber of f. The Milnor fiber has the homotopy type of a bouquet of
n — 1-spheres, and therefore its only interesting homology group is

L = Hn—l(V:Sa Z) ’

afree Z-module of rank p. We shall assume throughout this paper that n = 3(4).
Then the intersection form <, > on L is symmetric and satisfies {x, x> € 2 Z for
all x € L. Therefore L provided with {, > is an even lattice, which we call the
Milnor lattice of f. To L is associated a triple of numbers (u,, t 4, L_), wWhere
Ho» Ly, M_ 1s the number of O0’s, I's, —1’s respectively on the diagonal after a
diagonalisation of the quadratic form over the real numbers.

To L is also associated another invariant, which we define next. Let ker L

denote the kernel of L and L = L/ker L the corresponding nondegenerate
lattice. Let L* = Hom(L, Z) be the dual latticeof L,and G, = L*/L.Then G,

is a finite abelian group of order | disc L |. The bilinear form on L induces a

bilinear form
b.:G, x G, - Q/Z

on G, defined by bL(a, ;) = {u,vy (mod 1)foru,ve L*. This form is called
discriminant bilinear form. Since Lis even, there is also an induced quadratic form

q.: G, — Q/2Z

defined by qL(;) = {u,uy(mod 2)forue L*. 1tis called discriminant quadratic
form. The pair (G,, b,) can be interpreted geometrically as follows : Let K denote

the link of the singularity f, which is equal to the boundary of 75,
K =8B, f~40) = aV,.

Then G, is the torsion subgroup of H, ,(K, Z) and b, is the classical linking
form (cf. [4]). Moreover p, is equal to the rank of H, ,(K, Z).

There are results in the theory of quadratic forms of Durfee, Kneser, Nikulin
and Wall, that the above invariants are already sufficient to determine the
isomorphism class of the lattice, if the lattice satisfies certain conditions, in.
particular is indefinite. From these results V. V. Nikulin has derived the
following theorem (cf. [17]).

THEOREM 1.1. The Milnor lattice L is determined as an abstract lattice by

(Hos Ly W_) and the discriminant bilinear form b, (resp. the discriminant
quadratic form gq; ).

L’Enseignement mathém., t. XXIX, fasc. 3-4. 18
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2. GEOMETRIC BASES OF THE MILNOR LATTICE

There are certain classes of bases for the Milnor lattice, which are
distinguished by the geometry of the singularity. We shall recall the definition of
these bases (see [ 12] for more information). For that purpose we shall consider
the semiuniversal deformation of the singularity.

Let X, = f~1(0) be the complex analytic hypersurface defined by f. Let F:
X — Sbeasuitable representative of the semi-universal deformation of the germ
(X o, 0). Denote by D < S the corresponding discriminant, i.e. the image of the
critical locus of F. Put 8’ = S—D, X' = F"}S)and F' = F|y.. Then F': X’
— S’ is a C®-fiber bundle, where each fiber is difftfomorphic to the Milnor fiber.

Choose a generic complex line in the affine space containing S, which

intersects S in a complex disc A. Then A intersects the discriminant D in p points
Cy, - C,, Which lie in the interior of A. Choose a basepoint s, on the boundary

of A. Let X, denote the fiber of F over so. Then H,_ (X, , Z) is isomorphic
to L and will also be denoted by L. We shall construct bases of L. Each
path ¢, in A" = A — {cy, .., ¢,} from ¢; to s, determines an element of L as
follows. The fiber over c; has only one singular point which is an ordinary
double point. Near this point, the fibers are given locally by an equation

2 2 2
The real sphere Zit oz =1t

S" = {(xgy e X) | XT + o + XF =1}, z = X + Y,

represents after the choice of an orientation a homology class in a fiber over a
point of ¢, near ¢;. Transport along the path ¢, gives an element e € L satisfying
(e, ey = —2.Such an element is called vanishing cycle. Let A* denote the set
of vanishing cycles. Choosing a path ¢, for each ¢; yields a system of p vanishing
cycles.

In order to get a basis of vanishing cycles, there are several possible
restrictions on the choice of paths. In order to define these restrictions and the
corresponding classes of bases, we need the notion of a simple loop corresponding
to a path ¢, from c; to s,. This is the element of w,(A’, s,) represented by the loop
T; going from s, to a point sufficiently near to c; along the path ¢;, going once
around ¢; in the positive direction (counterclockwise) and returning to s, along
the path ¢, This loop induces an automorphism of L, the Picard-Lefschetz-
transformation corresponding to the path ¢,. It is given by the reflection s, on
‘the orthogonal complement of the vanishing cycle e; corresponding to ¢, 1.€. 5,18

 defined by

Sex) = x + {x,ee; for xelL,
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1) Distinguished Bases

Choose the paths ¢; non-selfintersecting, let any two have only s, as a
common point and number the paths in the order in which they arrive at s,,
counted clockwise beginning from the boundary of A. Then the corresponding
system of vanishing cycles forms a basis, and a basis of L obtained in this way is
called a distinguished basis. Let #* denote the set of all distinguished bases of L.

