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INTRODUCTION

The method of Hadamard and de la Vallée-Poussin arises in the proof that
certain classical series, like Riemann’s zeta function and Dirichlet’s L-functions,
do not vanish on the line of absolute convergence. Many interesting
equidistribution Theorems are consequences of this result, e.g. the prime number
theorem and Dirichlet’s Theorem on the infinitude of primes in arithmetic
progressions.

Motivated by results of Yoshida [12], Deligne has obtained in his paper The
Weil Conjecture I1([3],§2) a generalization of the method of Hadamard and dela
Vallée-Poussin and has applied it to some very non-classical situations which
deal with zeta and L-functions of algebraic varieties over finite fields. Deligne’s
main result, which is given in Part IT and proved in Part III, establishes the non-
vanishing on the line of absolute convergence of most of the L-functions which
appear naturally in number theory and algebraic geometry; its main merit is its
application to L-functions which are not expressible as finite products of Artin L-
functions where Brauer induction ordinarily would not suffice. '

The present notes, which are an expanded version of the rather concise §2 of
[3], have as a purpose to make Deligne’s results more accessible to number
theorists. We believe that because of its importance the subject deserves a fuller
treatment.

In order to reduce the degree of generality in the statement of Deligne’s
theorem and in his argument, and to give some content to the main result which
would be easily understood by number theorists, we start Part I with a series of
relatively simple examples taken from elementary algebraic geometry ; these are
close to the spirit of Artin’s thesis [1] as well as that of the beautiful paper of
Davenport and Hasse [4]. We hope that the reader will find in Part I some
familiar things.

The reader who is only interested in Deligne’s Theorem and its proof can
consult the last section of Part IT and the proof of the main lemma in Part I11. In
this way he will avoid several excursions that we have taken through the
countryside of representation theory. A short sketch of Deligne’s application of
his result to the proof of the Hard Lefschetz Theorem is given in [6].

We acknowledge several conversations we had with Pierre Deligne about his
methods. We also wish to express our deep gratitude to Nick Katz for explaining

- to us his own ideas on Deligne’s results. Without his help and Lecture Notes [5]
it would have been almost impossible to write this article. The reader familiar
1 with Katz’s Notes (pp. 94-134) will recognize that at times we have followed his
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presentation rather closely especially in the proof we give of The Main Lemma in
Part III. Most of this article was prepared while the author visited the IHES
(1979-80). The present version was presented in three seminars at the University
of Illinois in the Spring of 1981.

PART I: EXAMPLES

§1. THE ZETA FUNCTION OF THE PROJECTIVE LINE. Let F, be the finite
field of g elements and let A = F [x] be the ring of polynomials with coefficients
in F,. The set of closed points on the projective line P* can be identified with the

1
set of monic irreducible polynomials in A plus the rational function — which
X
corresponds to the point at infinity on P!, If Pis a polynomial in 4 of degree d, we
put

NP = ¢°.

The zeta function of the affine line A’ = P' — {co} is defined, for s a complex
number, by
Z(s,A') = Y Na~*,
where a runs over all monic polynomials in 4 including a = 1. Since
# {a € A|amonic, dega) = n} = ¢q",
it follows that
1

Z(s,A') = Z g " = PR et
n=0 1 — q

hence Z(s, A') is an absolutely convergent series for R(s) > 1. Furthermore,
since A 1s a unique factorization domain, we have an Euler product expansion

1
Zis, AY) = [ ————
S AY =15

where P runs over all monic irreducible polynomials in A of degree >1. I-f we
include in this Euler product the factor (1—¢ %)~ !, which corresponds to the

. . 1 .
rational function P_, = < we obtain the zeta function of the projective line
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1
=
1 . 1
l_q—s 1_q1—s'

Z(s, Pl =

To study Z(s, A') we can also proceed in a slightly different way. First we recall
that a fundamental lemma in the arithmetic of the ring 4 is Gauss’ result that for
any positive integer n > 1
X" — x = [[Ffx),
d|n
where F ,(x) is the product of all monic irreducible polynomials in A of degree d.
By comparing the degrees on both sides of this identity we obtain
qn = z de )

d|n

where N, is the number of monic irreducible polynomials in 4 of degree d. In the
Euler product for Z(s, A') we collect those polynomials P of degree d and use the

last equality to obtain
. % 1 Na
Z(s, AY) = —_—
a0 =M1 (=)

By taking the logarithm of both sides we get

0 0

log Z(s,A") = > N, > q "%k
=1 K=

|
= Y ZgmY dN
mZ1 m q d%‘,n d
|
— Z ﬂ(ql—s)m

m=1mM
1

= log ————;
e

this agrees with the expression obtained earlier for Z(s, A!). Three observations
~are in order at this point:

(1.1) Z(s, P')is meromorphic in the region R(s) > 1 and has a simple pole at s
= 1; this implies that

~ (1.2) The Euler product expansion of Z(s, P!) has an infinite number of local
| factors (Euler’s proof of the infinitude of primes!)

} (1.3) Z(1+it, PY) # O for all real values of t.

?

Ty
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§2. Gauss suMs. If x e C and if m is an integer > 1, we put

em(x) — eZni x/m‘

Let p denote a prime number. If x € Z, and p, denotes the group of p-th roots of
unity, then the map x — e,(x) defines by passage to the quotient an isomorphism
e, Z/pL — p,.

Let k = F, denote the finite field with ¢ = p“ elements. For x € F, we put

a— 1

Trx) = x + x» + ... + x¥

since Try(x) belongs to Z/pZ, the map
F,—u,

given by ,(x) = e,(Tr,(x)) is a non-trivial additive character of F,. Any other
additive character V' of F_ has the form {'(x) = \,(cx) for some c € F,. Let F}
= F, — {0} be the multiplicative group of F,. With each of the ¢ — 1 characters
x of F¥ there is associated a Gauss sum

g V) = Y xW(x) ;

xqu

The one corresponding to the trivial character x, = 1 has the value g(xq, V) =
— 1. A well known property of g(x, ) with x a non-trival character is | g(x, V) |
= q_
For a monic polynomial in the ring 4 = F [x]
a=x"+ax"" '+ . +a,
we put

Aa) = yla,)l(a,);

if b is another monic polynomial
b=x"+bx""1+..+5b,,
Then

ab=x""+ (a,+b)x"""" ' + .+ ab,;

from this it follows easily that
A(ab) = Aa)A(b).

We can thus form the zeta function
Z(s, &,) =) AaNa~*

1
(P)NP~5’

:l;ll—A

where the product runs over all irreducible monic polynomials in 4. From the
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~ properties of Z(s, A') it follows easily that Z(s, %) 1s absolutely convergent for
R(s) > 1. The Dirichlet series Z(s, .#,) is also expressible in the form

0

Z(Sa gx) - 1 + Z q_dsSda

where

and the sum runs over all monic polynomials of degree d. As all monic
polynomials of degree 1 in A4 are of the form a = x + ¢ with c € F,, and since
A(x+c) = y(c)(c), we obtain for d = 1 the Gauss sum S; = g(x, V). Also all
irreducible monic polynomials in 4 of degree 2 have theforma = x* + bx + ¢,
b, c € F; for these we have

= Z A(x*+bx+c)
= 2. 2 xe)b)
b ¢
= L x(e) QUW(b) = 0
Cc
A similar argument shows that for all d > 3 we have S, = 0. Hence we obtain
(s, ) = 1+ g Vg °
st amamnns o rsam dors Sl ma an s i @ wises bt 7 (O AL AL ... DI\ < i PO, Ry [oR— g
1 lllb 1CpP1L CbCllLaUUll PLOVCCS Llal L5, <Z X)’ UCILIIICU 101 D) -~ 1 114ad 4 HU1VHIVT PIIL

1
it also follows that the zeros of Z(s, %, ) are all located on the line R(s) = 7 The

trivial fact | g(x, V) | < g would suffice to show that Z(1+it, &) # Ofor all real
values of .

