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134 P. DE LA HARPE

proof requires Tits” theorem is due to Gromov: a finitely generated group has
polynomial growth if and only if it is almost nilpotent [G].

The analogue of Tits’ theorem for division rings does not hold as such [L1],
but conjectural statements have been formulated [L2]. Another generalisation
of the theorem is proposed as a research problem in remark 1.4.2 of [BL].

3. DIGRESSION ON HYPERBOLIC GEOMETRY

Let n be an integer, n > 1. The hyperbolic space H"*! of dimensionn + 11is
the open unit ball of the euclidean space R""!. Hyperbolic lines (called lines
below) in H" "' are traces on H" ! of circles and euclidean lines in R"** which
are orthogonal to S". Two distinct points P, Q € H"*! are on a unique line
which determines two points P, Q. € S", say with P, Q, Q ., P_, arranged in
cyclic order on the euclidean circle defining this line. The (hyperbolic) distance
between P and Q is given by a cross-ratio of euclidean distances; more pre-
cisely, it is defined to be

| P=0,1 10-0, |>.

d(P, Q) = Log(P, 0,0, P,) = log <, P—P,| |Q—P,|

The proper Mebius group GM(n), is the group of orientation preserving
isometries of R"*! for this distance. Any ge GM(n), extends to a
homeomorphism of the closed ball H"*! U §". One may check that GM(1), is
isomorphic to PGL(2, R) and GM(2), to PGL(2, C).

There is an equivalent description with H"* ! the half space R" x R*.The set
of “points at infinity” is then R" U {co} rather than S".

For all this, see e.g. [A] or [Si].

An isometry g € GM(n), is said to be
elliptic if there is some point in H"*! fixed by g,
parabolic if there is in S" exactly one point fixed by g,

hyperbolic if there is a line in H"* ! invariant by g on which g has no fixed point.

(Following Thurston [Th], we call “hyperbolic” elements which are
“loxodromic” in classical litterature, such as in [Gr].)

PRrROPOSITION.  Elliptic, parabolic and hyperbolic elements define a partition of
the proper Mebius group in three disjoint classes.

Proof. Let us first check that the three classes do not overlap in GM(n),. If g
is hyperbolic, it has two fixed points in S" and thus cannot be parabolic; if g was
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also elliptic, the foot of the perpendicular from the fixed point of g onto the
invariant line of g would be fixed by g, and this cannot be. If g was at the same
time elliptic with fixed point a € H"*! and parabolic with fixed point b € S", the
line from a towards b would have two points at infinity b and b’ both fixed by g,
and this cannot be.

That any g € GM(n), belongs to one of the three classes follows for example
from Brouwer’s fixed point theorem. (See also 4.9.3 in [Th].) ]

Observe that an hyperbolic isometry g € GM(n), has a unique invariant line
d. Suppose indeed that there are two of them, say 6 and &". If 6 n &' # &, the
intersection point (which is unique) is fixed by g, and this cannot be. If & n &'
= ¢ and if 3, & have no common point at infinity, there is a unique line
perpendicular to both 6 and d'; but this line intersects 0 in a point fixed by g, and
this cannot be. Assume finally that 5 n &' = ¢ and that 6 and 6’ have a common
point at infinity ; choose some number p > 0 and consider the set C,, of points in
H""! at a distance of p from &'; the intersection C, N & is a point fixed by g, and
again this cannot be. One may consequently also define an isometry g € GM(n),
to be

elliptic if d(a, g(a)) = 0 for some ae H"*?,
parabolic if inf d(a, g(a)) = 0, with the infimum over a € H"** not attained,

hyperbolic if inf d(a, g(a)) > 0 (and the infimum is then attained exactly on the
invariant line of g).

We shall need below the following dynamical description. An hyperbolic
isometry g € GM(n), has on S” one attracting point P, and one repulsing point
P,. This means that, for any neighborhood U of P, in S” and for any compact
subset K of S" — {P,}, one has g"K) = U for klarge enough. (And similarly with
g ! instead of g when exchanging P, and P,.) Consider now a parabolic isometry
g € GM(n), with fixed point P € S". Let U be a neighborhood of P in S" and let K
be compact in §" — {P}; then g{K) = U for any k € Z with | k | large enough.
(Thisis obvious when g is a translationin R* x R* by some vectorin R", and any
parabolic isometry of H"*! is conjugate to such a translation.)

4. FREE SUBGROUPS OF GL(2,R) AND OF GL(2, C)
We show in this section that a subgroup of the proper Mebius group G

= PGL(2, R)whichis not almost solvable contains free groups; the same fact for
GL(2, R) follows straightforwardly. We discuss also the case of GL(2, C).
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