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KUMMER’S IDEAS ON FERMAT'S LAST THEOREM b

by P. RIBENBOIM

My purpose in this lecture is to present the main ideas of Kummer
concerning Fermat’s last theorem, to show how his approach to the problem was
natural and how he was led to create the theory of cyclotomic fields. I'll discuss
his main theorem, as well as his further contributions, and indicate some of the
paths they opened in the study of arithmetics.

. “Fermat’s last theorem” is the following statement (not yet proved in all its
generality):

(FLT) If n > 3 there does not exist positive integers x, y, z, such that

n

X"+ Yy =z".
To begin, I note thatifn = 2 there are such integers, like forexample 3, 4, 5:

32 + 42 =52
and 5, 12, 13:
52 + 122 = 132

I shall not consider here these “Pythagorean triples” of integers, despite their
interesting properties.

In order to prove FLT for every value of the exponent n, it suffices to do it for
the exponent n = 4 and for every prime exponent p > 3.

Indeed, if nis composite, n > 2, it has a factor m which is 4 or an odd prime. If
the theorem fails for n = ml (with [ > 1)if x, y, z are positive integers such that
X" 4+ y* = z" then (xX')" + (/)" = () and the theorem would fail for m—
against the hypothesis.

Fermat discovered a proof of the theorem for the exponent n = 4. In this
famous proof, Fermat introduced the “method of infinite descent”: assuming
that the triple of positive numbers (x, y, z) is a solution of Fermat’s equation, he
succeeded to produce another solution (X', y’, z') in positive numbers, with z
> 7' > 0;starting from the new solution and repeating the argument, he would

') Lecture at the “Séminaire de Philosophie et Mathématique”, Dieudonné-Loi-
Thom, Ecole Normale Supérieure, Paris, March 5, 1979.
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obtain again a solution (x”, y”, z”) in positive integers, with z > z/ > z" > 0.
Since z, z/, 27, ... are integers, this process cannot be repeated indefinitely, and this
is a contradiction. Thus Fermat’s equation could not have a solution in positive
integers.

Euler proved the theorem for the exponent n = 3. Another proof for this
exponent is due to Gauss; it was found among his papers and it was published

. +2‘ =3 Is a

cubic root of 1 and if Q(w) = Q(\/———3) denotes the field of all numbers of the
form a + bw (with a, b € Q)—this field is sometimes called the Eisenstein
field—then Gauss showed that if n = 3 there are no non-zero elements x, y, z
in Q(w) such that x> + y® = z°. ‘

Legendre wrote papers about Fermat’s theorem and reproduced Euler’s
proof in his book “Théorie des Nombres”, thus attracting the attention of the
French mathematicians to Fermat’s theorem.

The proof for n = 5 was done independently, and almost simultaneously by
Legendre and Dirichlet (1825/8).-

In 1832, Dirichlet proved the theorem for n = 14, sensibly easier than the
exponent n = 7. For the latter, the proof was found by Lamé (1839), and
immediately thereafter simplified by Lebesgue (1840).

At this time, there was in Paris a considerable interest for FLT. Besides the

after his death. Actually, Gauss showed even more. If ® =

mathematicians already mentioned (including Dirichlet, who was spending
some time in Paris), Cauchy published a series of substantial papers in number
theory. He worked with the so-called “radical polynomials”, investigating their
decomposition into factors.

In modern language, his research could be translated into a study of the
arithmetic of cyclotomic fields. However, he did not succeed in making any
major breakthrough in Fermat’s problem, as Kummer did soon afterwards.

In 1847, Lamé presented at the Académie des Sciences de Paris, a proof of
FLT for an arbitrary exponent. The details were published in Liouville’s Journal
de Mathématiques Pures et Appliquées. However, Liouville noted that the proof
‘was not correct, since Lamé was assuming (without further justification) the
uniqueness of decomposition of certain polynomials in roots of unity into
products of irreducible factors. This was far from obvious, and it turned out to be
false. After some repeated efforts to correct his proof, Lameé realized that there
was an essential difficulty, which he was not able to handle.

2. Itisagainst such a background that Kummer began his remarkable work on
Fermat’s last theorem.
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Already in 1837, Kummer published his first paper, written in Latin, about
FLT with an even exponent 2n. He proved:

Ifn > 1isodd and if there exist positive integers x, y, z such that gcd(n, Xyz)
— 1 and x*" + y*" = z?" then necessarily n = 1 (mod 8).