§3. KLOOSTERMAN SUMS. Let ¢ be an additive character of F,. For a monic
polynomial in 4 of the form

a=x"+ax""'+ . +a,, a, # 0,
we define a function
Aa) = Vay)e(a,—,a,),  ad, =1,
with the proviso that
Alx+c) = Y(o)plc™ ).

If b € A is another polynomial of the form

b=x"+bx""1'+. +b,,
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we have
ab = X" + (ay+b)x"T" "+ o+ (aby 1+ bpa,-1)x + Dby,
By noting that (a,b,,_ ; + bna,—1)abm = bp_ b + a,_1a, we obtain
A(ab) = A(a)A(b) .
Thus we can define a new zeta function by putting
Z(s, Kl) = ) Al@)Na*

1
H . —g 2
+1 — A(P)NP

where the sum is taken over the set of monic polynomials a in 4 with non-zero
constant term including the polynomial a = 1, and the product is taken only
over the subset of those which are irreducible.

By grouping together terms in the Dirichlet series Z(s, K/) corresponding to
polynomials of the same degree we obtain

o0}

Z(s,K) = 1+ Y q~%S,,

where

and the sum runs over all monic polynomials a in 4 of degree d with non-zero
constant term. Let us look more closely at the sums S, for small d. Ford = 1 all
the monic polynomials in A are of the form x + ¢ with ce F,, and

Si = Y Alx+c)

ek
ceF}

= Y Yo)e(c™h;

ceF}
since @(x) = (bx) for some b € F¥, we obtain then that
Si = ) Wle+be™ ).
ceFy
If ¥, = Z/Z,, then S, reduces to the well known Kloosterman sum

2mi
Kl(p) — Z e (ac+bc™ 1) )
(’EF:
In the following we denote S, by — K(¢). All monic polynomials of degree 2 with

non-zero constant term are given bya = x? + c¢x + b, withc F,beF} and
hence |
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S, = Y A(x*+cx+b),

= ). 2 Woecb™)

ceFq beF?
= z Z \ljb(c) ’
beF} ceFq
where V,(c) = Y(c(1+bay)), and ©(c) = Y(aoc). Now Y,(c) = 1if and only if 1
+ ba, = 0and this occurs only once when b = —a,. For this particular value

of b, the inner sum is equal to #F, = q. If b # —a,, then \, is a non-trivial
additive character and the inner sum has the value zero. Therefore we have S,
= ¢q. For d = 3 we have from the definition of A that
S: =2 )Y Ax*+bx*+cx+d),
b ¢ d

with b, c,d e F,and d # 0, and hence
S3 = Z;@(af)bz V() = 0.

EFq

For similar reasons we also obtain S, = 0 for d > 3. We can now write

1
U1 — A(P)NP*

=1—-K(@)q*+q"~*.

Z(s, Kl) =

This shows that the function Z(s, Kl) is holomorphic for all complex values of s.
It is clear that Z(s, KI) # 0 for R(s) > 1; the simple observation | K(¢p)| < ¢
would also give that

Z(1+it, Kl) # 0

for all real values of t. Let us pretend for a moment that we do not know this fact
and show how it can be derived, in an unnecessarily complicated way, from the
method of Hadamard and de la Vallée-Poussin. Suppose then that 1 + ityis a
zero of multiplicity m. For ¢ > 1 and Z(s, KI) = Z(s, A) we have

_ —Z-Z—(c;+it, A) = Y (log NPNP~"(NP~*A(P))'.
P

n>0

If we put Ap = NP A(P), then clearly Ap-Xp = 1 and

z A 7
R{—6—Z—(o, 1) = 8 (0 +ite, A) — 25 (0+2ito, Az)}

= Y (log NP)NP™™ {2 + M3 + A3}2 > 0.
P
n>0
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On the other hand for o > 1 and close to 1 we have

VA 1
- (o) = —— + filo),
Z’
~ (ot A) = —— + f(0),

where f; remains finite as ¢ — 1. We thus obtain

But this is false for o sufficiently close to 1 unless m = 0 in which case Z(s, K/)
does not vanish on the line of absolute convergence. It is a simple matter to
obtain, say via a Tauberian argument, that

> A(P) = 8,x + o(x),

NP <

where 8, = 0, unless A = 1in which case 6, = . This circle of ideas has

log ¢
been introduced by Kornblum (Math. Zeitschr. Vol. 5(1919), p. 100) in order to

establish an analogue of Dirichlet’s Theorem on arithmetic progressions for the
ring A = F [x]; they were later developed more fully and systematically by
Artin in the second part of his thesis ([ 1], IT). It is a consequence of Weil’s proof of
the Riemann Hypothesis for curves over finite fields that the zeros of Z(s, A) are

. . i . .
all located on the critical line R(s) = 7 This gives the much sharper estimate

1
8,x + O(x2)for the above sum. The equality Z(s, KI) = 1 — K(g)g * + q* **
1
also implies | K(p) | < 2g2, an estimate which is best possible.

§4. EQUIDISTRIBUTION OF THE ARGUMENTS OF GAUSS suMs. Let F, be the
finite field of p elements; let { : F, — C* be a fixed non-trivial additive character
of F,asin §2. With each of the p — 1 characters y, of the multiplicative group F}
= F, — {0} we define a Gauss sum

g ) = > xW(x).

*
xeF}

If % 1s one of the p — 2 non-trivial multiplicative characters of F3, we have
1

| g(x, ¥) | = p2, and hence 1
g(x, V) = p§e2"i9p(x) ’

L’Enseignement mathém., t. XXIX, fasc. [-2. 7
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with 0,(x) € [0, 1). For each prime p, and for a fixed choice of additive character s
we consider the sequence of p — 2 angles

0, = {ep(Xj)}lsjsp—z )

which result from all the non-trivial characters of F}. As p ranges over the primes
in increasing order we obtain a triangular array

® = {®,|p a prime}

of pointsin [0, 1). For a prime p and a subinterval J in [0, 1), we denote by A(p, J)
the number of angles 0,(y;),1 < j < p — 2whichbelongto J,| J |is the length of
J. The sequence @ is uniformly distributed in [0, 1); in fact it can be shown that
(Smith [10]),

1

Sgplur—%‘lAunJ)——IJI|<<p‘Z-
In particular one obtains the estimate
Ap.J) = |7 1p + 0.
To establish these results we put, for h a non-zero integer,

1 .
S h — ’ ethep(x)’
Ah) )22
where the sum runs over the non-trivial characters of F}. The Erdos-Turan
inequality ') gives, for any integer m > 1

4 m 1
S —2)T AP, ) — | T < — Y —|S,h].
3m@ ) tA(p, J) — | || m+1+ngwl4”

1
To get an estimate for S ,(h), we observe that since g(x, V) = p2e*™°*™, we have

Z/ g(x’ \I’)h — ph/2 Z/ eZnihOp(x)
X X

= p"*(p—2)S,(h) .

