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282 J. MILNOR

Here the symbol A stands for the function
A(mx) = — [5"log |2sin 8 ]d6 = ) sin(2nnx)/2n?,
1 .

which is closely related to Lobachevsky’s computations of volume in hyperbolic
3-space. Compare Appendix 3.

Section 4 extends such functions from (0, 1) to the circle R/Z. For any integer
constant s, §5 computes the universal function

u:Q/Z - U,

satisfying the identities (x,). Here U is the abelian group with one generator u(x)
for each x in Q/Z and with defining relations (*,).

Section 6 attempts to study the extent to which the continuous Kubert
functions of §3 are actually universal, when restricted to Q/Z. For example, if
f:(0,1) > R is the essentially unique even [or odd] continuous function
satisfying (*,), where s is an integer, does every Q-linear relation between the
values of f at rational arguments follow from (*,) together with evenness [or
oddness]? The Bernoulli polynomials B(x) provide obvious counterexamples;
but it is conjectured that these are the only counterexamples. This question is
settled in the relatively easy cases where the values of fon Q/Z are known to be
algebraic numbers, or logarithms of algebraic numbers.

There are three appendices, one describing a functional equation relating
polylogarithms and Hurwitz functions, one describing I'(x) and related func-
tions, and one describing the use of dilogarithms to compute volume in
Lobachevsky space. , '

The author is indebted to conversations with S. Chowla, B. H. Gross,
Werner Meyer, and W. Sinnott.

§2. CLASSICAL EXAMPLES

This section describes several well known functions. Since the identities (*,)
are not immediately perspicuous, let me start with some examples where they are
clearly satisfied. For any complex constant ¢ the polynomial t" — c¢ factors as

" —c =[] (¢t-b),
b =

where b varies over all m-th roots of c. Hence, setting t = 1, we see that

log|l —c| = ) log|1l—b].
b =c
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If we define
f(x) = log |1 — e*™| = log|2sin nx|,
then it follows that

f= X fO.

my=xmod 1

Thus fsatisfies the Kubert identities (x,). Note that f(x) is defined and smooth on
the open interval (0, 1). Differentiating (*,), we see that the derivative

f'(x) = m cot nx
satisfies (#,). Similarly, the second derivative

f"(x) = —n? csc? nx
satisfies (* - 1) and so on. A ,
Next let us look at the Hurwitz zeta function ((x) = (s, x), which 1s
defined by the series

(1) C(x) = x4+ (x+1)7° 4+ (x+2)"° + ...

for x > 0. Here s can be any complex number with Re(s) > 1.

An easy computation shows that the function {, _ (x) satisfies the Kubert
identities (*,). (Here x is not an element of R/Z but rather a positive real number.
In fact, it is sometimes useful to let x take complex values also.) It will often be
convenient to work with the function

Bs(x) = _SCl—s(x) g

We will prove the following.

LEMMA 1. This product Byx) = —sC;_({x) extends to a function which is
defined and holomorphic in both variables for all complex s, andforall x inthe
simply connected region C — (— o0, 0].

Hence G, _ (x) is defined and holomorphic in the same region, except at s

= 0. Evidently, by analytic continuation, these functions B, and {, _, always
satisfy the Kubert identities (*,).

Proof. Clearly the function x*~! is defined and holomorphic for x in

C — (— 0, 0] and for all complex s. If Re(s) < 0, then it is easy to check that
the series

Bu(¥) = —s(x* ' + (x+1)7! + )

converges to a holomorphic function. Note that
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(2) OBs(x)/0x = sB;_ 1(x) -
Integrating from x to x + 1, and then substituting s + 1 for s, we obtain
(35) JiT BJ&)dE = x°

whenever Re(s) < — 1. It follows by analytic continuation that this is true when
Re(s) < 0 also. In particular,

(31) j% B(x)dx = 1.

Suppose inductively that B,(x) has been defined so as to be holomorphic in
both variables for Re(s) < n. Then for Re(s) < n + 1 we can set

B(x) = [T sBs-1(E)dE + c,

choosing the constant ¢, so that (3,) is satisfied. Evidently this defines a
holomorphic function which satisfies (2) and (3,), and hence coincides with the
previously defined function in the common range of definition. It follows by
induction that [ is defined for all s. O

The case where s is 2 non-negative integer is of particular interest. Using (2)
and (3,) or (3,) we see inductively that the functions

1

Bl(x) = X —57

5 1
By(x) = x* — x + —, ...
6
are polynomials with rational coefficients. By definition, ,(x) is the s-th Bernoulli
polynomial for s = 0, 1, 2, ... . It can be characterized as the unique polynomial
satisfying the identity

1 Byx)dx = 1° + 2° + .. + (n—1)
for every n. Note the symmetry condition

Bs(l —X) = (_ 1)s Bs(x) s

which can be proved inductively using (3).
For a more explicit computation, define the Bernoulli numbers

1 1
by =0b, = — —, ..
,b3 s Y4 309

, by, =
276

1
bozl,blz _“2’

by the formal power series
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tfe—1) = Z b, t*/k! .
Then

A

D J S\ -
BS(X)—_—eD—Ix —_—;bk<k)x ka

where D stands for the differentiation operator d/dx. For example it follows that

B«(0) = b;.