On #* there is an operation of the braid group Z, in p strings, where a
generator o; operates as follows: Let B = {e, .., e,} € #* be a distinguished
basis defined by the system of paths {¢,, ..., ¢,}. The operation a; is induced by
the following elementary operation on the level of paths (cf. Fig. 1):

(D1 ey (bp) = (O Pi g, Oy 1T D, Qitas e (bp) .
The operation «; is then given by
(€1s ws ep) = (eg, s €1, Sef€iv1), € €i4hg . e)) .

The inverse operation o; ! is also denoted by B, ;.

FIGURE 1

A distinguished basis does not only depend on the choice of paths, but also on
the choice of orientation of the cycles. The change of orientation of a cycle e;
corresponds to an operation v; given by Yile;) = e;forj # iand y(e) = —e,.
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Therefore there is in addition an operation of (Z/2Z)* on #*. Together one has
an operation of the semidirect product

Z* = Z, x (Z)2Z)"

on #* (both factors considered as subgroups of the symmetric group of %*).

PROPOSITION 2.1.  The operation of Z* on 2R* s transitive.
For a proof see [12].
ProposITION 2.2. If #* contains a basis B = {ey, ... e,} with

(e e;pe{0,1, =1} for i+#j, then already Z
RB*.

. operates transitively on

Proof. It suffices to show that any basis B € #* can be transformed into B
by Z, By the previous proposition there exists an element of Z* which -
transforms B to B. We show that for each i there exists an element o, € Z . such
that y{(B) = o(B). If (e; e;;,) = &, € = + 1, then o}* = id and

o3(B) = v;+1(B), o7 *(B) = vB).

Now let k be the smallest integer such that <{e; ¢; . ,> # 0, k # 0. We consider
the case k > 0, the case k < 0 is analogous. If k = 1, we apply the previous
remark. Otherwise the transformation (o; ,,_, © ... o ;) (B) interchanges e; and
e; - and leaves all other basis elements fixed. Hence one can now apply the
above remark. This proves the proposition.

Let B = {e,, .., ¢,} be a distinguished basis. Then

h = s, © Sey © e 0 Se,

is the classical monodromy operator of the singularity.

2) Weakly. Distinguished Bases

We now impose the only condition on the system of paths that the
corresponding simple loops generate ©,(A’, so). Then it can be shown that the
corresponding system of vanishing cycles forms again a basis, and a basis
obtained in this way is called a weakly distinguished basis. Let ° denote the set of
all weakly distinguished bases.

Since the numbering does not play a role for a weakly distinguished basis, we
‘have on #° also an operation of the symmetric group &%, of degree . Let Z° be
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the group generated by Z* and &,. There are some special elements in Z°
defined as follows: Let B = {ey, ..., e,} be a weakly distinguished basis defined
by a system of paths {d;, ..., d,.}. Let {7;} be the corresponding system of simple
loops. Fori # jwe define a transformation a.(j) on the different levels as follows :

(q)l’ e d)p.) - (d)l) et d)j-— 1> d)jtia ¢j+ 15+ (bp.) ’

(Tps v Tp) = (Tp oo Ty 1o Ti " TiTi T 15 o0 Ty 5

(€1, s €)) = (€1, e €51, 5e(€)) €4 15 s €) -

The inverse transformation is denoted by B,(j). In the case n = 3(4) it coincides
with a,(j) on the homology level. Now Z° is generated by the transformations
a,(j), &, and change of orientation operations.

CONJECTURE 2.3 (Gusein-Zade). The operation of Z° on #° s
transitive.

This conjecture can be reduced to a problem in pure combinatorial group
theory, see [12]. It is not known to the author, whether the conjecture is true.

The monodromy group I' of the singularity f is the image of m;(A’, so) under
the natural representation |

p: (A, s9) = Aut(L) .

It is generated by the reflections corresponding to the elements of a weakly
distinguished basis.

The matrix of the bilinear form on L with respect to a basis B of vanishing
cycles is described in the usual way by a graph with (possibly multiple) edges
weighted by +1 or —1, where we indicate negative weight by a dotted line. |
This graph is called the Dynkin diagram with respect to B.

