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FREE GROUPS IN LINEAR GROUPS

by Pierre de la Harpe

This paper is an introduction to a theorem due to J. Tits [T]. It owes very
much to conversations with N. A'Campo. The theorem is the following : let n be

an integer, n ^ 2, and let T be a subgroup of GL(n, C) ; then either T contains a

subgroup of finite index which is solvable, or T contains a free group on two

generators. This is a deep result, and Tits' proof has two important ingredients : a

skilfull use of an easy combinatorial lemma, and the theory of affine algebraic

groups defined over various fields (not necessarily algebraically closed, not
necessarily subfields of C). Our aim below is to prove a few special cases of the

theorem, for which the first ingredient only is essentially sufficient.
We describe examples of free subgroups of GL(rt, C) in section 1, and then

comment on the statement of Tits' theorem. Section 3 is a digression on

hyperbolic geometry, introducing section 4 where the theorem is first proved for
subgroups of GL(2, R) and then discussed for GL(2, C). Finally, we indicate a

proof of the following particular case of Tit's theorem : let T be a subgroup of
GL(n, C) such that

(i) any subgroup of finite index in T is not solvable, and acts irreducibly on C",

(ii) T contains a diagonalisable matrix with at least two eigenvalues of distinct
moduli ;

then T contains non abelian free groups. This relies on an important lemma 1, for
which we refer to section 3 of [T], and on easy arguments given in section 5

below. Y. Guivarch' has announced a new proof of that lemma 1, which

consequently holds under weaker hypothesis ; modulo this we indicate how (ii)
can be replaced by

(ii') T is not relatively compact in GL(n, C).

In particular, it is enough to assume

(ii") T is discrete in GL(n, C).

1. Early examples

Infinite groups were first considered around 1870, among others by C.

Jordan (in 1868 according to [B]) and by F. Klein (who proposed his Erlangen

L'Enseignement mathém., t. XXIX, fasc. 1-2. 9



130 P. DE LA HARPE

programme in 1872). Examples of free groups associated to geometrical
situations were known shortly afterwards. We shall describe three of them,

though without trying to recover any flavour of the original description. We need

for the first two a critérium used in many occasions by Klein, but formulated as

follows much later. (See §111.12 in [LS] for references, and [Hm] for related

criteria.)

Klein's critérium table-tennis lemma). Let G be a group acting on a

set S, let Tu r2 be two subgroups of G and let T be the subgroup they

generate; assume that rx contains at least three elements. Assume that there

exist two non empty subsets SUS2 in S with S2 not included in S1 suchthat

y(S2) cz S1 for all yeF1 — {1} and y(Sj) c S2 for all yeV2 — {1}.
Then T is isomorphic to the free product Tx * T2.

Proof Let us check that any non empty reduced word w spelled out with
letters from (Fx — {1}) u (F2 — {1}) does not act as the identity on S. In case one
has w a1ß1a2ß2... otk with al5..., g T1 — {1} and ßl5..., ßfc_x g T2 — {1},
then w(S2) a and 1. If w ß^ afeßfc, let — (1); then
awa~1 7^ 1 as above and w ^ 1. If w akßk, let a g T1 — {1, a^1} and

argue with awa-1. The last case w «= ßxa2 xocfc is similar.

Example 1 : a subgroup of the modular group. Let G GUI, C) be acting
by fractional linear transformations on the Riemann sphere C u {go}. Then

Indeed, consider first the subgroup Tl of G generated by g, the subgroup

and check with Klein's critérium that T Tx * T2. As h jgj, the claim

follows.
The claim is also a particular case of Poincaré's theorem for fundamental

polygons of Fuchsian groups [Mt], going back to 1882; it is sometimes

attributed to Sanov (1947). One may check that g and h generate with — 1 the

group

and the group T generated by Tx and T2.

Consider also

S, {ze C I I Re(z) | > 1 }

S2 { z £ C I I Z I < 1 }

{ y £ SL(2,Z)Iy 1 (mod 2)}

which is discrete in G ; see [L], VII.6.C.
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• (l °\ (1 2
The problem to know for which X e C the matrices I 1 and I

^

generate a free [respectively discrete] subgroup of SL(2, C) has received

considerable attention; see e.g. [LU2] and [Ig] [respectively [L], [MSI], [Mi],
[N] and [Ro]].