On the other hand we have the combinatorial identity

@) Y g0n W) = (=14 (= 1) T Wy 3,

1) H. Montgomery has obtained a conceptually simple proof of this inequality along
the lines of his article in Bull. A.M.S. vol. 84 (1978), 546-567.

i
1
i
!
|
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where the sum on the right hand side is taken over all the h-tuples
(X1, - Xp) € (F,)" which satisfy x, - x, - .. - x, = 1. The sum

= Y Y(xy+...+Xp)

is usually called a hyper Kloosterman sum. As a generalization of the function
Z(s, KI) considered in §3 it is natural to consider a function Z(s, KI,) defined by
the following Euler product

1

Z(s, KLy~ V" = —,
’ Pell_Xlol 1 — A(P)NP *

where X, is the affine variety defined over F, by x; ... x, = 1,| X, | is the set of
closed points-on X, and A:| X, | — C* is a function which takes the value

AP) = Y(a; +..+a,),

when P i1s the closed point (ay, ..., a,) € X((F,) defined by the maximal ideal
(x;—ay, .. x,—a,) in F[x,, .. x,]. The function Z(s, KI;) can be shown to
be a polynomial of degree h in p° where the coefficient of p™° is the
hyper Kloosterman sum KI/(p). It is a consequence of Deligne’s proof

of the Weil conjecture that the zeros of Z(s, KI,) are all located on the line

h—1
R(s) = —5 This implies in particular that

(4.2) | KIy(p) | < hp"~ P2

h
The weaker result | KI,(p) | < hp2 % forsome d > 0would follow from the non-

L. . h .
vanishing of Z(s, K/,) on the line R(s) = 5; this would be enough to establish the

equidistribution of the angles of the Gauss sums.
From Deligne’s estimate (4.2) and the combinatorial identity we obtain that

Sy = Ly
- X
1

N|=~

T2 gy, b

— (=27 I {(— 1 + (= DKL) |
and hence

—

| S(h)| < 2hp~Z.
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When this estimate is substituted into the Erdds-Turan inequality with m

1
= [p4], we get .
8 1 1

1
Sup | (p—2)"tA(p, J) — | J || < + —mp 2 K p 4.
J m—+ 1 T

This establishes the result. A comparison of the estimate A(p,J) = p|J|
3
+ O(p#+) with some of the classical prime number theorems suggests that perhaps

the stronger result

1
Alp,J) = plJ| + O(pz™)
should be true.

PART II: STATEMENT OF THE THEOREM

§1.1. INTRODUCTION. In the statement of Deligne’s theorem there appear
certain Euler products which are generalizations of the Artin-Grothendieck L-
functions and which satisfy some rather natural growth conditions; these
conditions are stated below in §2 as Axioms A and B. In order to elucidate the
applicability of the theorem, to introduce some relevant concepts from
representation theory, and to prepare the notation that goes into the statement
of the theorem, we now give two examples one of a geometric nature, the other of
an arithmetic nature. The expert will realize that both examples are intimately
connected, say via the Selberg-trace Formula.

§1.2. GEOMETRIC EXAMPLE. As in Part I, let F, be the finite field of ¢
elements and let A = F [T] be the coordinate ring of the affine line A'. For
technical reasons and to simplify our presentation, we assume the characteristic
of F, is not 2 or 3. The closed points on the affine line A' are in one-to-one
correspondence with the irreducible monic polynomials in 4. Now if P = P, is
such an irreducible polynomial in A4, then the image of T under the reduction
map

A— A/P) =F
T —>t,,

qv

deg (P)

gives an element ¢, in the finite field F, withq, = ¢ elements. We can now

consider the elliptic family




THE METHOD OF HADAMARD AND DE LA VALLEE-POUSSIN 101

o ¢

where E, : y*> = x(x—1) (x—t,)is the fiber in E above the point P,. If we exclude
from A! the points corresponding to the polynomials P, = T, P, = T — 1,
then each fiber E, is an elliptic curve defined over the finite field F, . A well
known theorem of Hasse established in 1934 states that

#{x, ) eF )1y = x(x—1) (x—1,)} = q, — (%+B,) + 1,
where
0 = gie™, B, = gie ™,
where 0, € [0, 2n).
Let SU(2) be the group of special unitary matrices of size 2 x 2 and consider
the trivial extension

0-SUR) - G—Z —0

given by the direct product G = SU(2) x Z. Let X be the set of all irreducible
monic polynomials in 4 = F, [T]. For each v € Z we have an element in G

eiev O
0 e—iﬁv I deg H ;

denote by x, the conjugacy class of this element in G = SU(2) x Z. Let », be
the quasi-character
o,:Z >R,

which sends the integer n to w,(n) = ¢", and for s a complex number put o,
= o : Z — C*; this gives by composition with the projection map G - Z a
representation

o,: G- C*,

The finite dimensional representations of SU(2) are well known ; they have the
following structure: for each positive integer k, there is a representation

Sym* r: SU(2) —» GL(k+1, C).

For k = 0, this is the trivial representation of SU(2); for k. = 1 sym! r = r
is just the standard representation which sends an element in SU(2) into the
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: : 0
same element in GL(2, C). In general, if g = (g B> e SU(2) then sym* r(g)
is the diagonal matrix in GL(k+ 1, C) given by
Sym* r(g) = Diag [o*, o1 B, .., aff* "1, B¥] .

It can easily be shown that the set of all finite dimensional representations of the
locally compact group G are of the form

1 = (Sym"r) - o, ,

for some positive integer k and a complex number s; for such a representation, if
s = o + it, we call o the real part of t and write
R(t) = ©.

In particular if tis an arbitrary representation then R(t®w,) = R(t) + R(s). With
the above notations we now associate to each representation t of G the L-
function

1

Lo = gdet(l—r(xv));

an easy comparison of L(t) with the zeta function Z(s, A') of §1 of Part I shows
that L(t) converges absolutely if R(t) > 1. Itis a consequence of Grothendieck’s
Trace formula that L(t) has a holomorphic continuation to the region R(t) > 1
except for a simple pole at T = w,. Deligne’s generalization of the method of
Hadamard and de la Vallée-Poussin will imply that

L(t) # 0 forall T with R(tr) = 1.

From here on one takes the familiar road of analytic number theory and applies
criteria of the Weyl-type as well as Tauberian theorems to obtain
equidistribution results. ([9], [12].)

§1.3. ARITHMETIC EXAMPLE. Let us consider our favorite arithmetic
function: the Ramanujan function 1(n) which is defined by the formal expansion

b n]i (1—x"** = ni T(n)x" .

Let X denote the set of rational primes. For each prime p € X it follows from
Deligne’s proof of the Ramanujan conjecture that

(p) = (ei9p+e—i9p)p11/2 ’
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with 0, € [0, 2n). In this arithmetic situation we consider the trivial group

extension
0-SUR)-G—->R~-0

given by the direct product G = SU(2) x R. With each prime p we associate the

element
: s O ’

and denote by x, the conjugacy class in G which contains it. Let o, be the quasi-
character
®,:R - R%

r

r— o) =€

for each complex number s, let @, be the 1-dimensional complex representation
o,: G - C*

obtained by composing ®} with the projection map G — R. Again it is not very
difficult to show that all the finite dimensional representations of G are of the
form

T = (sym*r) - o,

for some positive integer k and a Complex number s. For such a representation t
withs = o + it, weput R(t) = o and callit the real part;itisclear that we have
R(t'w,) = R(t) + R(s). With the above notation, and with t a finite dimensional
representation of G, we define an L-function

1
Lo = ey’

a comparison of this L-function with the ordinary Riemann zeta function shows
that it 1s absolutely convergent for R(t) > 1. It is known that L(t) has a
holomorphic continuation to the region R(t) > 1 for t = (sym*r) - o, with k
= 1,2, 3 and possibly other values not known to the author. Clearly L(w,)
= ((s) and so it has a simple pole at s = 1. Ifit could be established that L(t) has
a holomorphic continuation to R(t) > 1 for all representationst = (sym*r) - o,
k = 1, then Deligne’s generalization of the method of Hadamard and de la
Vallée-Poussin would imply that

L(t) # 0 for all t with R(1) = 1.

By well known techniques in analytic number theory [9], it would then be
possible to prove
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The Sato-Tate Conjecture: for large x

T (0) ~ j (sin 6)2d8 - ——,

p<x log x

where 7 is the characteristic function of the subinterval J < [0, 2n).

§2. THE GENERAL SETTING: AxioMs A AND B. Deligne’s generalization
of the Hadamard and de la Vallée-Poussin method applies to a broad class of L-
functions which are subjected to two basic axioms. Before we give the statement
of the main result we introduce some notation and define the class of L-functions
that will be considered.

LetI" bea group whichisisomorphicto ZortoR. Letw, : I' - R* be anon-
trivial quasi-character. Let G be a locally compact group which is an extension of
I' by a compact group G : )

0-G->G->I->0.