3. MILNOR LATTICES AND WEAKLY DISTINGUISHED BASES
OF SOME SPECIAL SINGULARITIES

We shall consider the Milnor lattices of some specific singularities, namely
the singularities of Arnold’s lists and the minimally elliptic hypersurface
singularities. By the singularities of Arnold’s lists we mean the singularities, for
which Arnold has given normal forms in [1], i.e. the singularities of the series A,
D,J,E,X,Y,Z, W, T,Q,S, Uand V. Most of these series contain singularities
with arbitrary number of moduli. The minimally elliptic hypersurface
singularities can be defined as follows (cf. [5]): They are the singularities f:
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(C3,0) —» (C,0) with po + p, = 2. They have been classified by Laufer (cf.
[14]). Both classes of singularities contain in particular all uni- and bimodular
singularities.

By the methods of [11] one can show that all the above singularities have a
distinguished basis B = {ey, .., e,} satisfying <e;, e;> € {0, 1, —1} for i # j, ie.
satisfy the conditions of Prop. 2.2. Using the operation of Z°, we look for other
elements of the sets #°, which reveal more of the structure of the Milnor lattice.
In [7] we have listed weakly distinguished bases for the sihgularities of Arnold’s
lists except the series V, which give rise to certain orthogonal splittings of the
corresponding Milnor lattices. From these results we also derived that the
monodromy groups of almost all of these singularities can be characterized
arithmetically, which is even true for a much larger class of singularities (cf.
[8, 9]). The orthogonal splittings enable one to compute in an easy way the
discriminant quadratic forms of the corresponding Milnor Jattices. In particular

one gets the following result. Let A(G;) denote the minimal number of generators
of Gj.

THEOREM 3.1.  The following is true for all singularities of Arnold’s lists:

(1) po <2, p- 2 Spot+uy) —4

(i1) The number W, + R, grows proportional to the number of moduli within
each series.

(iii) MGp) < 3.

For the minimally elliptic. hypersurface singularities one can derive the
following result. We first define a graph-theoretical invariant. Let H be a
graph. For a vertex ve H, the degree of v, deg v, is the number of edges
incident with v. Let z(H) be the number of cycles of H of the form
Vo, Uy, - U, = Uy, Where there exists a number k, 1 < k < r, with degv; > 3
for 1 < i < k and degv; = 2 otherwise. Define |

oH) = ) (degv—2)+ z(H).

veH
degv 2 3

THEOREM 3.2.
(i) Let f be aminimally elliptic hypersurface singularity with w, = 2 (hence

o =0). Then there exists a weakly distinguished basis B = {ey, ..,e,} of f
satisfying the following properties :

a) <e1, 62> = 1,
(e, ey = 0, ey ) = ey, e,y for 3Li<
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b) For ije{3,.,u},i#j, {e,e;e{0, 1},
(The matrix (—<e; €;))3<i j<, 1sthereforean indecomposable symmetric
Cartanmatrix of negative type in the sense of [13]).

¢) Let H denote the subgraph of the Dynkin diagram with respect to

{es, .., e,). Then
1 < o(H) <4.

(ii) For all minimally elliptic hypersurface singularities
MGy < 4.

More information about the Milnor lattices of these singularities will be
given in a forthcoming paper. Dynkin diagrams corresponding to weakly
distinguished bases satisfying (i) are given for the unimodular singularities in
[10] (here o(H)=1) and for the bimodular in [7].

THEOREM 3.3.  For each bimodular singularity p, = 0,p. = 2, MGp) < 3.

Moreover there exists a weakly distinguished basis satisfying Th. 3.2 (1) with
o(H) = 2.

Example. Consider the following two bimodular families of singularities:

Eig: x>+ 3% + 22 + aypxy” + a,xy®
Qis: x> + yz2 + ¥ + agxy® + a;xy’ .

No member of the class E g is topologically equivalent to a member of the class
Q. s, since the resolution graphs are different and by Neumann’s result [16] the
corresponding links are not diffeomorphic. This implies in particular that the
corresponding Milnor fibers are not difftomorphic. But the singularities of both
families have the same discriminant 3 and the same signature (Mg, o, 1)
= (0, 2, 16). By a result in the theory of-quadratic forms [ 7, Satz 2.2], there is up
to isomorphism only one lattice with these invariants. So both singularity classes
have the same Milnor lattice L, and an explicit description of L is e.g. given by

L:E6_LE8_LU._LU.