Example 2 : Schottky groups. Let G PGL(2, C) be acting as above on

Cu{oo}. Consider four circles Cu C4 in C with nonoverlapping interiors
and choose g1 [respectively g2~\ in G mapping the exterior of [resp. C2] onto
the interior of C3 [resp. C4]. Then g1 and g2 generate a free group in G.

This follows again from Klein's critérium with Sl [resp. S2] the interiors of
C1 and C3 [resp. of C2 and C4]. The group generated by g1 and g2 is

discontinuous on a non empty open subset of C u {oo}; see [FK], page 191.

Hausdorff's example in the group of rotations. Consider a half turn
rotation g and a one third turn rotation h of R3, the angle between the axes

being ti/4 (almost any other angle would do). Then g and h generate in
SO(3) a group isomorphic to (Z/2Z) * (Z/3Z), so that ghgh2 and gh2gh generate
a free group in SO(3).

Indeed, consider coordinates such that

0 1 0 \ /I
g I 1 0 0 1 h

0 0-1/ \ 0 -
For any integer k > 0 and for any sequence nu nk with nj e {1, 2), check
inductively that there exist even integers pl9..., p5 and odd integers qu q4 with

/P1 P2 Piß
h"'ghnig... h"kg2~k | PA Qiß*

\q3VÏ Ps^ß

As an odd integer is not zero, such a word cannot represent the identity
rotation. Any reduced word in g and h (besides 1 and g) is either as above,
say w, or of one of the forms wg, gw. It follows that the group
generated by g and h is isomorphic to (Z/2Z) * (Z/3Z).
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In 1914, this example allowed Hausdorff to show that there does not exist any
finitely additive rotation-invariant measure defined on all subsets of the sphere
S2. See [H], and [DE] for subsequent history. While discussing this, let us

mention the following open problem (brought to my attention by M. Keane) :

does there exist a finitely additive probability measure on the Borel subsets of S2,

vanishing on meagre sets, invariant under rotations? (The answer for countably
additive measures is no, and follows from the unicity of Haar measure on a

compact group; see e.g. §9 in [Wi].)

Remark. Let G be a connected real Lie group. Then G contains at least one

subgroup isomorphic to the free group on two generators F2 if and only if G is

not solvable, as results from standard Lie theory as follows.
To check the non trivial implication, we assume that G is not solvable, so that

G contains a semi-simple subgroup S by a theorem of Levi and Mal'cev.
Consider a Cartan decomposition s f © p of the Lie algebra of S. If f ^ {0},
root theory shows that the semi-simple compact algebra f contains a subalgebra

isomorphic to su(2), so that G contains a subgroup isomorphic to one of SU(2),

SO(3). If f (0], then s is split and root theory again shows that 5 contains a

copy of sl(2, R), so that G contains a subgroup isomorphic to a covering of

PSL(2, R). In all cases, examples above show that G contains a copy of F2.

So, let G be a connected Lie group containing a copy of F2.Fov w e F2 — {1}
and g, h e G, let w(g, h) be the element of G obtained when replacing the two

generators of F2 by g and h in w. Then

xw { (g, h)cGXGI }

has empty interior (think of analytic continuation). It follows from Baire's

theorem that the set G x G — y Xw (union over weF2 — {1}) of those

(g, h) e G x G such that g and h generate a free group is dense and has full
measure in G x G [E]. (If G is moreover semi-simple, it follows from a note by
Kuranishi and from Tits' theorem that there exist g, h e G generating a subgroup
of G which is both free and dense [Ku].)

2. Statement of Tits' theorem

Recall that, given a group T, its derived group DT is the subgroup generated

by elements of the form ghg~1h~1 and that T is solvable if D(... D(T)...) {1} for

sufficently many D's. We say that T is almost solvable (other people say virtually
solvable) if it contains a solvable subgroup of finite index. For example, groups of
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triangular matrices are solvable and non abelian free groups are not almost

solvable. By "free group", we mean hereafter non abelian free group.

A linear group over a field K is a group which has at least one faithful finite

dimensional representation over K, namely a group isomorphic to a subgroup of

GL(n, K) for some n. Groups are far from being all linear, even under the

hypothesis of finite generation. Famous examples of non linear groups are the

quotients F2/F? for m odd and large enough, where F2" is the subgroup of the

free group F2 generated by elements of the form gm. (Novikov's negative solution

to the Burnside problem; in the original paper, m large enough means

m ^ 4381.)

