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also elliptic, the foot of the perpendicular from the fixed point of g onto the
invariant line of g would be fixed by g, and this cannot be. If g was at the same
time elliptic with fixed point a € H"*! and parabolic with fixed point b € S", the
line from a towards b would have two points at infinity b and b’ both fixed by g,
and this cannot be.

That any g € GM(n), belongs to one of the three classes follows for example
from Brouwer’s fixed point theorem. (See also 4.9.3 in [Th].) ]

Observe that an hyperbolic isometry g € GM(n), has a unique invariant line
d. Suppose indeed that there are two of them, say 6 and &". If 6 n &' # &, the
intersection point (which is unique) is fixed by g, and this cannot be. If & n &'
= ¢ and if 3, & have no common point at infinity, there is a unique line
perpendicular to both 6 and d'; but this line intersects 0 in a point fixed by g, and
this cannot be. Assume finally that 5 n &' = ¢ and that 6 and 6’ have a common
point at infinity ; choose some number p > 0 and consider the set C,, of points in
H""! at a distance of p from &'; the intersection C, N & is a point fixed by g, and
again this cannot be. One may consequently also define an isometry g € GM(n),
to be

elliptic if d(a, g(a)) = 0 for some ae H"*?,
parabolic if inf d(a, g(a)) = 0, with the infimum over a € H"** not attained,

hyperbolic if inf d(a, g(a)) > 0 (and the infimum is then attained exactly on the
invariant line of g).

We shall need below the following dynamical description. An hyperbolic
isometry g € GM(n), has on S” one attracting point P, and one repulsing point
P,. This means that, for any neighborhood U of P, in S” and for any compact
subset K of S" — {P,}, one has g"K) = U for klarge enough. (And similarly with
g ! instead of g when exchanging P, and P,.) Consider now a parabolic isometry
g € GM(n), with fixed point P € S". Let U be a neighborhood of P in S" and let K
be compact in §" — {P}; then g{K) = U for any k € Z with | k | large enough.
(Thisis obvious when g is a translationin R* x R* by some vectorin R", and any
parabolic isometry of H"*! is conjugate to such a translation.)

4. FREE SUBGROUPS OF GL(2,R) AND OF GL(2, C)
We show in this section that a subgroup of the proper Mebius group G

= PGL(2, R)whichis not almost solvable contains free groups; the same fact for
GL(2, R) follows straightforwardly. We discuss also the case of GL(2, C).
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PROPOSITION. Let g,he G — {1} be without any common fixed point in
H? U S!. Then the group T generated by g and h contains free groups,
up to two exceptions. ‘

The first of these happens when g*> = h®> = 1. The second when one element
is aninvolution, say g* = 1, when h ishyperbolic,and when g exchanges the
two fixed points of h on S!. In these two cases, T is the infinite dihedral
group, and is thus solvable.

Proof. We check below in each of the non exceptional cases that I contains
a free group.

Case 1. One element, say g, is parabolic with fixed point P € S*.

Consider the parabolic k = hgh™!, with fixed point Q = h(P) # P in S'.
Let S, [respectively S,] be a compact neighborhood of P [resp. Q] in S* with
S, n S, = ¢. The end of section 3 shows that there exists a positive integer n,
such that g"(S,) = S; and k(S,) = S, for any ne Z with | n| = n,. It follows
from Klein’s criterium that g"° and k"° generate a free subgroup of G.

Case 2. Both g and h are hyperbolic.

Let S, [respectively S,] be a compact neighborhood of the fixed points of g
[resp. of k] in S* with §; N S, = &, and proceed as in case 1.

Case 3. One of the elements, say h, is hyperbolic with fixed points P, Q € S!
and g does not exchange them, say R = ¢(Q) & {P, Q}.

If g(P) & {P, Q} then hand ghg ™' are as in case 2. We may thus assume that
g(P) = Q.1fg(R) # Pthenhandg*hg ™ ?are again asin case 2. We may thus also
assume g(R) = P.Consider then ' = g~ 'hg, an hyperbolic with fixed points R
and P, as well as h” = ghg~ 'hgh™'g~!, an hyperbolic with fixed points Q
= ghg~Y(Q)and S = ghg~'(P). Onehas l(R) # Q andthusS = gh(R) # g(Q)
= R;onehasalso i(R) # Rand S # g(R) = P. Consequently 4" and h" are as
in case 2.

Case 4. Both g and h are elliptic with g* # 1.

