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342 D. FLATH

3. THE THEORY OF THE HIGHEST WEIGHT

Before decomposing the sl,-space ./ we must review the finite dimensional
representation theory of sl,.

The weight vectors of an sl,-representation W are the eigenvectors of H
in W. The weights of W are the eigenvalues of its nonzero weight vectors.

Every finite dimensional sl,-module is spanned by its weight vectors. The
weights of such a representation are all integers and are thus ordered by the
usual order on R. The largest of a finite set of integral weights is traditionally
referred to as the highest weight.

Two finite dimensional irreducible sl,-representations are isomorphic if and
only if they have the same highest weights, which are necessarily nonnegative.

The element X*Y? of V is a weight vector of weight a-b. This shows that
X™ is a vector of highest weight m in V, and therefore that the V,, for
m > 0 form a set of representatives of the equivalence classes of finite
dimensional irreducible sl,-representations; which is precisely why we are
studying them is this paper.

The last general fact which we will recall without proof is this: every finite
dimensional representation of s, is a direct sum of irreducible representations.

Given a representation W of sl, which is a sum of finite dimensional
representations one often wishes to write it explicitly as a direct sum of
irreducible representations, that is, of representations isomorphic to the V,,.
A method for doing this is provided by the observation that the space of
weight vectors of highest weight in V,, is the space annihilated by E. and is
one dimensional. Thus for each v € W of weight m such that E,v = 0, there is
a unique sl,-homomorphism from V,, to W taking X™ to v. The explicit
decomposition of W therefore amounts to the determination of a basis
consisting of weight vectors of the kernel of E, in W.

4. THE DECOMPOSITION OF .o/

We apply the procedure of the last paragraph to the representation of
sl, on /. By definition of p the kernel of p(E.) is just the commutant of
E, in «.

Let & be the subalgebra of ./ generated by X, dy, and J.

7|
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ProposITION 4.1. A is the commutant of E, in .

Proof': One easily verifies that E . commutes with X, dy, and J, which shows
that 4 is contained in the commutant of E . ,

Let U be the sl,-subrepresentation of .« generated by #. The considera-
tions of Section 3 show that the inclusion of the commutant of E. in & is
equivalent to the assertion that U equals all of .«/. We proceed to establish
that equality.

The algebra 4 is spanned as a vector space by the elements

JXY0y) with a, b,c = 0. 4.2)
We present two calculations.

[Eﬁ, J“Xb(ay)““]

= — (b+c+ DJ"X(0y)0x + b(J +1—b)J X"~ H(dy) (4.3)
[E_, JaXb+ 1(ay)c]
= (b+ DJ*XP0y)]Y — cJ* X (Oy) b+ 1+ Xy) » (4.4)

From (4.3) one concludes that 4 -0y = U. From that and (4.4) one
concludes that Z- Y < U.
Because E_ commutes with d, and Y, one has that

P(E_Y(B0x) = (p(E_)"SB) - Ox
and that

p(E_Y(B - Y) = (ME_)'B)- Y.
Because V,, = @ E_"(CX™) one knows that U = % p(E_)"#. And thus
n=0 . n=0

U-0y c U, U-YcU. (4.5)
Iterating, we have
UY%0y)° < U for d,e, > 0. (4.6)

But .« is generated as an algebra by X, Y, d,, and dy and so (4.2) and (4.6)
prove that U = /. O

COROLLARY 4.7. o/® is the subalgebra of o/ generated by sl, and J.

Proof: o/° is the sl,-subrepresentation of .o/ generated by /% N 4.
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o/° ~ A is spanned by the elements (4.2) such that b = ¢, all of which are of
the form J°E ,°. ]

We remark that the subalgebra of &/ generated by sl, is canonically
isomorphic to the universal enveloping algebra of sl,. The element J(J + 2)
equals H* + 2(E,E_+E_E_), the Casimir element for sl,. Thus 27° is a little
larger than the enveloping algebra of sl,.

For integers [, n define % <7> to be the set of T € B ~ /" such that

p(H)T = IT.
This defines a grading of 4

n n n n+n'
%z@%(l), g<l>"@<l’>c'@<l+l’>' (4.8)

The generators of 4 fit in as follows:

0 1 1
Je§3<0>, Xe;%’<1> 8Ye=%’< 1). (4.9)

0
ProrosiTioN 4.10. i) 4 <O> = C[J].

ii) 93(?);&0 ifandonlyif 1 2 0,|n| <[, and | = n(mod 2). Ifthese

conditions are met, then
n ttn 1onm
B (l) = C[J] X 2 (dy) 2 (4.11)

Proof: Immediate. O

We note that the condition that % (?) # (0) may be rephrased thus: [ > 0

and n is a weight of V.

5. DecomposiTioN oF Hom(V,,, V. ,)

THEOREM 5.1. Let I,m,n be integers with [ m,m + n > 0. There is
an sl,-subrepresentation of Homc¢(V,,, V,,.,) which is isomorphic to V, if and
[ —n

onlyif |n|<l,n=I(mod2), and m=
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