Easier examples are provided by finitely generated infinite simple groups

(there is such a group, discovered by G. Higman, which is described in [S], n°

1.1.4). They are not linear, because it is a result of Mal'cev that a finitely generated

linear group T is residually finite [M]. (This means that, for any y eV — {1},
there exists a homomorphism cp of T onto a finite group with cp(y) ^ 1 ;

instructive and easy exercice : check that SL(n, Z) is residually finite.)

Also, any finitely generated non hopfian group cannot be linear (T is non

hopfian if there exists a non injective homomorphism of T onto itself); an

example of such a group is that generated by two elements g, h submitted to the

relation _ 1 2= g3 (see [LS], page 197).

Tits' theorem. A linear group T over a field K of characteristic 0

which is not almost solvable contains a free group.

This theorem has been conjectured by Bass and Serre, and proved in [T]
together with other results, some concerning positive characteristics.'

The following precision has been added by Wang [Wa] : there exists for each

positive integer n a constant X(n) such that any subgroup of GL(n, K) without
free subgroup contains a solvable subgroup of index smaller than A(n).

Let T be a group having a finite set of generators S which is a subgroup of
GL(n, K) for some n. If k is the subfield of K generated by entries of elements of 5,

then F c GL(n, k). As k is finitely generated of characteristic zero, there exists an

embedding of k in C and one may assume that V lies in GL(n, C). For finitely
generated groups (and also in the general case by [Wh]), it is consequently
Sufficent to prove Tits' theorem for K C (or K R because GL(n, C) is a

subgroup of GL(2n, R)). But this apparent simplification is deceptive, because
the proof does require other fields than fields of complex numbers.

It follows from the theorem that a linear group over a field of characteristic
zero which is not amenable contains a free group ; this answers for linear groups
a question formulated by J. von Neumann [vN]. Another famous result whose
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proof requires Tits' theorem is due to Gromov: a finitely generated group has

polynomial growth if and only if it is almost nilpotent [G].
The analogue of Tits' theorem for division rings does not hold as such [LI],

but conjectural statements have been formulated [L2]. Another generalisation
of the theorem is proposed as a research problem in remark 1.4.2 of [BL].

3. Digression on hyperbolic geometry

Let n be an integer, n ^ 1. The hyperbolic space Hn+1 of dimension n + 1 is

the open unit ball of the euclidean space Rn+1. Hyperbolic lines (called lines

below) in Hn+f are traces on Hn +1 of circles and euclidean lines in Rn +1 which
are orthogonal to S". Two distinct points P, Q e Hn + 1

are on a unique line
which determines two points Pœ, Qœ e S", say .with P, ß, ß^, arranged in
cyclic order on the euclidean circle defining this line. The (hyperbolic) distance
between P and ß is given by a cross-ratio of euclidean distances; more
precisely, it is defined to be

HP. 0 - Log,,, ft J -k, (j££j : ||^i)
The proper Mœbius group GM(n)0 is the group of orientation preserving
isometries of R" + 1 for this distance. Any g e GM(n)0 extends to a

homeomorphism of the closed ball Hn + 1 u Sn. One may check that GM( 1)0 is

isomorphic to PGL(2, R) and GM(2)0 to PGL(2, C).

There is an equivalent description with Hn +1 the half space R" x R^. The set

of "points at infinity" is then R" u {oo} rather than S".

For all this, see e.g. [A] or [Si].
An isometry g g GM(n)0 is said to be

elliptic if there is some point in Hn + 1 fixed by g,

parabolic if there is in S" exactly one point fixed by g,

hyperbolic if there is a line in Hn +1 invariant by g on which g has no fixed point.

(Following Thurston [Th], we call "hyperbolic" elements which are

"loxodromic" ih classical littérature, such as in [Gr].)

Proposition. Elliptic, parabolic and hyperbolic elements define a partition of
the proper Mœbius group in three disjoint classes.

Proof Let us first check that the three classes do not overlap in GM(n)0. If g

is hyperbolic, it has two fixed points in S" and thus cannot be parabolic; if g was
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also elliptic, the foot of the perpendicular from the fixed point of g onto the

invariant line of g would be fixed by g, and this cannot be. If g was at the same

time elliptic with fixed point a e Hn + 1 and parabolic with fixed point b e S", the

line from a towards b would have two points at infinity b and b' both fixed by g,

and this cannot be.

