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292 J. MILNOR

Proofof Theorem 1 for Re(s) < 0. Sinee/(x) — Axs~1 tends to a finite limit
as x 0, it follows that f(x) — A^x^s(x) also tends to a finite limit as x 0.

Applying a similar argument to the function/(l — x), we find a constant B so that

f(x) — B^1 _s(l — x) tends to a limit as x - 1. Hence the difference

/(x) - A^fx) - RÇ^l-x)
extends to a continuous function on the closed unit interval. According to
Lemma 4, this function must be constant. Since s ^ 0, it follows that it is

identically zero. Thus

f{x)A^-Xx)+ ß^_s(l-x);
where the two functions on the right are linearly independent since one is

continuous and one is discontinuous as x - 0.

In fact the functions ()1 _s(x) and ^_s(l — x) are linearly independent for all
s 7^ 0, 1, 2,..., as one can check by repeated differentiation.

§4. Extending from (0, 1) to R/Z

We will prove the following. Let s be a complex constant.

Lemma 7. If a function f : (0, 1) -> C satisfies the Kubert identities (*s)

with s ^ 1, then it extends uniquely to a function R/Z — C satisfying (*s).

Here no mention is made of continuity. If Re(s) > 1 and if/happens to be

continuous, then we have seen that the extension is also continuous. However, if
Re{s) ^ 1 then the extension cannot be continuous, except in the trivial case ofa

constant function with s 0.

Proof We must choose /(0) so as to satisfy all of the equations

/(0) ms~1(f(0) +/(l/m) + )/«).
Setting

Cm =/(l /in)+ +/((m-l)/m),
we can write this as

(m1"*—1)/(0) cM.

But (*s) implies that

c„ rns'\cm
hence

Cmn rn1'5 c„+ Cm +
and

— l)c„
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Since 5 ^ 1, these factors m1_s — 1 cannot all be zero. It now follows easily that

/(0) exists and is unique.
For the functions/(x) studied in §2, it is interesting to note that/(0) is always

an appropriate value of the Riemann zeta function. Thus for the version

f[x) ls(x) of the polylogarithm function, the appropriate choice is

/(0) «s) •

In fact, if Re(s) > 1, then ls(x) is continuous on R/Z with /s(0) Ç(s), so the

required identity

(mI_s-l)i;(s) Zs(l/m) + + Zs((m-l)/m)

holds by continuity as x -> 0. It follows by analytic continuation that this

formula is true for all s # 1. (Since the right side is holomorphic for all s, this

identity provides an alternative proof that Ç(s) extends to an holomorphic
function for s ^ 1.)

Similarly, if/(x) Çi_s(x) for 0 < x < 1, then by continuity as x -> 1 the

appropriate choice is

/(0) Ç(l-s).

Note that Lemma 7 is definitely false in the exceptional case 5 1. In the

case of the even function

/(x) log I 2 sin Tlx I log I 1 — e2nix |,

which satisfies (*x) in the open unit interval, the identity

(10) /(1/m) +/(2/m) + +/((m-l)/m) log m ^ 0

shows that it is not possible to define/(0) so as to satisfy (* x) at zero. This identity
is proved by substituting t 1 in the equation

m- 1

l + t+ + r_1 n
i

where t, e2m,m, and then taking the logarithm of the absolute value of both
sides.

On the other hand, for the Bernoulli polynomial

fix) x - 1/2 for 0 < x < 1,

the value/(0) can be defined arbitrarily and (*t) will always be satisfied.
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