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So we have the following

()t <i+ p(i) (by hypothesis)
2)n—iz2n+m—t—1[orequvalently i<t + [ —m
(B)Km+...+Km_l+1+l<n+m*t

4) x; + o+ Ky < IS Kp 4 o+ Kpgyeg -
Using (2) and (3) we have that
Ky + o + Kppyoy SN —1 =K+ .. +%x,, — 1
so we have i < x, + ... + x,,_; which implies m — | > p(i) + 1 thus
pi)+i<m—-Il—-1+i<(m—-I-1)+({t+l-m=1t—-1
which contradicts (1). This proves the theorem.

9.7. Vectorbundles and Schubert cells. Because every positive
vectorbundle over P}(C) arises as the bundle E(X) of some system X one has the
obvious analogues of theorems 9.5 and 9.6 for positive bundles over P*(C). Here
the morphism sy must, of course, be replaced by the classifying morphism (cf.
section 3.2 above) of a positive vector bundle E,and n + m and m are determined
respectively as dim I'(E, P!(C)) and dim E.

10. DEFORMATIONS OF REPRESENTATION HOMOMORPHISMS
AND SUBREPRESENTATIONS

10.1 On proving Inclusion Results for Representations. Suppose we have
given a continuous family of homomorphisms of finite dimensional
representations over C of a finite group G

(10.2) MoV

Suppose that Im n, ~ p for t # 0 (and small) and that Im =, ~ p,. Then the
representation p, is a direct summand of the representation p. This is seen as
follows. Because the category of finite dimensional complex representations of G
is semisimple there is a homomorphism of representations ¢ : Im n, - M such
that ty o ¢y = id. Then &, o &y : Im by — Im =, is still injective for small ¢ (by
the continuity of w,) which gives us p, as a subrepresentation and hence a direct
summand of p.

It is almost equally easy to construct a surjective homomorphism Im x,
— Im m,. |
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10.3. The Inverse Result. Inversely if p, is a subrepresentation of p then
there is a family of representations (10.3) such that Imn, ~ p for t # 0 and
Immy ~ p,, and if p is generated (as a C[G]-module) by one element one can
take for M in (10.2) the regular representation. Indeed if p, is a subrepresentation
of pthen p=p, ® p;. Let 1: M - p = p, @ p, be a surjective map of
representations. Let my, m; be the two components of ©. Let s = (s, s;) be a
section of m. Then nys, = id, nys; = id, mys; = 0,m;s, = 0and it follows that
() consisting of the components 7, and tr, is still surjective. Hence Im n(t) = p
and Im n(0) = p,.

11. A FAMILY OF REPRESENTATIONS OF S, ,,
PARAMETRIZED BY G,(C""™)

11.1.  Construction of the Family. Let M be the regular representation of
S,+m Thatis M hasabasise,, c € S, ., and S, ,, actson M by the formula t(e,)
= e, forallteS,.,. Now consider the universal bundle ,, over G(C"*™) and
the n + m holomorphic section €4, ..., €, ,, defined by

€i(x) = ¢, mod xe C"""/x,

where e; is the i-th standard basis vector. Take the (m + n)-fold tensor product of
£, and define a family of homomorphisms parametrized by G,(C"*™) by

(11.2) T : M = £, ()" e 1 51 (X) ® .. @ Egn)(%)
More precisely (11.2) defines a homomorphism of vectorbundles
(11.3) G(C""™) x M — g®0ntm

The group S,.,, acts on £,(x)®" "™ by permuting the factors and it is a
routine exercise to see that m, is equivariant with respect to this action, i.e. that
() = tn(v) for all veM,t€S,,,. (Here the product tceS,,, is
’ir}lterpreted as first the automorphism o of 1,.,n + m and then the
automorphism t.)

Thus Im n, = m(x) is a representation of S, . ,, for all x giving us a family of
representations parametrized by G,(C"*™). Fixing a point x, € G,(C"*™) and
choosing m independent sections of £, in a neighbourhood U of x,, this gives us
families of homomorphisms of representations
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