That any g e GM(n)0 belongs to one of the three classes follows for example

from Brouwer's fixed point theorem. (See also 4.9.3 in [Th].)

Observe that an hyperbolic isometry g e GM(n)0 has a unique invariant line
8. Suppose indeed that there are two of them, say 8 and 8'. If 8 n 8' ^ 4>, the

intersection point (which is unique) is fixed by g, and this cannot be. If 8 n 8'

(J) and if 8, 8' have no common point at infinity, there is a unique line

perpendicular to both 8 and 8' ; but this line intersects 8 in a point fixed by g, and

this cannot be. Assume finally that 8 n 8' (j) and that 8 and 8' have a common
point at infinity ; choose some number p > 0 and consider the set Cp of points in
Hn + % at a distance of p from 8' ; the intersection Cp n 8 is a point fixed by g, and

again this cannot be. One may consequently also define an isometry g e GM(n)0
to be

elliptic if d(a, g(a)) 0 for some ae Hn + 1,

parabolic if inf d(a, g(aj) 0, with the infimum over a e Hn + 1 not attained,

hyperbolic if inf d(a9 g(a)) > 0 (and the infimum is then attained exactly on the
invariant line of g).

We shall need below the following dynamical description. An hyperbolic
isometry g e GM{n)0 has on S" one attracting point Pa and one repulsing point
Pr. This means that, for any neighborhood U of Pa in S" and for any compact
subset K of Sn — {Pr}, one has gk(K) g U for k large enough. (And similarly with
g~1 instead of ^ when exchanging Pa and Pr.) Consider now a parabolic isometry
g e GM(n)0 with fixed point P e Sn. Let U be a neighborhood of P in S" and let K
be compact in Sn - {P} ; then g\K) g U for any k e Z with | k | large enough.
(This is obvious when g is a translation in R" x R* by some vector in R", and any
parabolic isometry of Hn + 1 is conjugate to such a translation.)

4. Free subgroups of GL(2, R) and of GL(2, C)

We show in this section that a subgroup of the proper Mcebius group G
PGL{2, R) which is not almost solvable contains free groups ; the same fact for

GL(2, R) follows straightforwardly. We discuss also the case of GL(2, C).
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Proposition. Let g, h e G — {1} be without any common fixed point in

H2 u S1. Then the group F generated by g and h contains free groups,

up to two exceptions.
Thefirst of these happens when g2 h2 1. The second when one element

is an involution, say g2 1, when h is hyperbolic, and when g exchanges the

two fixed points of h on S1. In these two cases, F is the infinite dihedral

group, and is thus solvable.

Proof. We check below in each of the non exceptional cases that F contains

a free group.
Case 1. One element, say g, is parabolic with fixed point P g S1.

Consider the parabolic k hgh~l, with fixed point Q — h(P) ^ P in S1.

Let S1 [respectively S2] t>e a compact neighborhood of P [resp. Q] in S1 with
Sx n S2 (j). The end of section 3 shows that there exists a positive integer n0

such that gn(S2) c. S1 and c= S2 for any ne Z with | n | ^ n0. It follows
from Klein's critérium that g° and k"° generate a free subgroup of G.

Case 2. Both g and h are hyperbolic.

Let S1 [respectively S2] a compact neighborhood of the fixed points of g

[resp. of h] in S1 with S1 n S2 (j), and proceed as in case 1.

Case 3. One of the elements, say h, is hyperbolic with fixed points P,Qe S1

and g does not exchange them, say R g(Q) ^ {P, Q}.

If g(P) ^ {P, Q} then h and ghg~1 are as in case 2. We may thus assume that

g(P) Q.lfg(R) ^ P then h and g2hg~ 2 are again as in case 2. We may thus also

assume g(R) — P. Consider then h' g
~ lhg, an hyperbolic with fixed points R

and P, as well as h" ghg~ lhgh~1g~1, an hyperbolic with fixed points Q

ghg~1(Q)ândS ghg~1(P).Oneha,sh(R) / Q and thus S gh(R) # g(Q)

R ; one has also h(R) ^ R and S # g{R) P. Consequently h' and h" are as

in case 2.

Case 4. Both g and h are elliptic with g2 ^ 1.