2 will denote an infinite countable set, and (x,),.s Will be a family of conjugacy
classes in G indexed by X. The examples of the previous section motivate the
following restrictions on the above data.

Axiom A (1) If I is isomorphic to R, the extension G is trivial.

(11) If I" is isomorphic to Z, the center of G 1s mapped onto a subgroup
of finite index in Z.

It should be observed that since HAR, G) = {1} for any compact group G,
the condition A(j) is automatically satisfied, ie. G = G x R a direct product.
One of the many applications that Deligne makes of his main result is to the
proof of the Weil conjecture. In this situation it suffices to consider the case where
G is the direct product of I' = Z by a compact Lie group G, whose connected
component of the identity G is semisimple.

The condition A(ii) is not really necessary in the proof of the main result;
what does seem to be needed is some sort of control on the growth of the matrix
coefficients p;(g) of a continuous finite dimensional representation p:G
— GL(V), for example the boundedness of the matrix coefficients p;{(g) will
guarantee that the representation p is unitarizable. Below we shall see that
actually polynomial growth as measured by a power of w;(g) will suffice. In the
proof of the Weil conjecture the group G admits a linear representation whose
restriction to G has a finite kernel ; for this type of group G it-can be shown that
A(ii) is automatically satisfied.
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With the non-trivial quasi-character o, : I’ - R*, we associate a family of
morphisms

0,:GBT - C*,
parametrized by complex numbers s € C:

wg) = o,(pr(g)) -

The norm of an element v € X is defined by N, = w_ ((x,). If I" is isomorphic to
Z, then {®,(y) : y € ['} is a discrete cyclic subgroup of R% and hence of the form
{q”}, where q is a positive real number > 1. This gives rise to an isomorphism

deg: ' - Z

whose sign we select so that m,(y) = g~ 9. We also denote by deg the
morphism
deg: G->T1 - Z

Obtained by composing the projectionmap G — I with deg. In the following
we define the degree of an element v € £ by deg(v) = deg(x,).

IncaseI’ ~ Z, Axiom A implies thereis an element g in the center of G whose
image in I" is non-trivial. Weyl’s unitary trick can be used to show that a complex
linear representation t: G — GL(V) is equivalent to a unitary representation if
and only if 1(g) 1s. In fact if  is a Hermitian structure on V which is invariant
under g, i.e.

U(tg) - v, Ug) - w) = Vv, w), vweV,

then integration over the compact group H = G/g% gives a G-invariant form

Vo, w) =[5 ¥(tlg) - v, 1g) - w)dg ,

which also defines a Hermitian structure on V. Hence 7 is equivalent to a unitary
representation.

Consider now the general situation. Let 1: G - GL(V) be an irreducible
complex linear representation. Let | define a Hermitian structure on V. If ¢
belongs to the center, then Schur’s Lemma implies t(g) is a scalar multiple of the
identity. Hence there is a complex number A such that

W(t(9) - v, 7(g) - w) = | A > Y(v, w).

Denote by o the real number such that | A | = ®,(g)° = w,(g) and observe that
the Hermitian form

V(T 0-49) v, T 0_9) W)
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is now invariant under the action of the center of G. Integration over the quotient,
of G by its center gives a G-invariant Hermitian form. Therefore the
representation to _, is equivalent to a unitary representation. The number o will
be called the real part of the representation t and is denoted R(t). If T is unitary,
then R(t) = 0 and also R(tw,) = R(1t) + R(s).

The irreducible representations of G of the form 1 - @, with t unitary will be
called quasi-unitary. We denote by G the family of isomorphism classes of
irreducible quasi-unitary representations of G ; we let G be the subfamily of those
which are unitary. On G we consider the equivalence relation: 1,7 € G are
equivalent if t is in the class of v' - o, for some s € C. Under this equivalence
relation G is partitioned into a disjoint union

G=u{t-olseC}.
eCG

By introducing the parameter s, we may now view an equivalence class of
quasi-unitary representations as a Riemann surface. In fact the map s — t- o,
identifies the set {t- o, | s € C} with

i) The complex plane Cif ' ~ R or

1) with the strip C/—— Z, if ' ~ Z and q is the real number with o,(y)

21
log g

— 4 degy

As is well known, by viewing G as a collection of Riemann surfaces, it makes
sense to talk about the regularity of a function of quasi-unitary representations
at a point or in a region, or about its singularities. The question of analytic
continuation, when considered on each connected surface, also makes sense.

Remark. 1t is in the above spirit that the zeros of an L-function should be
considered as a discrete set of quasi-unitary representations on the same
connected component, and the explicit formulas of number theory should be
considered as generalized trace formulas.

Axiom B (i) For every v e X, one has Nv > 1.

(ii) The infinite product [] (1—Nv™°)~' converges absolutely for

vel

R(s) > 1.

For I' isomorphic to Z, the first relation means: deg(v) > 0; B(ii)) means that
© ]
_ dN —ms )
Sainet
where

N, = # {ve X |deg) = m},
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which is the logarithm of the infinite product, converges absolutely for R(s) > 1,

that is to say for every € > 0
Ny = 0(g*om).

The condition B(ii) assures that for every 1 € G, the infinite product

1
Lo = G ==y

converges absolutely for R(t) > 1. Also each factor is holomorphic in 1 for R(7)
> 0, and the function L(t) is holomorphic for R(t) > 1 and does not vanish in
this region. In the following we put L(s, 1) = L(t - ).

§3. THEOREM (Deligne). With the assumptions and notations as above,
suppose that L1(t) as a function of t has a meromorphic continuation to
R(t) = 1, and thatin thisregion R(t) = 1 itis holomorphic except for a simple
pole at ®,. Then the function L(t) does not vanish for R(1) = 1, except
possibly for at most one representation 1, of dimension 1 and defined by a
character & with € of order 2.

§4. THE MAIN LEMMA. For a complex linear representation t:G
— GL(V), of dimension d, not necessarily irreducible, we have associated the zeta
function

L(T) = H Lv(r) 3
where
1 d 1
- det(I — 1(x,)) N 111 1 — i)’

L(v)

and Py(v), .., Bu(v) are the eigenvalues of a matrix in the conjugacy class of t(x,).
Now for s a complex number we put

L(t, s) = L(to,)
and define
d

L) = 2= Loy |,

In particular, in the domain of absolute convergence for the product

4 1
L(ro) = [] [1

vt i=1 1 — Bv)Nv™s’
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that is to say for R(tw,) > 1, we can take the logarithmic derivative with respect
to the complex variable s and obtain
L _
— 7ty = 2, (log Nv)- No™*" . (x}) .
veXl

n>0

If we let s = 0 in the above formula, we obtain for R(t) > 1

L
=7 ® = 2, (log Noj(x).

n>0

In order to deal with L-functions of arbitrary representations we now observe
that the above definitions can be extended by linearity to all virtual
representations. Let

©
M
9%

be an element of the Grothendieck group of the category of representations of G ;
the n(p) are integers and all but a finite number are zero. We put

L(r) = [ L(py"®

peG
and similarly
L L
z(T) = pEZG ”(P)Z(P)-

Let p be a measure on the group G, which we can also consider as a measure
on the space of conjugacy classes of G. For every virtual unitary representation

T =) nlpp, np) = 0 for almost all p,
peG
we put

i(7) = f¢ xlg)dp,

where 7, is the trace of the representation 1. Since Y, is bounded, the integral
converges if the total mass of | p | is finite. The function T — [i(t) will be called the
Fourier transform of the measure p. In analogy with the Harmonic analysis on
the group R*, it is useful to consider the integrals [i(t) for T not necessarily
unitary; we then refer to T — [i(t) as the Fourier-Laplace transform of p.

