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134 P. DE LA HARPE

proof requires Tits' theorem is due to Gromov: a finitely generated group has

polynomial growth if and only if it is almost nilpotent [G].
The analogue of Tits' theorem for division rings does not hold as such [LI],

but conjectural statements have been formulated [L2]. Another generalisation
of the theorem is proposed as a research problem in remark 1.4.2 of [BL].

3. Digression on hyperbolic geometry

Let n be an integer, n ^ 1. The hyperbolic space Hn+1 of dimension n + 1 is

the open unit ball of the euclidean space Rn+1. Hyperbolic lines (called lines

below) in Hn+f are traces on Hn +1 of circles and euclidean lines in Rn +1 which
are orthogonal to S". Two distinct points P, Q e Hn + 1

are on a unique line
which determines two points Pœ, Qœ e S", say .with P, ß, ß^, arranged in
cyclic order on the euclidean circle defining this line. The (hyperbolic) distance
between P and ß is given by a cross-ratio of euclidean distances; more
precisely, it is defined to be

HP. 0 - Log,,, ft J -k, (j££j : ||^i)
The proper Mœbius group GM(n)0 is the group of orientation preserving
isometries of R" + 1 for this distance. Any g e GM(n)0 extends to a

homeomorphism of the closed ball Hn + 1 u Sn. One may check that GM( 1)0 is

isomorphic to PGL(2, R) and GM(2)0 to PGL(2, C).

There is an equivalent description with Hn +1 the half space R" x R^. The set

of "points at infinity" is then R" u {oo} rather than S".

For all this, see e.g. [A] or [Si].
An isometry g g GM(n)0 is said to be

elliptic if there is some point in Hn + 1 fixed by g,

parabolic if there is in S" exactly one point fixed by g,

hyperbolic if there is a line in Hn +1 invariant by g on which g has no fixed point.

(Following Thurston [Th], we call "hyperbolic" elements which are

"loxodromic" ih classical littérature, such as in [Gr].)

Proposition. Elliptic, parabolic and hyperbolic elements define a partition of
the proper Mœbius group in three disjoint classes.

Proof Let us first check that the three classes do not overlap in GM(n)0. If g

is hyperbolic, it has two fixed points in S" and thus cannot be parabolic; if g was
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also elliptic, the foot of the perpendicular from the fixed point of g onto the

invariant line of g would be fixed by g, and this cannot be. If g was at the same

time elliptic with fixed point a e Hn + 1 and parabolic with fixed point b e S", the

line from a towards b would have two points at infinity b and b' both fixed by g,

and this cannot be.

That any g e GM(n)0 belongs to one of the three classes follows for example

from Brouwer's fixed point theorem. (See also 4.9.3 in [Th].)

Observe that an hyperbolic isometry g e GM(n)0 has a unique invariant line
8. Suppose indeed that there are two of them, say 8 and 8'. If 8 n 8' ^ 4>, the

intersection point (which is unique) is fixed by g, and this cannot be. If 8 n 8'

(J) and if 8, 8' have no common point at infinity, there is a unique line

perpendicular to both 8 and 8' ; but this line intersects 8 in a point fixed by g, and

this cannot be. Assume finally that 8 n 8' (j) and that 8 and 8' have a common
point at infinity ; choose some number p > 0 and consider the set Cp of points in
Hn + % at a distance of p from 8' ; the intersection Cp n 8 is a point fixed by g, and

again this cannot be. One may consequently also define an isometry g e GM(n)0
to be

elliptic if d(a, g(a)) 0 for some ae Hn + 1,

parabolic if inf d(a, g(aj) 0, with the infimum over a e Hn + 1 not attained,

hyperbolic if inf d(a9 g(a)) > 0 (and the infimum is then attained exactly on the
invariant line of g).

We shall need below the following dynamical description. An hyperbolic
isometry g e GM{n)0 has on S" one attracting point Pa and one repulsing point
Pr. This means that, for any neighborhood U of Pa in S" and for any compact
subset K of Sn — {Pr}, one has gk(K) g U for k large enough. (And similarly with
g~1 instead of ^ when exchanging Pa and Pr.) Consider now a parabolic isometry
g e GM(n)0 with fixed point P e Sn. Let U be a neighborhood of P in S" and let K
be compact in Sn - {P} ; then g\K) g U for any k e Z with | k | large enough.
(This is obvious when g is a translation in R" x R* by some vector in R", and any
parabolic isometry of Hn + 1 is conjugate to such a translation.)

4. Free subgroups of GL(2, R) and of GL(2, C)

We show in this section that a subgroup of the proper Mcebius group G
PGL{2, R) which is not almost solvable contains free groups ; the same fact for

GL(2, R) follows straightforwardly. We discuss also the case of GL(2, C).
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