Possibly after conjugation within G, one may assume that g ra is a

rotation around the origin of the disc H2 by some angle a g ]0, 2k[ — {tc}. Then

k hgh_1 7^ #, otherwise h would also fix the origin.
In the average, any point of S1 is rotated by k of an angle a. More precisely, if

k: R -» R is the lifting of k to the universal covering of S1 with 0 ^ £(0) < 1,

then lim - Œn(x) — x) exists for all x g R and this limit is a. Moreover
n- 00 n

min (£(x) — x) < a ^ max (£(x) — x).
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(See any exposition of the rotation number, for example chapter 17 in [CL] or

section 1 in [Ka].) It follows that there exists P e S1 with k(P) g(P), so that

g~^k has a fixed point in S1 and one of the previous cases applies.

Exceptional cases. If g2 h2 1, then gh generate an infinite cyclic

subgroup of index 2 in T and F is isomorphic to the infinite dihedral group. If h is

hyperbolic and if g exchanges its fixed points, then ghg~l h'1 so that g2

(gh)2 1 and F is as in the previous case.

The proof is now complete.

The proposition above is well known, and may essentially be found in any of
the following papers: [LUI], [Md], [Ro] (see corollary 1). One should also

mention Magnus' surveys [Msl], [Ms2].
As two elements of G having a common fixed point in H2 u S1 generate a

solvable subgroup, we have proved the 2-generators particular case of the

following fact.

Theorem 1. A subgroup V of G — PGL(2, R) (or of GL(2, R)) which is

not solvable contains free groups.

Proof. We assume that T does not contain free groups, and check that F is

solvable. If F contains at least one parabolic isometry, this follows from case 1 of
the proof above. If it contains at least one hyperbolic isometry, then all
hyperbolics in T have a common fixed point (see case 2) and then either all
elements in T have a common fixed point or T is dihedral (see case 3). Finally,
if T is an elliptic group, it follows from case 4 that T is abelian.

This covers in particular the case of Fuchsian groups. The next theorem
covers that of Kleinian groups.

Theorem 2. Let T be a subgroup of SL(2, C) which is not solvable.
Assume moreover that F is not relatively compact (or equivalently that F is

not conjugate to a subgroup of the maximal compact subgroup 5(7(2) of
SL(2,C)). Then F contains free groups.

In particular, a discrete subgroup of PGL(2, C) which is not almost solvable
contains free groups.

Proof. The group F acts on C2 ; as F is not solvable, the representation is
irreducible. Easy arguments à la Burnside show that F does not contain elliptic
elements only; indeed, F does contain a hyperbolic element (see [CG], or
corollary 1.8 in [B]). The first statement follows now as theorem 1.

The second follows from this: a discrete subgroup of PGL(2, C) containing
elliptic elements only is finite. Indeed, such a group is periodic. If F is a priori
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known to be finitely generated, then F is finite by a theorem of Schur (§36 in
[CR]) so that the hyperbolic subspace F(F) { x e H3 \ Fx {x} } is non
empty. In general, to any finitely generated subgroup Fx of F corresponds a non
empty subspace Fx c= Hn ; it is easy to check that F(F) n Fx is non empty so

that T lies in a compact subgroup of the Mœbius group ; it follows again that F is

finite.

Instead of the assumption of theorem 2, assume the following : there exists

g eF with two distinct eigenvalues of same modulus, say \ix p exp (iOJ and

p2 P exp (iö2) where p, 01? 02 e R satisfy p > 0 and 0! ^ 02 (mod 2n), and
there exists an automorphism a of C with | a^) | ^ | a(p2) |. Then a induces an

automorphism a of GL(2, C) and the proof applies to a(T). But this procedure

has its limits, because there exist complex numbers p (such as j (3 + 4i), see the

remark below) such that | a(p) | 1 for any automorphism a of C but which are

'p 0

V° H

Something is true however : let k be a finitely generated field of characteristic
0, let p e k — {0} and assume p is not a root of 1. Then there exists a locally
compact field k! endowed with an absolute value co and there exists a

homomorphism a: k -» k' such that co(a(p)) ^ 1 ; this is lemma 4.1 of [T]. It
follows that the argument above may be recuperated, but one has to consider

other fields than subfields of C.

For self-consistency, let us end with the announced remark. For any
automorphism a of C, one has clearly

not roots of 1 ; then the argument above fails x) for example for g — l _l

a
3 + 4i 3 ± 4i

5
1;

3 -1- 4 i
we check now that —-— is not a root of one.