Definition. A not necessarily continuous function f:G — C is called
positive definite if for every choice of ¢y, .., c, € C and g4, ..., g, € G we have

Z_ ¢i¢if(gig; ') = 0.
LJ
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A measure p on the group G is positive, denoted p > 0, if for every non-
negative function f : G — R, we have [, f(g)dp = 0.
If p is a positive measure of finite total mass, then we have for every virtual
unitary representation p
ip®p) =20 (forp = 0).

In fact, since Y,05 = | %, |2 (see Part III, §1) we have

p®p) = fo Yowp(g)dp = jG | %p(9) |dp = 0.

More generally, if ¢y,..,c,eC and py, .. p, are virtual unitary
representations, then we have for any positive measure p on G with finite total
mass

Y. cifi(pi®p) = fg| ‘Zl ctpg) [P dn = 0.
1, ] 1=

For a real number s = o > 1 and a virtual unitary representation t, we have

’

that the expression A,(t) = — 7 (tw,) is the Fourier Transform of the positive

measure of finite total mass

e = Y, (log Nv)- Nv™" - 3[x}]
veXl
n>0

defined on G, where d8[ a] denotes the Dirac measure concentrated at a. Therefore
we have, for every virtual unitary representation p of G and o > 1

As(p®P) = fi(p®p) = 0.

Let T € G and let v(t) denote the order of the pole of L at tw,, that is to say we
write

Ltw)

L(to) = ——~,
( ) (S B I)V(T)
where I[(to,) remains bounded and non-zero as s — 1. Since

o) = Oy ),

’

1.e. V(1) is the residue of — T at tw,, we can extend the definition of v(t) by

additivity to the Grothendieck group of the category of unitary representations
of G. For these we have
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v(t) = lim (0—1)(— %’(rmc,) + f(w)c,)>

c—1t
= lim (c—1)A,1).
c—>1+*
Hence from the inequality A (p®p) = 0 which holds true for o > 1, we obtain,
since c — 1 > 0, that

v(p®p) = 0

for every virtual unitary representation p of G. More generally ifc, .., ¢, € C and
Pi, - Pn are virtual unitary representations, then we have

Z Ckc-jV(Pi@)ﬁj) =0,
L, J

l.e. the symmetric matrix {v(p;®p;)} is positive semi-definite.

The assumptions in the Main Theorem can now be translated into properties
about the integer valued function v(t). First of all the fact that L(t) has an analytic
continuation to the region R(t) > 1 and that L(t) is holomorphic in this region
except for L(w,) which has a simple pole at s = 1 implies that v(t) < O for all
1 # land V(1) = 1. If L(tw,) has a zero at s = 1, then by conjugating the Euler
product that defines L(tw,) for o a real number, we see that L(Tw,) also has a zero
at s = 1 of the same order as L(tw,); hence v(t) = V(7). This then reduces the
proof of Deligne’s Theorem to the following:

MAIN LEMMA. Let G be alocally compact group; let G be the space of
irreducible unitary representations of G, consider a function

v:iG > Z
that satisfies the following conditions:
a) for the trivial representation 1, v(1) = 1
b) v(t) = v(T)
c) v(r) <0 for t©# 1
d) v(téA) = v(t) + v(h)
e) V(p®p) = 0 for every unitary representation p, i.e. Vv is positive semi-

definite.

Then v(t) = 0 forall T # 1 except possibly for at most one t of dimension
1 and defined by a character of order two.

| A

14

M
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§5. REDUCTION TO THE COMPACT CASE: REFORMULATION OF THE MAIN
LEMMA. In outline the proof of the Main Lemma is an adaptation to locally
compact groups of the following argument which works for any finite group. The
Plancherel theorem for a finite group G gives the decomposition of the regular
representation r¢ into its irreducible constituents; if x, is the character of r; and
v, runs over the characters of the irreducible representation 1 of G, then we have

% = 2, (dim )y,
G

Now we recall that the support of , is concentrated at the identity e of G, in fact
v, = | G| 8[e]. If we now use that 0 < 7, and evaluate the function v which
appears in the Lemma at y, and use the property €) we obtain

0 < ) (dim 7)v(1).

1€G

Properties a) and ¢) imply that all the terms in the above sum except v(1) = 1are
non-positive and therefore at most one other term can have v(t) = —1 and for
this representation dim t = 1 and t = 7. Hence such a t is defined by a
character of order 2. In particular, if G admits no subgroup of index two, then
there is no exceptional representation.

The adaptation of the above idea consists in obtaining uniform
approximations to the character of the regular representation of G by a finite
linear combination with positive integer coeflicients of the characters of finite
dimensional irreducible unitary representations. The approximation should be
fairly good so that the character of the corresponding representation is still a
non-negative function. As is well known, the proper framework for the study of
this type of approximation is the theory of almost periodic functions on the
group G. Rather than using the full theory we shall work with an intermediary
object, the Bohr Compactification G® of G, which is a compact group. This will
simplify the analysis, since on G we can use the full strength of the Peter-Weyl
Theorem. In fact, for our purposes, even the Stone-Weierstrass approximation
Theorem would suffice.

In the following we recall the basic facts about the Bohr Compactification.
The reader can find an exposition of the theory in Weil [11], Chap. VIL

If t: G - GL(H,) 1s an irreducible unitary linear representation, then the
image of G under 71 is contained in a unitary subgroup U(H,) of GL(H); since
each U(H,) is a compact group, their product | | U(H,) is also a compact group.

t€G

n:G - H U(H,
G

g = (19))eq -

We thus obtain a map
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The Bohr compactification of the group G, which we denote by G is the closure

in ]_[ U(H,) of the image of G under the map n. The main reason for introducing
TEG

the group G® is that it is compact and that any irreducible unitary finite
dimensional representation 1 : G — U(H,) factors through a finite dimensional
unitary representation of G°: '

pr,
G- G'->J]UH)-> UH,).
TEG
Now since G has a dense image in G°, any representation of G° is irreducible if
and only if its restriction to G is irreducible. The group G’ is uniquely defined up
to isomorphism by G. By projection, any unitary representation of G can be
extended to G”:

1:G - UH,).

!
Gb

This then establishes an equivalence between the category of finite dimensional
unitary representations of G” and the category of finite dimensional unitary
representations of G under which irreducible representations correspond.

More to the point at hand, which is that of obtaining good uniform
approximations to the character of the regular representation of G, is the fact
that the continuous functions on G” are in one-to-one correspondence with the
almost periodic functions on the locally compact group G in the sense of von
Neumann.

For alocally compact abelian group G, Pontrjagin’s duality theory gives very
precise information about the group G°. In fact in this case all irreducible
representations of G are of dimension 1. The Pontrjagin dual of G is the group of
all continuous homomorphisms

G = Hom/(G, T),

where T = {ze C:|z| = 1} is the circle group; furthermore G = G and the
dual of a compact group is a discrete group and vice versa. Now G” is a compact
abelian group and its character group is

A

G’ = Hom/(G?, T)
= Hom/(G, T)
=G.

e 2
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Hence GP is the Pontrjagin dual of G viewed as a discrete group, i.c. the group of
not necessarily continuous homomorphisms

G’ = Hom,,(G, T).

Example 1. If G = R, then G* = Hom,,(R, T), i.e. G® is the group of all
exponential functions f(x) = ™. The Weierstrass Approximation Theorem
describes the relation between the almost periodic functions on R and the
continuous functions on G®.

Example 2. If G = Z, then G* = Hom, (T, T). The almost periodic '
functions on G are closely related with the trigonometric sums

Y,  LldM] < oo,

A

where x(n) — ¢ with real frequencies A.

Example 3. An example relevant to the theorem at hand is G = K x R,
the direct product of a compact group K and the group of real numbers. The

Bohr compactification of G is
G* = Kb x R®.

In this situation the general theory shows that the class of central functions f on
G with the property thatif ¢ > 0, there exist a finite set of characters of unitary
representations y, ..., ¥y of K and almost periodic functions a4, ..., ay on R such
that forallg = (k, x) in G

N
| fg) — Z xikla(x) | < ¢,

i=1

coincides with the class of central continuous functions on G°.

