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Here the symbol A stands for the function

GO

A(tcx) — jo* log I 2 sin 0 | dd £ sm(2nnx)/2n2
l

which is closely related to Lobachevsky's computations of volume in hyperbolic
3-space. Compare Appendix 3.

Section 4 extends such functions from (0, 1) to the circle R/Z. For any integer
constant s, §5 computes the universal function

u : Q/Z - Us

satisfying the identities (*s). Here Us is the abelian group with one generator u(x)
for each x in Q/Z and with defining relations (*s).

Section 6 attempts to study the extent to which the continuous Kubert
functions of §3 are actually universal, when restricted to Q/Z. For example, if

/ : (0, 1) - R is the essentially unique even [or odd] continuous function
satisfying (*s), where s is an integer, does every Q-linear relation between the
values of/ at rational arguments follow from (*J together with evenness [or
oddness]? The Bernoulli polynomials ßs(x) provide obvious counterexamples ;

but it is conjectured that these are the only counterexamples. This question is

settled in the relatively easy cases where the values of/on Q/Z are known to be

algebraic numbers, or logarithms of algebraic numbers.

There are three appendices, one describing a functional equation relating
polylogarithms and Hurwitz functions, one describing T(x) and related
functions, and one describing the use of dilogarithms to compute volume in
Lobachevsky space.

The author is indebted to conversations with S. Chowla, B. H. Gross,

Werner Meyer, and W. Sinnott.

§2. Classical examples

This section describes several well known functions. Since the identities (*s)

are not immediately perspicuous, let me start with some examples where they are

clearly satisfied. For any complex constant c the polynomial tm — c factors as

tm - c f] (t-b)9
fem c

where b varies over all m-th roots of c. Hence, setting t 1, we see that

log I 1 - c I X log I 1 - I.
c
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If we define

f(x) log I 1 - e2nix I log I 2 sin ttx |,

then it follows that

/(*) E f(y)
my x mod 1

Thus/satisfies the Kubert identities (*!). Note that/(x) is defined and smooth on

the open interval (0, 1). Differentiating (*!), we see that the derivative

f'(x) K COt 7TX

satisfies (*0). Similarly, the second derivative

f"(x) —K2 csc2 nx
satisfies (* -1)> and so 0IL

Next let us look at the Hurwitz zeta function Çs(x) Ç(s, x), which is

defined by the series

(1) Cs(x) x s + (x+1) s T (x-f-2) s +

for x > 0. Here s can be any complex number with Re(s) > 1.

An easy computation shows that the function Çi_s(x) satisfies the Kubert
identities (*s). (Here x is not an element of R/Z but rather a positive real number.
In fact, it is sometimes useful to let x take complex values also.) It will often be

convenient to work with the function

ßs(x) -sÇi-sM.
We will prove the following.

Lemma 1. This product ßs(x) — s^-^x) extends to a function which is

defined and holomorphic in both variablesfor all complex s, andfor all x in the

simply connected region C — (—oo, 0].

Hence Çi-S(x) is defined and holomorphic in the same region, except at s

0. Evidently, by analytic continuation, these functions ßs and always
satisfy the Kubert identities (*s).

Proof Clearly the function xs_1 is defined and holomorphic for x in
C - (- go, 0] and for all complex s. If Re(s) < 0, then it is easy to check that
the series

ßs(x) s(xS_
1 + (x+ 1)S_

1 +

converges to a holomorphic function. Note that
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(2) dßs(x)/dx 5ßs_i(x).

Integrating from x to x + 1, and then substituting s + 1 for s, we obtain

(3j ir1
whenever Re(s) < — 1. It follows by analytic continuation that this is true when

Re(s) < 0 also. In particular,
(31) jî $s(x)dx 1

Suppose inductively that ßs(x) has been defined so as to be holomorphic in
both variables for Re(s) < n. Then for Re{s) < n + 1 we can set

ßsM +

choosing the constant cs so that (3t) is satisfied. Evidently this defines a

holomorphic function which satisfies (2) and (3^, and hence coincides with the

previously defined function in the common range of definition. It follows by
induction that ßs is defined for all 5.

The case where s is a non-negative integer is of particular interest. Using (2)

and (30) or (3X) we see inductively that the functions

ßoM 1
»

1

ßiW * - 2 '

1

ß2(x) - x -h -,...o

are polynomials with rational coefficients. By definition, ßs(x) is the s-th Bernoulli

polynomial for s 0, 1, 2,.... It can be characterized as the unique polynomial
satisfying the identity

fï ßs(x)dx Is + 2s + + (n-l)s

for every n. Note the symmetry condition

ßs(l-x) (-l)s ßs(x),

which can be proved inductively using (30).