Let p, q be coprime integers apd let p exp i2n - | be a root of 1. Then p is
V qJ

an algebraic number of degree (p(g), where cp is Euler's function. It follows that

cos (2n - I is an algebraic number of degree d ^ \ cp(g) : because if F is a
V 9/ 2

polynomial of degree d in Z[X] with F fcos^2rc- 0, then p is a root of

:) This shows that one point on page 50 of [D] is incorrect.
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XdF X + i X 1

j, which is of degree 2d in Z[X], so that 2d ^ (p(q). If

3 + 4 i .ç
qe {1,2,3, 4, 6}, one checks easily that exp ^ —-—. If g 5 or it

q^l, then <p(q) > 2 so that cos is not rational. Thus the root of unity p

(:

3 + 4 i
cannot be equal to —-—

5. Some other cases of Tits' theorem

Let n be an integer with n ^ 2.

Define a subgroup T of GL(n, C) [respectively of PGL(n, C)] to be irreducible

if any linear subspace of C" [resp. of Pnc~*] invariant by T is trivial, and not almost

reducible if any subgroup of T of finite index is irreducible. When referring to the

Zariski topology on PGL(n, C), we use below the letter Z.

Reduction. Tits' theorem for complex linear groups is equivalent to the

following statements (one for each n ^ 2) :

Let T be a subgroup of PGL(n, C) which is not almost solvable. Assume that

(i) is not almost reducible;

(ii) the Z-closure G of T in PGL(n, C) is Z-connected. Then T contains free

That one may assume (i) without loss of generality is an easy exercise on
reducibility, and one may assume (ii) because the Z-closure of any subgroup of
PGL(n, C) has finitely many Z-connected components. (The hypothesis of the
reduced statement are redundant : (i) and (ii) imply by Lie's theorem that G is not
solvable, so that T is not almost solvable

Now let g g PGL(n, C) and choose a representative g g GL(n, C) of g. Let us
define g to be

elliptic if g is semi-simple with all eigenvalues of equal moduli,

parabolic if g is not semi-simple and has all its eigenvalues of equal moduli,

hyperbolic if g has at least two eigenvalues of distinct moduli.

These definitions are obviously independent on the choice of g. They generalize
those of section 3 as follows from [Gr]. The meaning of "hyperbolic" fits with
current use in dynamical systems theory (see e.g. definition 5.1 in [Sh]).

groups.
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Let g be hyperbolic and let g be as above. Let Ä(g) [respectively A\g)~\ be the

direct sum of the nilspaces of g corresponding to all eigenvalues of maximal
modulus [resp. to all other eigenvalues] of g. Let A(g) [resp. A\g)~\ be the
canonical image of Ä(g) - {0} [resp. Ä'(g) - {0}] in P Pnc~l. Then
A(g) n A\g) 0 and the smallest linear subspace of P containing both A(g) and

A\g) is P itself. Tits calls A(g) [resp. A(g~ *)] the attracting space [resp. repulsing
space] of g. We say that g is sharp if A(g) is a point and that g is very sharp if both
A(g) and A(g~l) are points. For each k e {1, 2,..., n— 1}, the fundamental
representation of GL(n, C) in Ak Cn induces an injection

Xk:PGL(n, C) - PGL(ffl, C);

as g is hyperbolic, Xk(g) is sharp for some k. We also say that two hyperbolic
elements g, h e PGL(n, C) are in general position if

A(g)uAig'1) <= P - u A'ih'1)}
A{h) u Aih'1)oP - vj A'ig'1)}.

Observe that any hyperbolic element of PGL(2, C) is very sharp, and that two
hyperbolic elements of PGL(2, C) are in general position if and only if they do not
have any common fixed point on S2.

Recall that an element of PGL(n, C) is semi-simple if its inverse image in
GL(n, C) contains diagonalisable matrices.

Lemma 1. Let T be an irreducible subgroup of PGL(n, C) having a Z-
connected Z-closure. If T contains a sharp semi-simple element g, then T
contains a very sharp element.

About the proof Let g e GL(n, C) be some representative of g having an

eigenvalue of "large" modulus and all other eigenvalues with moduli "near" 1.

