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homomorphism PGL(n, C) -» PGL(N, C). Then Xk(y) has eigenvalues v1?..., vN

with | vx | > | Vj | for j 2,..., N. By lemma 3, there exists a ^fc(r)-irreducible
subspace W0 of CN, associated to a representation a0 : F -+ GL(W0), such that
v1 is an eigenvalue of a0(y). As the Z-closure G of T in SL(n, C) is semi-simple, the

group G is perfect and a0(T) lies in SL(W0). As | vx | > 1, one has dimcW0 ^ 2.

Thus one may assume from the start that T contains a sharp semi-simple
element, and indeed by lemmas 1 and 2 two very sharp elements in general

position. The conclusion follows as in case 2 of the proof of the proposition in
section 4.

Now lemma 1 remains true without the hypothesis "semi-simple". This has

been announced by Y. Guivarch', who uses ideas of H. Fürstenberg to show the

following : given an appropriate subset S of T containing a sharp element, then
almost any "long" word in the letters of S is very sharp. Using this, one may
replace (ii) in the theorem above by the following a priori weaker hypothesis

(iir) T is not relatively compact.

Then, one first checks as for theorem 2 of section 4 that T contains hyperbolic
elements ; one concludes as in the previous proof, with Guivarch's version of
lemma 1.

For subgroups of PU(n), one may repeat the discussion at the end of section 4.
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J. Soviet Math. 14 (1980), 887-921.
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