Possibly after conjugation within G, one may assume that g = r, is a
rotation around the origin of the disc H? by some angle o € 10, 2x[ — {rn}. Then
k = hgh™! # g, otherwise h would also fix the origin.

In the average, any point of S' is rotated by k of an angle a. More precisely, if
k:R — R is the lifting of k to the universal covering of S! with 0 < k(0) < 1,

then lim — (k"(x) — x) exists for all x € R and this limit is a. Moreover

n — o©

min (k(x) — x) < o < max (k(x) — x).

xeR xeR
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(See any exposition of the rotation number, for example chapter 17 in [CL] or
section 1 in [Ka].) It follows that there exists P € S* with k(P) = g(P), so that
g~ 'k has a fixed point in S! and one of the previous cases applies.

Exceptional cases. If g> = h* = 1, then gh generate an infinite cyclic
subgroup of index 2 in I' and I is isomorphic to the infinite dihedral group. If r is
hyperbolic and if g exchanges its fixed points, then ghg™* = h~! so that g°
= (gh)> = 1 and T is as in the previous case.

The proof is now complete. O

The proposition above is well known, and may essentially be found in any of
the following papers: [LU1], [Md], [Ro] (see corollary 1). One should also
mention Magnus’ surveys [Msl], [Ms2].

As two elements of G having a common fixed point in H?* U S! generate a
solvable subgroup, we have proved the 2-generators particular case of the
following fact.

THEOREM 1. A subgroup T of G = PGL(2,R) (orof GL(2,R)) whichis
not solvable contains free groups.

Proof. We assume that I" does not contain free groups, and check that I" is
solvable. If " contains at least one parabolic isometry, this follows from case 1 of
the proof above. If it contains at least one hyperbolic isometry, then all
hyperbolics in I' have a common fixed point (see case 2) and then either all
elements in I have a common fixed point or I is dihedral (see case 3). Finally,
if I is an elliptic group, it follows from case 4 that I" is abelian. O

This covers in particular the case of Fuchsian groups. The next theorem
covers that of Kleinian groups.

THEOREM 2. Let I' be a subgroup of SL(2, C) which is not solvable.
Assume moreover that I is not relatively compact (or equivalently that T is
not conjugate to a subgroup of the maximal compact subgroup SU(2) of
SL(2,C)). Then T contains free groups.

In particular, a discrete subgroup of PGL(2, C) which is not almost solvable
contains free groups.

Proof. The group I' acts on C?; as I is not solvable, the representation is
irreducible. Easy arguments 4 la Burnside show that I" does not contain elliptic
elements only; indeed, I' does contain a hyperbolic element (see [CG], or
corollary 1.8 in [B]). The first statement follows now as theorem 1.

The second follows from this: a discrete subgroup of PGL(2, C) containing
elliptic elements only is finite. Indeed, such a group is periodic. If T is a priori
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known to be finitely generated, then I' is finite by a theorem of Schur (§36 in
[CR]) so that the hyperbolic subspace F(I') = { xe H> |I'x = {x} } is non
empty. In general, to any finitely generated subgroup I'; of I" corresponds a non
empty subspace F, < H"; it is easy to check that F(I') = n F,is non empty so
that I" lies in a compact subgroup of the Mcebius group ; it follows again that I" is
finite. ]

Instead of the assumption of theorem 2, assume the following: there exists
g € I with two distinct eigenvalues of same modulus, say p; = p exp (i6,) and
n, = pexp (i6,) where p, 6,, 6, € R satisfy p > 0 and 0, # 6, (mod 2=), and
there exists an automorphism o of C with | a(pt,) | # | a(i,) |. Then o induces an
automorphism & of GL(2, C) and the proof applies to &(I'). But this procedure

- 1
has its limits, because there exist complex numbers p (such as 3 (34 4i), see the
remark below) such that | a(p) | = 1 for any automorphism o of C but which are
0
not roots of 1; then the argument above fails ') for example for g = (g _ 1).
1]

Something is true however : let k be a finitely generated field of characteristic
0, let pe k — {0} and assume p is not a root of 1. Then there exists a locally
compact field k' endowed with an absolute value ® and there exists a
homomorphism o: k — k" such that o(c()) # 1; this is lemma 4.1 of [T]. It
follows that the argument above may be recuperated, but one has to consider
other fields than subfields of C.