For suitable h,ueT and forj e N large enough, one may hope thatg~jhgjh~1u
has a representative in GL(n, C) with one eigenvalue of very large modulus (look
at hgjh~1u\ one eigenvalue of very small modulus (look at g~j), and other

eigenvalues of moduli "near" 1. Section 3 of [T] shows that this hope is realistic.

(See also below, after the theorem.)

Lemma 2. Let F be an irreducible subgroup of PGL(n, C) having a Z-
connected Z-closure. If F contains a very sharp element, then F contains two

very sharp elements in general position.

Proof. Let Pl5 P2 be two linear subspaces of P with Px ^ 0 and P2 ¥= P.

Then { x g G | x(Pi) 4= P2 } is obviously a Z-open subset of G. It is not empty :
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Choose indeed pePx\ then the subspace of P spanned by the orbit Gp is stable

under G and must therefore coincide with P ; hence there exists x e G with

x(p) k P2 and, a fortiori, 41 Pi-
Let g be a very sharp element in F. It follows from above that

X=<xeG A(g) and A(g x) are not contained in any of xA'(g),

xA'ig'1), x~1A'(g), x~xA'(g~1)

is a non empty Z-open subset of G. Let y e X n T. Then g and ygy~1 are both

very sharp and are in general position.

For the next lemma, we choose as above k with 1 ^ k ^ n— 1 and we

consider the kth fundamental representation Xk : SL(n, C) — SL((£), C) of

SL(n, C).

Lemma. Let V be a group and let p : F -> SL(n, C) be an irreducible

representation. Then the Z-closure G of p(T) in SL(n, C) is semi-simple and

the representation a Xkp : F — SL((£), C) is completely reducible.

Proof. We show first that G is semi-simple. Consider the solvable radical R

of G. By Lie's theorem, there exists an eigenvector for R, namely there exist

v g C" — {0} and a e Hom(P, C*) with r(v) a(r)v for all r e R. As R is normal
in G, any vector g(v) (geG) is also an eigenvector for R. By irreductibility, any
vector in C is also an eigenvector, so that R is made up of dilations. But R is

connected and is in SL(n, C), so that R 1.

Now Xk : G - SL((l\ C) is completely reducible ; denote by Xkf j : G

- SL{Wj) the components of a decomposition © XkJ and define Oj
je J

Xktjp (jeJ). One has clearly a © aj5 and each cr/.r ->• SL(Wj) is
je J

irreducible (this because j is irreducible and by Schur's lemma).

Theorem. Let T be a subgroup of PGL(n, C) and assume

(i) T isneither almost solvable nor almost reducible,

(ii) T contains a semi-simple hyperbolic element.

Then T contains free groups.

Proof. As one may consider instead of T a subgroup of finite index, there is
no loss of generality if we assume that the Z-closure of T is Z-connected, We
denote by Ttheinverse image of T in SL(n, C). By (ii), there exists e {1,..., — 1}
and a semi-simple element y e thavingeigenvalues p1;..., pn with | px |

I H* I > I M-j-1 for j k +1,.., n. Let N ft), and denote by Xk both the
fundamental representation GL(n, C) -> GL(N, C) and the induced
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homomorphism PGL(n, C) -» PGL(N, C). Then Xk(y) has eigenvalues v1?..., vN

with | vx | > | Vj | for j 2,..., N. By lemma 3, there exists a ^fc(r)-irreducible
subspace W0 of CN, associated to a representation a0 : F -+ GL(W0), such that
v1 is an eigenvalue of a0(y). As the Z-closure G of T in SL(n, C) is semi-simple, the

group G is perfect and a0(T) lies in SL(W0). As | vx | > 1, one has dimcW0 ^ 2.

Thus one may assume from the start that T contains a sharp semi-simple
element, and indeed by lemmas 1 and 2 two very sharp elements in general

position. The conclusion follows as in case 2 of the proof of the proposition in
section 4.

Now lemma 1 remains true without the hypothesis "semi-simple". This has

been announced by Y. Guivarch', who uses ideas of H. Fürstenberg to show the

following : given an appropriate subset S of T containing a sharp element, then
almost any "long" word in the letters of S is very sharp. Using this, one may
replace (ii) in the theorem above by the following a priori weaker hypothesis

(iir) T is not relatively compact.

Then, one first checks as for theorem 2 of section 4 that T contains hyperbolic
elements ; one concludes as in the previous proof, with Guivarch's version of
lemma 1.

For subgroups of PU(n), one may repeat the discussion at the end of section 4.
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