Remark. After this brief interlude into the realm of almost periodic
functions on the group G, the reader should keep in mind that it is quite
immaterial whether we work with G or with its Bohr compactification. What is
really at the heart of the argument is the family of functions F on the group G
which can be uniformly approximated by finite linear combinations of the
characters of irreducible unitary representations of G with complex coefficients ;
the structure of F can in turn be described by the Stone-Weierstrass
approximation theorem.

In order to establish the Main Lemma we may then assume that G is
compact. Most of Part III is devoted to the proof of the following lemma.

L’Enseignement mathém., t. XXIX, fasc. 1-2. 8
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MaIN LEmMMA (Reformulation). Let G beacompact group;let G be the
space of irreducible unitary representations of G, consider a function
v:G - Z
that satisfies the following conditions
~a) for the trivial representation 1, v(1) = 1
b) v(t) = v(7)
) V(t) <0 for T # 1
d) v(t@®A) = v(1) + v(})
) V(p®p) = O for every unitary representation p, ie. Vv is positive semi-

definite.

Then v(t) = 0 forall t© # 1 except possibly for at most one 1, of dimension
1 and defined by a character of order two.

Part III: PROOF OF THE MAIN LEMMA

§1. REVIEW OF THE REPRESENTATION THEORY OF COMPACT GROUPS. We start
by recalling some known facts which are standard results from the
representation theory of compact groups. Some of these results are elementary,
others arise in the proof or are consequences of the Peter-Weyl Theorem.

G will denote a compact topological group; G is endowed with an invariant
~ measure dy which we normalize so that ; du = 1. Animportant set of functions
on G is the space of square integrable functions:

IG) = {f:G->Clfg| f?dn < o0}.

In the following we shall also consider the space of central square integrable
~ functions on G:

‘ LXG) = {f e (G)]| flaga™") = f(g)  forallaeG}.
Both I%(G) and L(G) are Hilbert spaces with the inner product
(i h) = fo'ﬁle-

1 By G we denote the set of isomorphism classes of irreducible unitary L

| representations of G. To avoid complicated notation, we shall not distinguish
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between an isomorphism class and its members : each p € G is to be thought of as
a specific continuous homomorphism

p:G — UV,

into the unitary subgroup U(V,) of a specific Hilbert space V,. The irreducibility
of p implies that V, has finite dimension which is also called the dimension of p
and denoted by dim(p).

The Peter-Weyl Theorem. There is an isomorphism of Hilbert spaces

(1.1) G ~dV,QVE (Hilbert space direct sum) ;
2 Yp p

peG

in this decomposition the action of G on I*G) induced by left translation
corresponds to the action on the left factors V,; more precisely, if

<,>:VeVvi-C
is the canonical bilinear pairing, we then have a mapping of Hilbert spaces
T,: V,® V¥ - IXG)

given by T(V®A) = < A, p(g~')v >, where the inner product in ¥V, ® V¥ is
normalized by dividing by dim(p). Similarly the right translation action
corresponds to the dual action on the dual space V¥. The isomorphism (1.1) is
obtained by putting together the Ts:

T=@T:®V,QV->ILG).

pef; peG
To each p € G one associates the function

X, - g — Trace p(g),

the so called character of p. Since the eigenvalues of p(g) are complex numbers of
absolute value 1, %, is a bounded continuous central function and satisfies

| %(9) | < xe) = dim(p), %07 = x:9) -

If 7, p € G, then it is immediate from the definition of the direct sum 1 @® p
and the tensor product T @ p that

Xp&-)r = Xp + Xz and Xp®1: = Xp ) Xt .

If p and o are unitary representations of G, their tensor product p ® ois also
a unitary representation and we have a decomposition

®1t =) ar,

G
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where the a(t) are positive integers and a(t) = 0 for all but a finite number of <.
The integer a(t) is the multiplicity with which the representation t appears in
p ® t. If o is a unitary representation of G and P is an irreducible unitary
representation of G we denote by [a : B] the multiplicity with which B appears in
the decomposition of a into irreducible components. Since the character of a
unitary representation uniquely determines the class of the unitary
representation, we have by the orthogonality relations for the characters that

[p®oc:1] = alt)
= [ (. aOx9)x:g)du
= {6 Xpwol9)X:(g)dn
= [6 %@ 169190 .

A simple combinatorial exercise, using the Maclaurin expansion of
log(1—T), gives for p, 1€ G and H(T, p, g) = det(I — p(g)T) that

H’ 0
D = (Tpg = ,,Zo Xo(g" T
2) —H—(T pDdT,9) {; (Xp(9™ + Alg™)T™

’

3) E(T,p@m,g) =

gk

Xolg") X" T .

i

0

It is a formal consequence of the Peter-Weyl Theorem, that the character y,
determines p up to isomorphism. In particular the map p — y, sets a one-to-one
correspondence between the family of irreducible unitary finite dimensional
representations of G and the set of characters of irreducible representations.

Remark. The Peter-Weyl Theorem together with Weyl’s character formula
and Cartan’s Theorem about the highest weight constitute the fundamentals of
the representation theory of compact Lie groups. |

As a special case of the Peter-Weyl Theorem, we have that the collection
{X,}pcc forms an orthonormal basis for the space L%(G) of square integrable
central functions on G. For our purposes the following result will suffice ; a proof
of it can easily be obtained from the Stone-Weierstrass approximation theorem.

| Weyl’'s Approximation Theorem. On a compact group every continuous
- central complex valued function f can be uniformly approximated by finite
| linear combinations with complex coefficients of the characters {,},cs-

“ Remark. The above theorem means that for every continuous central
. function f : G — C and for every & > 0, there is a finite linear combination
a
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=2 P

peG

where ¢(p) € C and ¢(p) = 0 for all but a finite number of p, such that | f(x)
— f'(x)] < eforall xeG.

Existence of Invariant Symmetric Neighborhoods: On a compact topological
group there exist arbitrarily small invariant symmetric neighborhoods of the
identity, i.e. a neighborhood N of the identity such that

1) (Symmetric)y N~ ! =N
2) (Invariant) x~ !Nx = N for all x e G.

To establish this result recall that the unique topology carried by the
topological group G is defined by a base %(e) for the filter of neighborhoods of
the identity. %(e) satisfies the following properties

(i) For every x € G and A4 € %(e), there is a B in %(e) such that BS x~ 1Ax.
(ii) For every pair of sets A, Bin %(e), thereisa Cin #(e) such that C = 4 N B.
(1i1) "The identity belongs to every set A of %(e).
(iv) For every A in %(e) there is a B € %(e) such that B™' < A.

(v) For every A € %(e) there is a # in %(e) such that B> = A.

Now let N, be an arbitrary neighborhood of the identity. By (11), (iv) and (v) there
is a neighborhood B of e such that B = B~! and B® = N,. The family of
interiors xB'(xeG) cover G so by the compactness of G there is a finite set x;, ..., x,,
in G such that x, B', ..., x,B' cover G. By (i) and (ii) there is a neighborhood C of e
such that x, !Cx, = Bforeach k. Now givenany g € G, we have g € x,Bfor some
k and so g !Cg < Bx, 'Cx;B = B® = N,. Now let W be the union of all
g~ 'Cg, with g € G. This is clearly contained in N,. By (ii) there is a symmetric

neighborhood U in %(e) such that U = W n W~1. Clearly U = N,. This
proves the result.

§2.1. THE BEGINNING OF THE PROOF OF THE MAIN LEMMA. We fix ¢
> 0 and a finite subset A = G, which contains the trivial representation. Now
choose a symmetric invariant neighborhood U of the identity which satisfies

| x(9) —dim A | < ¢

for all g € U and all A € A. Let us first prove an
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Auxiliary Lemma. If U is a symmetric, invariant neighborhood of e, then
there is a continuous function

f:G->R,
which satisfies

M fl@ = flg™"

(i) flaga™') = f(g), for every ae G
(ii1) the support of f is contained in U
(iv) f(e) > 0.