This is only a partial result. Its proof was very simple and has been found
again and again.

If the exponent in Fermat’s equation is even it is possible to apply the
powerful methods from the theory of quadratic forms. Thus, in December 1977,
Terjanian showed : If p is an odd prime and if there exist positive integers x, y, z
such that x?? + y*? = z*P then 2p divides x or y.

It is quite remarkable that Terjanian’s proof is entirely elementary and
classical, appealing only to the Jacobi symbol and to the divisibility properties of

xP + yP

expressions of the form .
Xty

This suggests the possibility of finding an elementary proof, for the prime
exponent p, of the following assertion which is usually called:
The first case of FLT for the exponent p:

If x, y, z are positive integers such that x? + y? = z? then p divides xyz.

For such a proof, it will be at least necessary to work with the reciprocity law
for the power residue symbol belonging to p.

3. The first important paper by Kummer on Fermat’s theorem was conceived
since 1844, and appeared in 1847. His method, which we shall soon explain, led
him to work with cyclotomic fields. If the prime p is the exponent of the Fermat

: . 2n . 2m —
equation, he considered {, = cos — + i sin —, a primitive p-th-root of 1, and
p

the field Q(C,), consisting of all complex numbers of the form
o=ay+a;{,+a, 4+ .. +a, ,07?

(with ag, ay, ..., a,_, € Q). Those numbers with a, a,, ..., a,_ , € Z constitute the
ring Z[,] of cyclotomic integers (relative to p). Just like for ordinary integers, if
%, B € Q(C,), (o, P non-zero), then o divides B if there exists a cyclotomic integer y
such that ay = . Two cyclotomic integers o, B are associated when o divides B
and B divides a. The cyclotomic integer o is prime if any cyclotomic integer
dividing o 1s either associated with o or with 1. This theory of divisibility cannot
distinguish between associated cyclotomic integers. In particular the cyclotomic
integers associated with 1 play the same neutral role as 1, and they are called the
units of the cyclotomic field Q(C,).
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The fundamental theorem of unique factorization of integers should be
phrased as follows:

a) Every cyclotomic integer of Q((,) is the product of finitely many prime
cyclotomic integers.

b) Any two such decompositions are equal, up to units, thatis,ifa = B,B, ... B,
= Y1Yz2 .- Y. Where B, v; are prime cyclotomic integers, then s = t and after
an eventual permutation, o; and P, are associated (for every i = 1, ..., 3).

The assertion (a) is indeed true and easy to prove. But already in 1844,
Kummer had discovered that the assertion (b) does not hold in general; as a
matter of fact, Kummer showed that it is false for p = 23.

In a letter sent to Liouville (1847), together with his paper, Kummer
explained how he was led to consider a new type of complex numbers, which he
called the ideal numbers, in order to recover for these numbers the theorsem of
unique factorization. In another paper, Kummer explained the concept of ideal
numbers with an analogy to chemistry. At his time, the existence of certain
chemical substances containing fluor radicals had been already ascertained, yet
the fluor itself had not been isolated. According to Kummer, fluor was like his
ideal numbers, while the radicals containing fluor, which did actually appear in
nature, were like the true (= “wirklich”) complex numbers.

The very definition of an ideal number, as given by Kummer, was phrased in
terms of divisibility properties. This approach has evolved into the concept of
“divisor”, which presents itself naturally in the theory of algebraic functions.

On the other hand, while trying to understand Kummer’s concept, Dedekind
gave an interpretation of ideals by means of certain subsets of Q(C,). Thus, an
ideal (in Dedekind’s approach) is a subset I of Q(C,) such that: it is closed under
addition and Oe I; if o € Z[(,] and P eI then af € I; there exist o e Z[,],
o # 0, such that affp € Z[(,] for every Be I. If I = Z[(,] the ideal is said to be
integral, otherwise it is fractional (but not integral). Every o € Q(C,) gives rise to
the ideal of its multiples: () = {Balp € Z[{,]} called the principal ideal of o In
order that () = (B) it is necessary and sufficient that « = B = 0 or, otherwise,
af ! be a unit of Z[,].

. The product of the ideals I, J is by definition the ideal consisting of all finite
sums of elements af3, where ae I, B € J.