For a more explicit computation, define the Bernoulli numbers

bo b1 — -, b2 -, b3 0, bA — —

by the formal power series
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tfié- 1) Z bktk/k\

Then

where D stands for the differentiation operator d/dx. For example it follows that

m K •

To prove this formula, simply apply the inverse operator (eD — I)/D to both sides,

noting by Taylor's theorem that

—ft m Vs.

If we substitute x 1, then the Hurwitz zeta function Çs(x) reduces to the

Riemann zeta function Ç(s). Thus our discussion implies the following well

known result. The product

-sÇ(l-s) ßs(l)

can be extended as a function which is holomorphic for all complex s, and takes

rational values for s 0, 1, 2,...
Next let us study the polylogarithmfunction, which is defined for any complex

numbers s and z with | z | < 1 by the convergent power series

(4) s(z) z + z2/2s + z3/3s +

(Compare [3], [4], [6], [11], [19], [20], [22], [26].)

Lemma 2. This extends to a function which is defined, and holomorphic in
both variables, for all complex s and all z in the simply connected region
C - [1, oo).

Proof First note the identity

(5) ^s-Az) zd&tâfdz.

If Re(s) > 0 and | z | < 1, then according to Jonquière:

1 f00 z
(6) 77T ts 1

r(s) J o é - z

This is proved by substituting T,zne~nt for z/(e'-z), and noting that

$e~n,ts-1dt J? e-'tf-Hu/rf T(s)/ns.
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Now if Re(s) > 0, the right side of (6) clearly defines a function which is

holomorphic in both variables for all z e C — [1, oo). The extension to other
values of s follows inductively using (5).

The polylogarithm function satisfies a multiplicative analogue of the Kubert
identities. For any positive integer m:

(7) S£fz)

to be summed over all m-th roots of z. This is proved by a straightforward power
series computation when | z | < 1, and by analytic continuation otherwise.

It will be convenient to introduce the abbreviation

tlx) sele2**)

for x g R/Z, x 7^ 0, and for all complex s. Evidently ls(x) satisfies the Kubert
identities in their original form (*s), and also the identity

(8) dls(x)/dx 27zils-lx).

If Re(s) > 1, then we can write

h(x) X cos(271hx)/hs + Yl sin(2nnx)/ns,

where the two summands on the right are the even and odd parts of /s(x). (If s is

real, these can be identified with the real and imaginary parts of tlx).)
For integer values of the parameter s, the functions Ses(z) and ls(x) can be

described more explicitly as follows. Summing the series

i?0(z) z + z2 + z3 +

and using (5), we see inductively that the functions

<&o(z) z/(l-z),

JSf-t(z) z/(l-z)2,

se- z(l-hz)/(l-z)3,

are rational, with rational coefficients, holomorphic in z except for a pole at z

1. On the other hand, the series z + z2/2 + evidently sums to

S£ffiz) -log(l-z),
and the integral

Se2(z) jo Se i{w)dw/w

is the classical dilogarithm function.
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For the function l0(x) e2mxl(\- elmx), a brief computation shows that

(9) /0(x) (-1 + icot(7ix))/2.
Differentiating this expression, we obtain corresponding formulas for L1(x),

l-2(x),.... Notein particular that Ifx) is either an odd or an even function

according as s — 1 is odd or even, for every negative integer s.

For further information about these functions, see Appendix 1.

§3. Continuous Kubert functions

Fixing some complex parameter 5, let be the complex vector space

consisting of all continuous maps

/ : (0, 1) - C

which satisfy the Kubert identity

(*s) f(x) m8'1 Xr=o f((x + k)/m)

for every positive integer m, and every x in (0, 1). We will prove the following.

Theorem 1. This complex vector space Jfs has dimension 2, spanned by

one even element (f{x) /(l —x)) and one odd element (/(x) —/(l —x)).

Each function /(x) in Jfs is necessarily real analytic.

Iff(x) satisfies (*s), then evidently the derivative offsatisfies (*s_ i). Note that

a non-zero constant function satisfies (*s) if and only if s 0. Hence an

immediate consequence is the following. (Compare Lemma 5.)

Corollary. The correspondence f(x)\-^df(x)/dx maps the vector space

bijectively onto JTS_1? except when s 0.

The proof of Theorem 1 will yield explicit bases for JCS as follows, with
notations as in §2. For s ^ — 1, — 2, — 3,..., the space JCS is spanned by the

two linearly independent functions ls(x) and ls( 1 —x). On the other hand,

for s / 0, 1, 2,..., this space is spanned by the linearly independent functions
Ci-s(x) and ^_s(l-x).

Thus, for every non-integer value of s, we obtain two alternative bases for the

same vector space. See Appendix 1 for a precise description of the linear relations
between Hurwitz zeta function and polylogarithm which are implied by this
statement.

The proof of Theorem 1 will be based on several preliminary statements. Let

/ : (0, 1) C be a continuous function satisfying (*s).
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