Remark. The graph of such a function would have the following shape

4‘R+

/' e

U

To prove the existence of f we proceed as follows. As in the proof of the existence
of the symmetric invariant neighborhood U, we can find a neighborhood A of e
such that A2 < U ; we may also suppose that the measure of 4 satisfies p(A4) > 0.
Let x , be the characteristic function of 4 and let h(x) be the convolution of y ,
with itself

h(x) = x4*04%) = Jo xaWx(x™ y)dy .

h(x) is a continuous function of x and satisfies h(e) = p(A4) > 0. The support of h
is clearly contained in A2 = U. Now define a function

f(x) = [ h(g™'xg)du(g)

clearly f(e) = h(e) > 0 and f(x) is central. Since U is invariant we see that if
x ¢ U,theng ™ 'xg ¢ U for all g € G; therefore the support of f is contained in U.
If necessary we may replace f(g) by (f(g9) + f(¢9~'))/2 to obtain a function f
which satisfies f(g) = f(g~*'). This proves the Auxiliary Lemma.

J
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Claim 1. The real part of the integral

fo 1(9)? (xalg) — dim & + 2¢)dn
is >0 for all L e A.

Proof. Observe that the integral is equal to

[ £(9)? (1alg) — dim & + 2¢)dp
and that on U
| v.(g) — dim A + 2¢e| > ¢

for all A € A. The claim is now clear.
We now want to replace f by a function f, which approximatesit and has the
form

(*) folg) = Y, n(Wx(9),

ueG

where n(n) = n(p)e Z and almost all n(n) are 0. We first use Weyl’s
Approximation Theorem to obtain an ordinary approximation to f of the form
(*) with the n(n)’s complex numbers. Secondly since f(g) = f(g~') and xu(9)
= yg~"), we observe that f, is also a good approximation to f'; thus if
necessary we may replace f;, by % (fo+ fo) in order to obtain a function f, of the
form (*) with n(n) = n(ft). Thirdly, since f is real valued, we may replace the
n(p)’s by their real parts R(n()); this gives a function f;, of the form (*) with n(n)’s
real numbers. We then approximate the n(p) by rational numbers so that we may
suppose that our original function f is sufficiently close to a function of the form
&) with the n(p) = n(ji) € Q. If this is the case, then the inequality in Claim 1 still
remains true when f is replaced by f;:

(*%) Re [¢ fo(9)* (xalg) — dim X + 2¢)dp > 0, forall A e A .

Since this inequality is “homogeneous” in f, we may multiply it by the square of

a large positive integer which is a multiple of all the denominators of the n(p)’s. In

this way we obtain a function f; in (*) with n(n) = n(ji) € Z and which satisfies
Let us put f, = fg — f, with

fo = ) nWy, and f5 = Y — npy,.

n(p)>0 n(u) <0

fo and fg are the characters of two unitary representations which we denote by
p* and p~. It should be pointed out that the representations p* and p~ have no
component in common, i.e. [¢ f§ - fo dp = 0.
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Claim 2. The real part of

Jo (g +£5) (1lg) — dim & + 2e)dn
is positive for all A € A.

Proof. The integral is equal to
Jo (fo —f0) (xalg) — dim & + 2e)dp + f6 4f¢ - fo xalg)dn
+ (—dim A +2¢) [ 41§ fodu.

The third integral is clearly 0. The second integral is a positive integer, because it
is the multiplicity with which the irreducible unitary representation A appears in
the tensor product p™ @ p~. The first integral has positive real part as follows
from the inequality in Claim 1 (**).

Consider now the representationp = p* + p~;clearlyy, = fo + fo.In
our context the representation p plays the role of the regular representation. Let
us observe that the inequality in Claim 2 can be written in the form

Ref 1,05(9)12(9)dn = {Re [ 1,05(9)dn} (dim L —2e);

both of the integrals appearing here are real numbers and hence the integrals
themselves satisfy the inequality, i.e.

Jo Xoos(@Aa(g)dp = (dim X —2¢) [g X,e4(g)dp -

The integral on the left hand side represents the multiplicity with which the
representation A appears in the representation p ® p:

[p ® p:A] = [6 Apop(@ral9)dn ;

similarly, the integral on the right hand side represents the multiplicity with
which the trivial representation t = 1 appearsin p Q p:

[p®p:1]1 = J6 Apeslg)dn .
With the above notation, the last inequality can be written in the form

(***) [P®p:A]=[p®p:1](dimr—2¢e), forallieA.

§2.2. CONCLUSION OF THE PROOF OF THE MAIN LEMMA. We first decom-

pose the representation p @ p

p®p=2[p®p: I[P ®p:ul = 6 Xos@r.49)dg ;

HeG

AN
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we then use the additivity property of the order function v and its positive
definiteness to obtain that

Vp®p) = [p® p:1Iv() + X [P ® pplvi).
neG
¥l

Now since the sum is nonpositive the inequality remains true if we restrict the
summation to those pe A, p # 1:
0<[p®@p:1vl) + ) [p®p:AVAH);

AEA
ArE1

from the inequality (***) we then obtain

0<[p®p:1Ivl) + Y [p® p:1](dim A—2e)v(h);

AeA
rE1

hence

0<[p®p: 111 + Y (dim A—2e)v(M)} .

AeA
AFE1

Letting ¢ — 0 and observing that [p ® p: 1] > 1 we obtain finally that

0 < ) (dim Mv(d)
reA
for any finite set A — G which contains the trivial representation. The Main
Lemma now follows from the last inequality by observing that besides the term
v(1) = 1, there can occur at most one other non-zero term with v(t) = —1 and
dim t = 1. Thus 1, = T, must be of order 2. This completes the proof of the
Main Lemma and hence also of Deligne’s Theorem.

§3.1. CONDITIONS UNDER WHICH I{t) # 0 FOR ALL T WITH R(1) =
The question still remains whether the exceptional representation 1, in the main
theorem actually exists. We now want to show that axioms A and B and the
assumptions which appear in the statement of the theorem are not enough to
imply the non-existence of t,. In fact we construct a set of data {G, (x,)pes, ©®;}
and exhibit the particular character t, for which I(t,) = 0. We then propose a
condition, called Axiom C, which is quite natural from the point of view of the
applications to number theory and algebraic geometry and which can be

incorporated into the statement of the theorem so as to guarantee that L(t) # 0
for all T with R(1) =
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Let us recall that the first instance of a calculation implying the non-
vanishing of an L-function associated with a quadratic character seems to be the

representation obtained by Leibniz of 1 as an infinite series

n_l 1+1 l+
4 35 77

In fact the series above is simply the value at s = 1 of the L-function

1
He ) = I;Il — 2P’

where x(p) = 1if p = 1 mod 4 and y(p) = —1if p = 3 mod 4, i.e. y is the
character which corresponds by class field theory to the Gaussian field Q(i).
These i1deas were fully developed by Dirichlet who proved that an ordinary L-
function L(s, ) associated with a character  of the second order never vanishes
at s = 1;this he did by explicitly evaluating L(1, ) as a non-zero number. It is
unfortunate that in the generality in which we want to work, the ideas of
Dirichlet do not seem to apply directly to the L-functions L(t). In searching for an
appropriate variant of Dirichlet’s argument which could be applied to L(t) we
are lead to the method introduced by Merten in 1897 to show that L(1, x) # 0
for any real character y without explicitly evaluating the L-function. Merten’s
idea consists in 1.) exploiting boundedness of the partial sums of the values of y :
if ¢ 1s a character of conductor f, then

Y xn) = O(f)

N<n<m

and 2.) observing that for ¢ a character of order 2, the function

a(n) = ‘;X(d)
satisfies a(n) > O for all n and a(n?) > 1 (see [8], p. 133).

