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3. The theory of the highest weight

Before decomposing the sl2-space we must review the finite dimensional

representation theory of sl2.

The weight vectors of an sl2-representation W are the eigenvectors of H
in W. The weights of W are the eigenvalues of its nonzero weight vectors.

Every finite dimensional sI2-module is spanned by its weight vectors. The

weights of such a representation are all integers and are thus ordered by the

usual order on R. The largest of a finite set of integral weights is traditionally
referred to as the highest weight.

Two finite dimensional irreducible ^-representations are isomorphic if and

only if they have the same highest weights, which are necessarily nonnegative.
The element XaYb of V is a weight vector of weight a-b. This shows that

Xm is a vector of highest weight m in Vm and therefore that the Vm for
m ^ 0 form a set of representatives of the equivalence classes of finite
dimensional irreducible ^-representations ; which is precisely why we are

studying them is this paper.
The last general fact which we will recall without proof is this : every finite

dimensional representation of sl2 is a direct sum of irreducible representations.
Given a representation W of sl2 which is a sum of finite dimensional

representations one often wishes to write it explicitly as a direct sum of
irreducible representations, that is, of representations isomorphic to the Vm.

A method for doing this is provided by the observation that the space of

weight vectors of highest weight in Vm is the space annihilated by E+ and is

one dimensional. Thus for each v e W of weight m such that E + v 0, there is

a unique sI2-homomorphism from Vm to W taking Xm to v. The explicit
decomposition of W therefore amounts to the determination of a basis

consisting of weight vectors of the kernel of E+ in W.

4. The decomposition of sé

We apply the procedure of the last paragraph to the representation of

sl2 on sé. By definition of p the kernel of p(E + is just the commutant of

E+ in sé.

Let $ be the subalgebra of sé generated by X, dY, and J.
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Proposition 4.1. is the commutant of E+ in stf.

Proof: One easily verifies that E+ commutes with X, dY, and J, which shows

that is contained in the commutant of E +

Let U be the sI2-subrepresentation of stf generated by The considerations

of Section 3 show that the inclusion of the commutant of E+ in tfß is

equivalent to the assertion that U equals all of stf. We proceed to establish

that equality.
The algebra is spanned as a vector space by the elements

JaXb(dYy with a, b, c ^ 0. (4.2)

We present two calculations.

[£_, JaXb(dY)c + 1]

- {b + c +1)JaXb(dY)cdx + b{J+1 — b)JaXb ~ \dYy (4.3)

[£_, JaXb + 1(dY)c^

(b + 1 )JaXb(dy)cY - cJaX\ÔY)c-\b +1 + Xdx) f (4.4)

From (4.3) one concludes that 3$ • ôx a JJ. From that and (4.4) one
concludes that • Y a U.

Because E_ commutes with dx and Y, one has that

p (E-)n(âSôx)(p(E.ya)-dx
and that

p • 7) (p(£_)"<$) Y.
00 00

Because Vm® E_n(CXm)one knows that © p(£And thus
n=0 „=0

U dx<= U• <= (4.5)

Iterating, we have

UY\dxycufor> 0. (4.6)

But siis generated as an algebra by X, Y, dx, and dY and so (4.2) and (4.6)
prove that U — si. PI

Corollary 4.7. s/° isthe subalgebra of si generated by sl2 and J.

Proof: si0 is the sI2-subrepresentation of si generated by si0 n M.
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sé° n is spanned by the elements (4.2)'such that b c, all of which are of
the form JaE +

b.

We remark that the subalgebra of sé generated by sl2 is canonically
isomorphic to the universal enveloping algebra of sl2. The element J(J + 2)

equals H2 + 2(£+£_ +£_£+), the Casimir element for sl2. Thus is a little
larger than the enveloping algebra of sl2.

n\
For integers /, n define ^ to be the set of T e & n sén such that

p(H)T IT.
This defines a grading of i

n\ n\ n'\ fn + n'X *IX*L) * (4.8)

The generators of $ fit in as follows :

Jeâ9\), Xe@()
1

(4.9)
0/ \lI 1

Proposition 4.10. i) ^ (^j

»> a (f) * 0 ,/»«< o„l, if I > 0,1 » I aniI,„(mod 2). //,„««
conditions are met, f/zen

m\ i + w I — n

C[J] X~(dy)~ (4.11)

Proof: Immediate.

We note that the co

and n is a weight of Vx.

We note that the condition that ^ ^ (0) may be rephrased thus : I ^ 0

5. Decomposition of Hom(Fm, Vm+n)

Theorem 5.1. Let l,m,n be integers with l,m,m + n^ 0. There is

an si2-subrepresentavion of Homc(I^ ,Vm + n) which is isomorphic to Vx if and

I — n
only if \ n \ X: I, n I (mod 2), and m X —-—
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