For self-consistency, let us end with the announced remark. For any
automorphism o of C, one has clearly

<3 + 4i)
oL
5

I,
is not a root of one.

we check now that

Let p, g be coprime integers and let p = exp <i2n B) be arootof 1. Then pis
' q
an algebraic number of degree ¢(g), where ¢ 1s Euler’s function. It follows that

' 1
cos <2n B) is an algebraic number of degree d > 5 o(q): because if F i1s a
q

polynomial of degree d in Z[ X] with F <cos<2n g)) = 0, then p is a root of

1) This shows that one point on page 50 of [D] is incorrect.
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XF (%X + —;—X_1>, which is of degree 2d in Z[X], so that 2d > o¢(q). If

3+ 4i

ge{l,2,3,4,6}, one checks easily that exp (i27t g—) # Ifg = 5Sorif

q = 7,then @(q) > 2 so that cos <2n B) is not rational. Thus the root of unity p
q

3+ 4i

cannot be equal to

5. SOME OTHER CASES OF TITS THEOREM

Let n be an integer with n > 2.

Define a subgroup I' of GL(n, C) [respectively of PGL(n, C)] to be irreducible
if any linear subspace of C" [resp. of P¢~ !]invariant by I' is trivial, and not almost
reducible if any subgroup of I of finite index is irreducible. When referring to the
Zariski topology on PGL(n, C), we use below the letter Z.

Reduction. Tits’ theorem for complex linear groups is equivalent to the
following statements (one for each n > 2):
Let I' be a subgroup of PGL(n, C) which is not almost solvable. Assume that

(1) is not almost reducible;

(11) the Z-closure G of I' in PGL(n, C) is Z-connected. Then I'" contains free
groups.

That one may assume (1) without loss of generality is an easy exercise on
reducibility, and one may assume (ii) because the Z-closure of any subgroup of
PGL(n, C) has finitely many Z-connected components. (The hypothesis of the
reduced statement are redundant : (i) and (ii) imply by Lie’s theorem that G is not
solvable, so that I" is not almost solvable!)

Now let g € PGL(n, C) and choose a representative § € GL(n, C) of g. Let us
define g to be

elliptic if g 1s semi-simple with all eigenvalues of equal moduli,

parabolic if g is not semi-simple and has all its eigenvalues of equal moduli,
hyperbolic if g has at least two eigenvalues of distinct moduli.

These definitions are obviously independent on the choice of . They generalize

those of section 3 as follows from [Gr]. The meaning of “hyperbolic” fits with
current use in dynamical systems theory (see e.g. definition 5.1 in [Sh]).
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Let g be hyperbolic and let § be as above. Let A(g) [respectively A'(g)] be the
direct sum of the nilspaces of § corresponding to all eigenvalues of maximal
modulus [resp. to all other eigenvalues] of §. Let A(g) [resp. A'(g)] be the
canonical image of A(g) — {0} [resp. A(g) — {0}] in P = P:'. Then
A(g) n A'(g) = 0 and the smallest linear subspace of P containing both A(g) and
A'(g) is P itself. Tits calls A(g) [resp. A(g ~*)] the attracting space [resp. repulsing
space] of g. We say that g is sharp if A(g)is a point and that g is very sharp if both
A(g) and A(g™"') are points. For each ke {1,2,..,n—1}, the fundamental
representation of GL(n, C) in A* C" induces an injection

): PGL(n, C) » PGL((}), C);

as g 1s hyperbolic, A (g) is sharp for some k. We also say that two hyperbolic
elements g, h € PGL(n, C) are in general position if

Alg)u Alg™") = P — {A'(h) U A )}
ARy U A(h™Y) < P — {A(g) L A9 Y} -

Observe that any hyperbolic element of PGL(2, C) is very sharp, and that two
hyperbolic elements of PGL(2, C) are in general position if and only if they do not
have any common fixed point on S2.

Recall that an element of PGL(n, C) is semi-simple if its inverse image in
GL(n, C) contains diagonalisable matrices.

LEMMA 1. Let T be an irreducible subgroup of PGL(n, C) having a Z-
connected Z-closure. If T" contains a sharp semi-simple element g, then T
contains a very sharp element.