Moreover the sets %° coincide in both cases, implying also that the
monodromy groups I' are the same. Dynkin diagrams with respect to weakly
distinguished bases satisfying the conditions of Theorem 3.2 are given by the
graph of Fig. 2, where the quintuples (a, b, ¢, d, e) are listed in Table 1. These are
also the only possibilities of a graph of the form of Fig. 2 to be a graph of the
above lattice L. The graph of Fig. 2 satisfies ¢ = 2.
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However, the sets #* are different for the two classes of singularities, because
the classical monodromy operators have different orders, namely 30 for E, g and
48 for Q5.

FIGURE 2

TABLE 1
a b ¢ d e
2 3 9 2 3
2 3 8 3 3
2 5 6 3 3
3 3 5 3 5

Remark. There are also examples of singularities with different numbers of
moduli which have isomorphic L, I and #°. Moreover J. Wahl has informed me
that H. Laufer has found an example of two singularities of different topological .
type which even have the same resolution graph and hence diffeomorphic links, |
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isomorphic Milnor lattices and by [8] isomorphic monodromy groups. These
are the singularities given by

23+ x* + y36
and

22 + y(x12+y18).

The resolution graph is in both cases

(31 [0] [0]
o—0—0,
-1 -2 -2

where the number in brackets denotes the genus, the other the selfintersection
number of the corresponding cycle. Here (pg, 4, 1_) = (6, 42, 162). However,
the orders of the classical monodromy operators are 36 resp. 38.

4. DISTINGUISHED BASES FOR THE BIMODULAR SINGULARITIES

We have seen in the last section that there are bimodular singularities which
have the same Dynkin diagrams with respect to weakly distinguished bases, but
not with respect to distinguished bases. We now turn our attention to the sets #*
for these singularities. Let us first look at the unimodular case. All exceptional
unimodular singularities have a weakly distinguished basis with a Dynkin

p+1
‘\‘{2

p+g+1l

- v +
p+q+;¥ P

r
3 . D FIGURE 3
5 The graph S,

p+g+r
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diagram in Gabrielov’s canonical form given by the graph of Fig. 2 setting d
= e = 1.One can show that these graphs provided with the numbering of Fig. 3
also correspond to distinguished bases. (The graph with this numbering 1s
obtained from the graph in [7, Abb. 15] by the following transformations: We
indicate only the transformations for the first branch, the other branches are
treated in an analogous manner: B, Bg, Bs, Bas B3: Bs, B> Bss Bss Bas 5 Bp+a
Brt3> Bpras Bpats Bps Yar Y35 - ¥Yp—1)- We call this graph S,

c1+1’w

d+2‘

c

()
a+d+e

\w-eﬁrl
a+b+c+d+e-2 :
b
at+b+c+d+e-3 !
a+b+c+d+e-1 a+blc+d+e-4 atb+d+e-1 |
|

d+e+1

FIGURE 4
The graph R:l};cde
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A natural form for the Dynkin diagrams of elements of 2° for the bimodular
singularities E, 3 and Qg is given in Fig. 2. Not all bimodular singularities have a
Dynkin diagram of this type, one has to allow additional edges between e, and es
and between e, and e, (see [7]). But one can show by the methods introduced
later in this section that none of the diagrams of Fig. 2/Table 1 equipped with any
numbering corresponds to a distinguished basis of any of these singularities.
However, there are elements of #* with a Dynkin diagram of a form which is
very close to the form of Fig. 2: one has to add only one dotted edge to this
diagram. More precisely we have the following theorem:

" THEOREM 4.1.  All bimodular singularities have a distinguished basis with the
Dynkin diagram R .. shown in Fig. 4, where the values x, A, a,b,c,d, e are
given in Table 2

The graph R%}. ;. is deﬁned fora,b,c 2 2,d,e > 1,x,Ahe {0, 1} and A <
Here k = 0(1) means that there is no edge (1s an edge) betweene,, . ande, ;.. (7»
=0(1) analogously). In Table 2 the values of d and e can be interchanged and for
Kk=d=¢e=1,A=0allvalues ¥, ¢’ > 2withb' + ¢ = b + ¢ (b, c in the
table) are possible. Finally i, j, kK > 0.

We shall examine the graph R% . more closely. Such a labelled weighted
graph defines in an obvious way a lattice and a basis in this lattice (setting
(e, e;y = —2forallvertices e,). The rank rk(R%}.,.) and discriminant disc(R*}.,.)
of the lattice defined by R%}.,, are given by the following general formulas:

rk(Ripese) = a+b+c+d+e—1 = H,
disc(Rpeae) = (—1* 1.
{[(l+x+X)c—1](ab—a—b) — (1+x+Nab — xa(c+1)
—Ab(c+1) + (k—A)c} de — [(c—1)ab—c(a+b)] (d+e).