To measure the extent by which there are non-zero ideals which are not
principal (i.e., in Kummer’s language, “ideal numbers” which are not “numbers”)
Kummer introduced the following equivalence relation: I ~ J if there exists
a € Q(G,), & # 0,suchthat] = (x)J. The equivalence classes are called the ideal
classes or classes of ideals.

%?“ ‘ -
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To say that there is only one equivalence classin Q(,), means that every ideal
of Q(,) is principal. Kummer showed that this means that the unique
factorization theorem is true for the elements of the corresponding ring of
cyclotomic integers.

Since Kummer showed that this theorem does not hold, for example when p
= 23, he was led naturally to study the size of the set of classes of ideals.

In this connection he proved the following fundamental result: for each
cyclotomic field Q(£,) the number of ideal classes is finite. It is called the class
number of Q({,) and denoted usually by 4,

These ideas were developed in a series of important papers, published
between 1847 and 1851, one of which appeared in French in Liouville’s journal
(1851). They contain many of the basic theorems of the future theory of algebraic
numbers, for the special class of cyclotomic fields.

4. Now I shall turn to the so-called Kummer’s main theorem. Personally, I like
to refer to this as his monumental theorem, since it stands on top of a theory,
built of all pieces by Kummer, which represented a truly remarkable advance
over all the knowledge and techniques at that time.

I'll omit to discuss the purported story of a proof of FLT by Kummer, not
later than 1844, in which Kummer had made the mistake of assuming the
theorem of unique factorization. This anecdote, propagated by Hensel, is
analysed in a paper by Edwards (1975) about the recent discovery of a letter from
Liouville to Dirichlet.

The exact statement of Kummer’s main theorem of 1847 is the following.

Fermat’s last theorem is true for any odd prime exponent p satisfying the
following two conditions (expressed here in modern terminology):

1) If an ideal I is such that its p-th power I” is a principal ideal, then [
itself is a principal ideal.

2) If © is a unit of the cyclotomic field Q(C,) and if there exists an ordinary
integer m € Z such that ® = m(mod p) then w is the p-th power of a unit.

These were working hypotheses. The problem became therefore to find out
for which prime numbers p these hypotheses were satisfied.

First, he proved that condition (1) is equivalent to the following one:

1') p does not divide the class number h, of the cyclotomic field Q(C,).

Moreover, using the results of his deep study of arithmetic of cyclotomic
fields, he showed that the condition (1) implies condition (2). This statement is
now known as Kummer’s “lemma on units”. The proof is very delicate and
required what is now known as A-adic methods (where A is the cyclotomic prime
of Q(§,) which divides p).

L’Enseignement mathém., t, XXIX, fasc. 1.-2 12
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Every prime p satisfying condition (1) is called a regular prime. In other
words, Kummer proved:

If p 1s a regular prime then FLT is true for the exponent p.

As amatter of fact, Kummer showed more : if p is a regular prime, there are no
non-zero numbers a, B, v € Q({,) such that o” + B? = vy”. It should be said that
Kummer’s proof for the non-existence of solutions in Q((,) was erroneous. This

was noticed and corrected by Hilbert.
I shall comment on Kummer’s proof to show how natural was his reasoning.

Suppose that x, y, z are non-zero integsrs such that x? = z# — y”. It is
possible to assume that x y, z are pairwise relatively prime, after dividing by their
greatest common divisor. The aim is to arrive at a contradiction. Looking at the
above equation, in the lefthand side there is a product, while the righthand side is
a difference. It is quite a natural idea to transform the difference into a product;

this can be done with the use of { = {,, the p-th root of 1:
p-1 .
xP =z — y = [] (z—=Cy)
j=0
It would be desirable to have the various factors z — {/y “pairwise relatively
prime” and to conclude that each is the p-th-power of a cyclotomic integer. In
such a crude way, this is not true. At this point it is necessary to introduce the
ideals, for which the unique factorization theorem holds.
Let I be the ideal which is the greatest common divisor of the principal ideals

(z—{y) (forj = 0,1,2,..,p — 1). Then

where the ideals J) are pairwise relatively prime. It follows from the unique
factorization theorem for ideals, that each one is a p-th-power; so

(z—Cy) = 1 (j =0,1,..,p—1)

~ This is how Kummer’s proof begins. Then the discussed two cases, whether p
does not divide xyz, or p divides xyz.

