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So we have the following

(1) t < i 4- p(i) (by hypothesis)

(2) n — i ^ n + m — t — I or equivalently i ^ t 4- I — m

(3) Km 4- 4- Km_z+1 4- I ^ n 4- m - t

(4) kx + + Kpii) < i ^ kx 4- 4- Kp(i)+i

Using (2) and (3) we have that

km 4- 4- Km_/+1 ^ n - i Kj + + Km - i

so we have i ^ 4- 4- Km_, which implies m — / ^ p(i) + 1 thus

p(i) + i < m — I 1 + i ^ (m — /—^1) 4- (t+l — m) t — 1

which contradicts (1). This proves the theorem.

9.7. Vectorbundles and Schubert cells. Because every positive
vectorbundle over P1(C) arises as the bundle E(L) of some system 2 one has the
obvious analogues of theorems 9.5 and 9.6 for positive bundles over P1(C). Here
the morphism \|/E must, of course, be replaced by the classifying morphism (cf.

section 3.2 above) of a positive vector bundle E, and n + m and m are determined
respectively as dim r(£, P^Q) and dim E.

10. Deformations of representation homomorphisms
AND SUBREPRESENTATIONS

10.1 On proving Inclusion Results for Representations. Suppose we have

given a continuous family of homomorphisms of finite dimensional

representations over C of a finite group G

(10.2) nt : M -> V

Suppose that Im nt ^ p for t ^ 0 (and small) and that Im n0 ~ p0. Then the

representation p0 is a direct summand of the representation p. This is seen as

follows. Because the category of finite dimensional complex representations of G

is semisimple there is a homomorphism of representations 4>0 : Imn0 -> M such

that 7i0 ° c|)0 id. Then 7if ° <t>0 : Im cj)0 -» Im nt is still injective for small t (by
the continuity of nt) which gives us p0 as a subrepresentation and hence a direct
summand of p.

It is almost equally easy to construct a surjective homomorphism Im nt

-> Im 7t0.
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10.3. The Inverse Result. Inversely if p0 is a subrepresentation of p then
there is a family of representations (10.3) such that Im nt ~ p for t # 0 and
Im 7i0 ~ p0, and if p is generated (as a C[G]-module) by one element one can
take for M in (10.2) the regular representation. Indeed if p0 is a subrepresentation
of p then p p0 © px. Let n : M -* p p0 © Pi be a surjective map of
representations. Let 7c0, n1 be the two components of n. Let 5 (s0, sx) be a

section of 71. Then 7i050 id,n1s1 id,n0s1 0, k^q 0 and it follows that
n(t) consisting of the components n0 and tn1 is still surjective. Hence Im n(t) p

and Im rc(0) p0.

11. A FAMILY OF REPRESENTATIONS OF Sn + m

PARAMETRIZED BY Gn(Cn + m)

11.1. Construction of the Family. Let M be the regular representation of
Sn + m. That is M has a basis ea, a e Sn + m and Sn + m acts on M by the formula x(ea)

exu, for all x e Sn + m. Now consider the universal bundle over G(C" + m) and

the n + m holomorphic section £x,..., en + m
defined by

£i (x) et mod x e Cn + m/x

where et is the i-th standard basis vector. Take the (m + n)-fold tensor product of
^m and define a family of homomorphisms parametrized by Gn(C" +

m) by

(11.2) Kx :M->+ 6„-iH s0(1)(x) <s>... <S> e0(B,(x)

More precisely (11.2) defines a homomorphism of vectorbundles

(11.3) G„(C" + m) x M +

The group Sn+m acts on ^m(x)®(n+w) by permuting the factors and it is a

routine exercise to see that nx is equivariant with respect to this action, i.e. that

kx(tv) tkx(v) for all veM,xeSn+m. (Here the product xa g Sn+m is

interpreted as first the automorphism a of 1,..., n + m and then the

automorphism x.)

Thus Im nx tt(x) is a representation of Sn+m for all x giving us a family of
representations parametrized by Gn(C"+m). Fixing a point x0 e G„(Cn + m) and

choosing m independent sections of in a neighbourhood U of x0, this gives us

families of homomorphisms of representations
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