About the proof. Let §e GL(n, C) be some representative of g having an
eigenvalue of “large” modulus and all other eigenvalues with moduli “near” 1.
For suitable h, u € " and for j € N large enough, one may hope that g~ ’hg’h™ 'u
has a representative in GL(n, C) with one eigenvalue of very large modulus (look
at hg’h~'u), one eigenvalue of very small modulus (look at g~J), and other
eigenvalues of moduli “near” 1. Section 3 of [ T] shows that this hope is realistic.
(See also below, after the theorem.) ]

LEmMA 2. Let T be an irreducible subgroup of PGL(n, C) having a Z-
connected Z-closure. If I' contains a very sharp element, then I contains two
very sharp elements in general position.

Proof. Let P,, P, be two linear subspaces of P with P, # @ and P, # P.
Then { x e G | x(P,) ¢ P, } is obviously a Z-open subset of G. It is not empty:

~
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Choose indeed p € P, ; then the subspace of P spanned by the orbit Gp is stable
under G and must therefore coincide with P; hence there exists x € G with
x(p) & P, and, a fortiori, x(P,) & P,.

Let g be a very sharp element in I'. It follows from above that

X:{xeG

is a non empty Z-open subset of G. Let y € X n I'. Then g and ygy ' are both
very sharp and are in general position. L]

A(g) and A(g~!) are not contained in any of xA'(g), }
xA'(g~ 1), x ' Ag), x "A(g™)

For the next lemma, we choose as above k with 1 < k < n—1 and we
consider the k'™ fundamental representation A,:SL(n, C) —» SL((}), C) of
SL(n, C).

LEMMA. Let I' be a group and let p: T — SL(n, C) be an irreducible
representation. Then the Z-closure G of p(I') in SL(n, C) is semi-simple and
the representation & = Mp: I — SL((}), C) is completely reducible.

Proof. We show first that G is semi-simple. Consider the solvable radical R
of G. By Lie’s theorem, there exists an eigenvector for R, namely there exist
ve C" — {0} and o € Hom(R, C*) with r(v) = a(r)v for all r € R. As R is normal
in G, any vector g(v) (geG) is also an eigenvector for R. By irreductibility, any
vector in C” is also an eigenvector, so that R is made up of dilations. But R is
connected and is in SL(n, C), so that R = 1.

Now A,: G — SL((}), C) is completely reducible; denote by M. G
— SL(W;) the components of a decomposition A, = @ A, ; and define o

jelJ
= M jp (€J). One has clearly o = @ o), and each o;:I' - SL(W)) is
jelJ
irreducible (this because A, ; is irreducible and by Schur’s lemma). O

THEOREM. Let I' be a subgroup of PGL(n, C) and assume
(1) I' is neither almost solvable nor almost reducible,
() I contains a semi-simple hyperbolic element.

Then T contains free groups.

Proof. As one may consider instead of I" a subgroup of finite index, there is
no loss of generality if we assume that the Z-closure of I' is Z-connected. We
denote by [ the inverse image of I"in SL(n, C). By (ii), there exists k e {1,...,n—1}
and a semi-simple element ¥ € " having eigenvalues Ky, e Wy With |1, | = .
= |m| >|pjlforj=k+1,.,n Let N = (), and denote by A, both the
fundamental representation GL(n,C) » GL(N,C) and the induced




142 P. DE LA HARPE

homomorphism PGL(n, C) - PGL(N, C). Then A, (¥) has eigenvalues vy, ..., Vy
with v, | > |v;|forj = 2,.., N. By lemma 3, there exists a M(D)-irreducible
subspace W, of C¥, associated to a representation 6,: I — GL(W,), such that
v, is an eigenvalue of 54(}). As the Z-closure G of I"in SL(n, C)is semi-simple, the
- group G is perfect and o,(I") lies in SL(W,). As| v, | > 1, one has dimW, = 2.

Thus one may assume from the start that I contains a sharp semi-simple
element, and indeed by lemmas 1 and 2 two very sharp elements in general
position. The conclusion follows as in case 2 of the proof of the proposition in
section 4. L]

Now lemma 1 remains true without the hypothesis “semi-simple”. This has
been announced by Y. Guivarch’, who uses ideas of H. Fiirstenberg to show the
following: given an appropriate subset S of I' containing a sharp element, then
almost any “long” word in the letters of S is very sharp. Using this, one may
replace (ii) in the theorem above by the following a priori weaker hypothesis

(1) T is not relatively compact.

Then, one first checks as for theorem 2 of section 4 that I" contains hyperbolic
elements; one concludes as in the previous proof, with Guivarch’s version of
lemma 1. ‘

For subgroups of PU(n), one may repeat the discussion at the end of section 4.
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