The proof, with full details, appears in my book, and I do not wish to enter
into more explanations in this lecture.

5. After proving his main theorem, Kummer’s task was clear.
1°) To characterize or at least to study the regular primes.
2°) To find out whether there are infinitely many regular primes.

3°) To extend his main theorem to irregular prime exponents—at least those
satisfying appropriate additional conditions.
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Thus, Kummer had to compute the value of the class number #,. For small
values of p, he had computations already before 1850.

Using results communicated to him by Dirichlet, Kummer was able to find
an explicit formula for the class number h,. Namely, he wrote h,, as the product of
two positive integers,

h, = h, -h,

called respectively the first and second factors of the class number and later
interpreted arithmetically.

h, is equal to the class number of the real cyclotomic field Q({,+C, 1
consisting of all real numbers in Q(C,). Thus &, is more often called the real class
number of Q(C,), and hence h, is the relative class number. Kummer’s formulas
were

h, = —=516M)GM’) .. GM"™?) |
(2p) 2
p—3p-3 p—3
2772 2| 2 ) j
b = T | %, ™ log 1 - &7
= j=

It 1s not easy to explain some of the quantities appearing in the above
formulas to anyone who is not already acquainted with the basic theory of
algebraic numbers.

— g denotes a primitive root modulo p;

— foreachj > 0,1 < g; <p — 1land g; = g/(mod p);
p—2 )

— G(X) = ), g;X';
j=0

— m is a primitive (p— 1)-th root of 1:

. . pi 3
— Ristheregulator of the cyclotomic field, namely R = 2 2 det(L), where Lis

the following matrix :

log [V ] .. log|&{|
log [ €V] .. log|e™ |
where

— ry 1s the number of conjugates to the field Q(C,) which are contained in the
field of real numbers;
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— 2r, is the number of such conjugates, which are nor contained in the field of
real numbers;

—r=r+r,—1;
— {&y, ... &} is a fundamental system of units of Q(,), that is:
a) if e§t ... g = 1 (with e, ..., e, integers) thene, = .. = ¢, = 0

b) if eis a unit of Q(,) there exists an integer j, 0 < j < p — 1 and integers
ey, .., ¢, such that € = /€5t ... gr;

r 9

— if a e Q(C,) then o'V, a®, ..., " denote the conjugates of » which are real,
and o1t D gl t2) it 2r2) those which are not real, in such a way that
o1 72%)) is the complex conjugate to o+ 772 (for j = 1, ..., r,).

Altogether, these formulas are difficult to explain, were hard to discover and
visibly are quite unsuitable for explicit computations. Moreover, they are sort
of miraculous, if one takes into account that h;’ , which is an integer, being a
class number, is a product of sums of products of logarithms and trigonometric

expressions

4kjm 4kj
; + i sin ol :
p—1 p—1

Thus, the computations were already elaborate even for relatively small
values of p.

However—and this is an easy remark—what counted for Kummer was not
to determine the exact value of h,, but just to know whether p divides h,,. In this
respect, Kummer proved the rather unexpected and deep result:

If p divides h, then it divides A,

As a consequence p divides h, if and only if p divides h, . This represents a
considerable advance, if one takes into account that the factor h; cannot be dealt
up to now except with quite powerful and sophisticated methods.

6. Concerning the divisibility of h, by p, Kummer was able to transform the
problem into another of a more elementary nature. He proved the following
regularity criterion:

: 3
p divides h, if and only if there exists an integer k, 1 < k < P such that

p—1
p? divides the sum ) j*~.

f=1
Euler had studied these sums and expressed them in terms of the Bernoulli
numbers, first considered in the theory of probability.

[
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[o0] xn

[ recall their definition. By dividing x by e* — 1 = Y o we may write the
n=1 It

coefficients successively as —'" where B, is the n-th Bernoulli number:
n!

X 2 8y .
ex_l n=0 n!
1 1
Thl,IS BO == 1, Bl — ‘E,Bz = E,BS = O, cee .

These numbers may be obtained recursively from the above definition ; thus if
By, ..., B,_, are known then B, satisfies

1 1 n+1
<nT>Bn+<n;)Bn_1+...+< )Bl+1=0.
n

From this it follows that B,,,,; = Oforn > 1 and that each B, is a rational
number.