Such a graph R also defines a Coxeter element C, which is by definition the
product of reflections corresponding to the vertices e;,

CR — Sel 0...OSe“.

In the case that the graph is the Dynkin diagram of a distinguished basis, the
Coxeter element C corresponds to the classical monodromy operator. Now by

[2, Ch. V.6, Exercice 3] the characteristic polynomial Pg(t) of C, can be
computed as follows
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Pty = det(t.1—-Cyg)
= | 1+t —{e, e )t .. —<¢1; eyt
_<82a el> 1+t
—<eyer) o 141t

In particular
Pg(1) = (—1)* disc(R) .

One can associate a directed graph R’ to R as follows: Replace each edge
between vertices e; and e; with i < j by an arrow of the same type (dotted or not)
pointing to e;, and omit the numbering of the vertices. Then Pg(t) depends only
on R" and not on the special admissible numbering. Using the methods of [6], we
have calculated Pg(t) for R = R%.,. and obtained the following result. Let I
= {a, b, ¢, d, e} and for J < I define ZJ to be the formal expression

2

jed

Then the formal expression for Pg(t) is

Pg(t) = (f—l)_5< 2 (Pj(t)t"" — P, (%) t“+5_”>>,

#J <2

Py = (14+x+M)* + 3t3 — 61 + 4t — 1,

Pu = —(1+0)t* — (1—k+20> + B—k+20)% — 3t + 1—1,
Py = — (1+Mt* — 1+ + B+0M2 — G—x+M)t + 1—x,
Py = — (ck+Mt* =26 + Q+x+M* — (1+x+M),
Py = Py = — (1+x+M*, |

Poy = t* — (1—k—Me> — (k+0)2 + 2t — (1—x—}),
Poog=1xt* + (1—x+M3 — (1+0M)2 + (1+x)t + A,
Pp o = M+ 12 — (1—k+2M% + (1—k+20)¢ + x,
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Pog=Puo= 04+t — 1+c=20 + (1+k—20)2 + A,
Pogy = Ppo = (140 — 1—0)83 + (1—A)2 — (k—N)t + «,
Pioa = Pe o = (K+Mt* + Q—x—Mt2 — Q—x—A)t + 1,

Py o = (k+Mt* + 12,

Now given the characteristic polynomial of the classical monodromy
operator of a bimodular singularity, one can compute the valuesof k, A, a, b, ¢, d, e
for which the polynomial above coincides with it. In this way one gets

SUPPLEMENT TO THEOREM 4.1.  Table 2 (the remarks after Theorem 4.1 taken
into account ) contains for each bimodular singularity all possible values «, A, a, b,
¢, d, e such that the graph RX%.,. is a Dynkin diagram with respect to a
distinguished basis of the singularity.

KA

The graph S, is related to the graph R}, in the following way. The group

par

Z* = Z, x (Z]2Z)"

acts also on the set of all labelled graphs weighted by + 1 with p vertices. We
denote equivalence under Z* by ~. Then

00 00

Ripeie ~ R, b,' c+1,1,e—1 (e=2)
00

RabCIINSa, b,c+1
00 00

RabchNRa, b,c+1,d—1,1 (d>2)

(PVOOf' B3> 84’ M ﬁw Bpa Bp-—b Yp—z)'

Therefore Theorem 4.1 and the supplement above imply in particular that
none of the bimodular singularities has a distinguished basis with a Dynkin
diagram of type S,,,.

A closer study of Table 2 yields the following observation, with which we
want to conclude. Let R%} . be a graph of a singularity X of Table 2. Substract 1

from one of the following parameters:

c,d, e for the E/J-, Z-, Q- series
b,c,d, e for the W-, S- series
a, b,c,d, e for the U- series

such that the new parameters a, b, ¢, d, e still satisfy a, b, ¢ > 2,d, ¢ > 1. Then
either R;‘%m is again a graph of Table 2, say of the singularity Y, and we relate X
and Y by an arrow X — Y. Or it is equivalent under Z* to a graph of the form
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S, Which does not correspond to a distinguished basis of any unimodular
singularity. So the graphs of the bimodular singularities cannot be simplified by
the action of Z* to a graph S ,,,, but the graphs immediately “below” them can.
On the other hand the relations one gets by the arrows are exactly the adjacency
relations of Laufer [15] between bimodular singularities with the difference of
the Milnor numbers being equal to 1. '
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