Zeitschrift:	L'Enseignement Mathématique
Herausgeber:	Commission Internationale de l'Enseignement Mathématique
Band:	29 (1983)
Heft:	1-2: L'ENSEIGNEMENT MATHÉMATIQUE
Artikel:	SOME PARADOXICAL SETS WITH APPLICATIONS IN THE GEOMETRIC THEORY OF REAL VARIABLE
Autor:	de Guzmán, Miguel
Kapitel:	6. The solution of the needle problem
DOI:	https://doi.org/10.5169/seals-52969

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. <u>Mehr erfahren</u>

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. <u>En savoir plus</u>

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. <u>Find out more</u>

Download PDF: 19.08.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

6. The solution of the needle problem

The Perron tree gives a simple solution to the Kakeya problem. First we shall show how a needle can go from a straight line to another one parallel to it covering an arbitrarily small area. Let us observe Figure 12.

FIGURE 12

If the needle AB is on l and we wish to translate it to l^{I} , we draw through A a straight line m intersecting l and l^{I} whose direction can be as close to that of l and l^{I} as we wish. From AB we move to $A^{I}B^{I}$ covering area P_{1} , from $A^{I}B^{I}$ to $A^{II}B^{II}$ covering null area, from $A^{II}B^{II}$ to $A^{III}B^{III}$ covering P_{2} . Now $P_{1} + P_{2}$ can be made arbitrarily small if the slope of m over l and l^{I} is small. From $A^{III}B^{III}$ we can move to any other position $A^{IV}B^{IV}$ on l^{I} covering again null area.

Let us now assume that the needle is on the side AB of the initial triangle ABC. We can assume that ABC is an equilateral triangle and that its height is of the same length as that of the needle. Let us see how we can move the needle to AC sweeping an area smaller than $\eta/3$ with a positive η arbitrarily small.

We construct a Perron tree P starting from ABC with an $\varepsilon > 0$ such that $\varepsilon S(ABC) < \eta/6$. Here, as before, S(ABC) denotes the area of the triangle ABC. Let n be the number of small triangles $T_1, T_2, ..., T_n$ in which we have to divide ABC and let $T'_1 \equiv T_1, T'_2, ..., T'_n$ be their corresponding final positions in the Perron tree. We shall move the needle inside P and inside n figures like that of Figure 12 with an area J each one such that $nJ < \eta/6$. If the needle is on AB with an extremity on A, it can move inside $T'_1 \equiv T_1$, therefore inside P, until it comes over the right hand side of T'_1 . Now T'_2 has its left hand side parallel to the right hand side of T'_1 . Therefore it can move, using the above construction, covering an area J. Within T'_2 , and so within P, it can move to the right hand side of T'_2 . From there to the left hand side of T'_3 and so on until it comes to AC, covering area less than $\eta/3$.

It is clear that with three equilateral triangles and three repetitions of this process we can turn the needle around covering area smaller than η .

7. The construction of the Besocovitch set

The Besicovitch set is also easily built starting from the Perron tree by means of the following auxiliary construction:

(**) Given an arbitrary parallelogram ABCD and $\varepsilon > 0$, it is possible to construct a finite number of closed parallelograms $\omega_1, \omega_2, ..., \omega_n$ so that (see Fig. 13):

FIGURE 13

- (a) Each one has one basis on AB and another one on CD.
- (b) The area of their union is less than ε .
- (c) For each segment joining a point of AB to another one of CD there exists inside some ω_j a segment parallel to it of the same length.

To see this, given ABCD and $\varepsilon > 0$ we first take two strips ω_1 and ω_2 as indicated in Figure 14 such that $S(\omega_1) + S(\omega_2) < \varepsilon/4$. We take now a point L of UV so that LC is parallel to UT. Then we divide VC into intervals with the same length smaller than that of DV and we join L to the extreme points of these intervals. A typical triangle of the ones so obtained is LMN. Let p be