To say that the prime p divides B,, means then p divides its numerator, when
B,, is written as an irreducible fraction.

Kummer transformed his first regularity criterion into the following one:

p divides h, if and only if p divides one of the numbers B,, By, B, ..., B

p—3

This appears to be a much more practical criterion, since the Bernoulli
numbers may be obtained, at least in theory, recursively. It is true that the
recursion formula has an increasing length, however there are other recursion
formulas of more technical nature, but smaller length, which allow a
considerable simplification in the calculations. Despite everything, a true
difficulty lies in the fact that the numerators of the Bernoulli numbers increase at
a fantastic speed and the very question of writing these numbers becomes a real
problem. Just think, for example, that the numerator of B,;, has about 250
digits!

7. All the above results, whatever their depth and value, do not allow to
forecast whether a given prime number is or is not regular—unless the specific
computations are performed. A fortiori, they do not give any indication about
the distribution of regular primes.

Concerning this question, without entering into long considerations, I want
to recall that Kummer computed with bare hands (that is, without any
mechanical or electronic devices) the class numbers of Q(C,) for p < 163. Thus,
he has found the first irregular primes: 37, 59, 67, 101, 103, 131, 149, 157.
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He conjectured, without any strong base, that there should exist about as
many regular as irregular primes (in a sense which I will explain).

Let us note, in this respect, that Jensen has shown in 1915 that there exist
infinitely many irregular primes (even congruent to 3 modulo 4). On the other
hand, it has never been shown that there exist infinitely many regular primes.
Using heuristic arguments, Siegel has indicated in 1964 that

. number of irregular primes p < N 1
lim , =1—-——=2039...
N - number of primes p < N \/;

This agrees with the recent explicit computations of Wagstaff up to N
= 125000.

Kummer has also proved FLT for certain classes of irregular exponents,
satisfying additional conditions, rather difficult to be verified. These are very
technical results, where Kummer could not avoid commiting mistakes, as it was
noted, and partly corrected, by Vandiver in 1922 and 1926.

On the other hand, Kummer’s efforts about the first case of FLT were more
successful.

He discovered certain congruences involving Bernoulli numbers, which must
be satisfied by hypothetical solutions of Fermat’s equation. This paper is a
typical Kummerian jewel, mixing arithmetical and transcendental methods in an
astonishing way. Based on these congruences, he proved that if the first case of
FLT fails for the exponent p then p divides B,,_ ; and B, _ 5. Incidentally, the fact
that p divides B,_3 had been discovered, earlier by Cauchy and Genocchi.

Mirimanoff extended Kummer’s result and proved that p divides B,_- and
B,_o. More recently, Morishima proved that p must also divide B,_;; and
B,_ .5

An examination of the most complete tables by Wagstaff, indicate that this
phenomenon is extremely rare. In fact, it is very seldom that p divides a large
number of Bernoulli numbers (with index at most p — 3), and never it divides
successive Bernoulli numbers. All this is in relation with the profound structure
of the group of classes of ideals and maybe a little understood through the works
of Hecke, Scholz, Eichler and Ribet.

‘What should I say then of Krasner’s striking result of 19347 He has shown:

Let n, = (4588 If p is a prime number, p > n,, if k(p) = [Ylog p] and if
~ the first case of FLT is false for the exponent p then p divides the k(p) successive
" Bernoulli numbers B,.3, B,_s, .., B,_yp -1 (the number n, has no special
significance and may be reduced with a little care in the proof, yet it remains too
large for the theorem to have any practical application).
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This theorem, which puts Krasner among the main contributors to the study
of FLT, indicates that the first case is plausible.

To conclude, it would be unjust to Kummer not to mention that, even in
number theory, he had other contributions and ideas of first magnitude—albeit
even more important. They concern the theory of the reciprocity law for the
power residue symbol, a forerunner of class field theory. As it turned out, and was
shown by Furtwangler already in 1912, and by Hasse in 1926, this theory could
also be applied to the study of FLT.

Kummer’s work was taken up and amplified by a number of mathematicians
who dealt (and will deal) with FLT. There is still much to learn and to under-
stand and the publication of Kummer’s Collected Papers in 1975, annotated by
Weil, will make it possible for the mathematicians to intently examine his rich
ideas. _

In my book, I analyse Kummer’s work and the more important methods
used in the study of Fermat’s last theorem: this book contains a long
bibliography.
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