To prove this formula, simply apply the inverse operator (e” —I)/D to both sides,
noting by Taylor’s theorem that

e — 1
D

Bx) = [37" B(E)dE = x°.

If we substitute x = 1, then the Hurwitz zeta function {(x) reduces to the
Riemann zeta function {(s). Thus our discussion implies the following well
known result. The product

—s{(1—s) = By(1)

can be extended as a function which is holomorphic for all complex s, and takes
rational values for s = 0,1, 2, ....

Next let us study the polylogarithm function, which is defined for any complex
numbers s and z with | z| < 1 by the convergent power series

(4) Pz) =z + 2225 + 23/35 + ...
(Compare [3], [4], [6], [11], [19], [20], [22], [26].)

LEMMA 2. This extends to a function which is defined, and holomorphic in

both variables, for all complex s and all z in the simply connected region
C — [1, o0).

Proof. First note the identity
(5) ZLs-1(2) = 202L(2)/0z .

If Re(s) > 0 and | z| < 1, then according to Jonquiére:

1 o]
(6) P2) = %J et i et
o

This is proved by substituting Xz"¢ ™™ for z/(e' —z), and noting that

j’ao e—ntts—ldt — j'(o)o e—uus—ldu/ns — r(s)/ns.
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Now if Re(s) > 0, the right side of (6) clearly defines a function which is
holomorphic in both variables for all ze C — [1, o). The extension to other
values of s follows inductively using (5). []

The polylogarithm function satisfies a multiplicative analogue of the Kubert
identities. For any positive integer m:

(7) gs(z) = m" ! Zwm=z gs(w) >

to be summed over all m-th roots of z. This is proved by a straightforward power
series computation when | z | < 1, and by analytic continuation otherwise.
It will be convenient to introduce the abbreviation

I(x) = Z{e*™)

for x e R/Z, x # 0, and for all complex s. Evidently [(x) satisfies the Kubert
identities in their original form (x,), and also the identity

(8) ol(x)/0x = 2mil,_(x).
If Re(s) > 1, then we can write
I(x) = ) cos(2mnx)/n® + )i sin(2nnx)/n®,

where the two summands on the right are the even and odd parts of [(x). (If s is
real; these can be identified with the real and imaginary parts of [(x).)

For integer values of the parameter s, the functions #(z) and [(x) can be
described more explicitly as follows. Summing the series

Polz) =z + 22 + 2> + ..
and using (5 ), we see inductively that the functions

ZLoz) = z[(1-2),

¥ _1(2) = z/(1-2)?,

Z_2) = z(1+2)/(1—2z2) ..

are rational, with rational coefficients, holomorphic in z except for a pole at z
= 1. On the other hand, the series z + z%/2 + ... evidently sums to

Z1(z) = —log(l—2),
and the integral
Ly(z) = j?) L (wydw/w

is the classical dilogarithm function.
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For the function [y(x) = e2™*/(1—e?™*), a brief computation shows that
9) . lo(x) = (=1 + i cot(mx))/2 .

Differentiating this expression, we obtain corresponding formulas for [_(x),
|_,(X), ... Note in particular that 1(x) is either an odd or an even function
according as s — 1 is odd or even, for every negative integer s.

For further information about these functions, see Appendix 1.

§3. CoNTINUOUS KUBERT FUNCTIONS

Fixing some complex parameter s, let ', be the complex vector space
consisting of all continuous maps -

f:0,1) - C
which satisfy the Kubert identity
(*o) () = mT YRS f((xe+k)/m)

for every positive integer m, and every x in (0, 1). We will prove the following.

TuEOREM 1. This complex vector space A", has dimension 2, spanned by
one even element (f(x) = f(1—x)) and one odd element (f(x) = —f(1—x)).
Each function f(x) in A, is necessarily real analytic.

If f (x) satisfies (*,), then evidently the derivative of fsatisfies (*,_ ;). Note that
a non-zero constant function satisfies (x,) if and only if s = 0. Hence an
immediate consequence is the following. (Compare Lemma 5.)

COROLLARY. The correspondence f(x)+— df(x)/dx maps the vector space
A bijectively onto A" _,, except when s = 0. '

The proof of Theorem 1 will yield explicit bases for £ as follows, with
notations asin§2. For s # —1, —2, —3, .., thespace A, isspanned by the
two linearly independent functions I(x) and [{1—Xx). On the other hand,
for s # 0,1,2,.., this space is spanned by the linearly independent functions
Ci-ox) and C,_(1—x).

Thus, for every non-integer value of s, we obtain two alternative bases for the
same vector space. See Appendix 1 for a precise description of the linear relations
between Hurwitz zeta function and polylogarithm which are implied by this
statement.

The proof of Theorem 1 will be based on several preliminary statements. Let
f:(0,1) » C be a continuous function satisfying (*).
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