A careful analysis of Merten’s proof and a translation of Dirichlet’s theorem
on primes in arithmetic progressions into a statement about the distribution of
conjugacy classes of the Galois groups of cyclotomic extensions already reveals
what could go wrong in the more general situation dealt with in the Main
Theorem ; it also shows what makes possible the existence of a character t, with
L(ty) = 0. In this respect, Weber’s proof of the Prime Ideal Theorem and
Beurling’s analysis of the distribution of generalized prime numbers [2] are also
of some relevance.
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§3.2. AN EXAMPLE OF A REPRESENTATION T, WITH L(t,) = 0. Consider

the extension
0-G -G—->R-=>0

with G = G~ x R the direct product of the reals R with G = Gal(Q/Q) the
Galois group of the separable closure of the rationals Q. For each rational prime
p welet F,denote the Frobenius conjugacy class in G . For X we take the set of all
rational primes p = 3 mod 4. For each p € £ we consider the conjugacy class of

G
P
Xp = {Fp, —lOg 5}

The set (x,),.x will play the role of the countably infinite family of conjugacy
classes in G. The quasi-character w; : R —» R* is ,(r) = ¢". Similarly w,: G
— C*is given by composing the projection map G — R with o}. In particular we

2 N
have o(x,) = (—) . Axiom A is clearly satisfied. As for Axiom B we certainly
p

have 0_(x,) = g > 1 and if s € C satisfies R(s) > 1, then the Euler product

1 1
Hag = le — o4x,) B pzal;[od41 B (2>S

p

converges absolutely. In fact if > 1, then L(o,) can be compared with {(c)?°.
Now let 14 be the character of G corresponding to the quadratic extension
Q(i)/Q. From elementary number theory we know that

1 if = 1 mod 4
TO(Fp) = . P . .
—1 if p = 3 mod 4

Thus we have 14(F,) = —1 for all p e . We want to show that the L-function
1

L(tom,) =
(Fot) pex 1 — Toms(Fp)

has a zero at s = 1. In fact we observe that

Litgw) = [] : _ 1

per t(F,) <I§7) p=3mod 4 1 +<g)
p
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if we multiply L(t,m,) by

we obtain

L(O“)S)L(TOO‘)S) = H

p=3 mod 4 1 — (g)Zs ’
p

which is a function holomorphic and free of zeros in the region R(s) > 5

Therefore to show that L(t,m,) has a zero at s = 1, it suffices to show that L(w,)
has a simple pole at s = 1 and otherwise is holomorphic and free of zeros in the
region R(s) > 1. Thisinformation is a simple consequence of Beurling’s theory of
generalized prime systems [2] ; it can also be obtained more directly by using the
prime number theorem for arithmetic progressions to obtain the asymptotic law

p X
#<-< x|p=3mod4, ~ :
2 log x

A still simpler approach consists in using the identity

C(s)
L(s, To)

Llwg) = f1(s)13(s) f3(s)

where ((s) is the Riemann zeta function, L(s, t,) is the ordinary Dirichlet series
associated with the character 15, and whose valueat s = 11isgiven by the Leibniz

w-n(-2)(-()
w-nfi- 2 (-3)

1 -1
f3(s) = H 1+ 7)

series, and

wheré each product is taken over all the prime p = 3 mod 4. All the functions
T
f{s) are well defined and distinct from Oats = 1; I(1, 7o) = 1 Therefore I{w,)

has a simple pole at s = 1 and L(t,m,) has a simple zero at s = 1. Let us also
observe that the other hypothesis in the Main Theorem are satisfied. All the L-
functions L(tw,) associated with finite dimensional representations tw, of G,

‘|
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where T are representations of the Galois group G’ distinct from 1, and the trivial
representation are holomorphic in the region R(s) > 1. This can be shown by an
argument similar to that given above for L(1,0,). We prefer to use estimates like
those which enter into the proof of the Chebotarev density theorem. For these
purposes it is enough to verify that

X
{F,) =0 , some m > 0,

(x. = Trace 1). But this is clear because

1
Z‘:L Xt(Fp) = Z, E (1 - TO(Fp))Xt(Fp)
1
= 5 Z: XT(Fp) N Z TOXI(Fp)

where the last estimate results because the ordinary Artin L-functions L(s, t) and
L(s, t47) are holomorphic and free of zeros in the region R(s) = 1.

Remark. 1t should now be possible for the reader to construct infinitely
many other examples like the one given above by considering polynomials other
than x? + 1. Similar examples in the geometric case I’ ~ Z are also possible.

§3.3. Axiom C AND AN ADDENDUM TO DELIGNE’S THEOREM. Inorderto
remove the possibility of the existence of a representation like 1, we now
formulate a condition that guarantees a certain amount of equi-distribution of
the conjugacy classes (x,),.s When restricted to subgroups of finitc index in G. The
guiding requirements are 1) to postulate that the given family of conjugacy classes
(x,),ex 18 not completely outside a certain subgroup of index 2 and ii) to postulate
that the data {G, (x,),s ®,} behaves properly under base change. More
precisely, we suppose that we are given data {G, (x,),.s, ®, } asin Part I, §2. Now
consider a subgroup G’ of G of finite index in G. A conjugacy class x,in G can be
thought of as an orbit

x, = {gag”'|geG}.

Ifwelet G = U G'c; be a left coset decomposition of G modulo G'. Then we can
j

split x, into the disjoint union of orbits under G’:

x, = U {glojac; g™t g€ G} ;

J
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some of these orbits will belong to G’ others will lie outside. We denote by
S(U) = (xw)wlu

the collection of conjugacy classes in G’ contained in x, and say that the index w
divides v; the set s(v) may possibly be empty. Given a subgroup G’ of finite index
in G it 1s often convenient to think of the countable family {s(v)} .5 of conjugacy
classes in G as a covering of the family (x,),.s. For a given v, we attach an integer
d(w) to each divisor w of v. This should be done coherently so that ) d(w)

wlv
= [G: G]. At any rate, the choice d(w) = [G : G"]/# s(v) will suffice when G’ is
normal in G. In order to obtain a coherent system of norms which fits well with
the commutative diagram

0>G -G >I"->0

! ! !
055G >G> T -0

we now extend the quasi character o, : I' - R*% to a quasi-character

o;: " > R%
so that
0‘),1(xw) = (Dl(xu)d(W) s

whenever the conjugacy class x,, is contained in x,. With the above notations we
can now make the following definition.

Definition. For asubgroup G’ of finite index in G, the data {G, (x,,),e5» @)}
is called the base-change of {G, (x,),ez, ®,} to G

If G’ is a normal subgroup of G, then a combinatorial argument of a rather
simple nature ([ 7], page 248) shows that if the L-function of a representation 1’ of
G’ is defined by

o 1
L0 = e =ve)

then we have

L, G) = [] Lt ®c, G)",

where

r =Y n(o)o

o]

is the decomposition of the regular representation of the finite group G/G" and
L(7®o, G)is a twisted L-function defined on {G, (x,),.5, ®} asin [7], page 248.
We now state the third requirement that the L-functions L(t) must satisfy.
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Axiom C. Let G’ be a subgroup of G of index 2. For the principal L-
function L(,) associated to the quadratic base-change {G’, (x,,),,cx» ®7} We have
a decomposition

L((D,s) = L((Ds)L(TO(Ds) ’

where 1, : G — C* is the real character of order 2 with Ker(ty) = G
We can now add to the main result of Deligne the following statement.

THEOREM. With the hypothesis and notation as in the Main Theorem
( Part 11,83 ), suppose furthermore that the principal L-function L(w;) associated
to any quadratic base change {G',(x,)yes» ®1} satisfies Axiom C and has a
simple pole at ), then the exceptional character t, does not exist and
L(t) # 0 forall t© with R(t) = 1.

The proof is clear, since if L(t,0,) has a zero at s = 1, then the pole of L(w,)
would be cancelled and L(®;) would be regular at s = 1.
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