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292 J. MILNOR

Proof of Theorem 1 for Re(s) < 0. Since f(x) — Ax*~! tends to a finite limit
as x — 0, it follows that f(x) — A{;_(x) also tends to a finite limit as x — 0.
Applying a similar argument to the function f(1 — x), we find a constant B so that
f(x) — BC; _{(1—x) tends to a limit as x — 1. Hence the difference

f(x) — 4G, _(x) — BC, _(1—x)

extends to a continuous function on the closed unit interval. According to
Lemma 4, this function must be constant. Since s # 0, it follows that it is
identically zero. Thus

fx) = AC, _(x) + BC, (1 -x);

where the two functions on the right are linearly independent since one is
continuous and one is discontinuous as x — 0. B

In fact the functions {, _(x) and {, _ (1 —x) are linearly. independent for all
s # 0,1, 2, ..., as one can check by repeated differentiation.

§4. EXTENDING FROM (0, 1) TO R/Z

We will prove the following. Let s be a complex constant.

LEMMA 7. If a function f :(0,1) - C satisfies the Kubert identities (%)
with s # 1, then it extends uniquely to a function R/Z — C satisfying (*,).

Here no mention is made of continuity. If Re(s) > 1 and if f happens to be
continuous, then we have seen that the extension is also continuous. However, if
Re(s) < 1 then the extension cannot be continuous, except in the trivial case of a

constant function with s = 0.

Proof. We must choose f(0) so as to satisfy all of the equations

f(0) = m*~}f(0) + f(1/m) + ... + f((m—1)/n).
Setting
¢ = f(I/m) + .. + f((m—1)/m),
we can write this as
4 (m! =1 f(0) = c,,.
But (*,) implies that
¢, = M Hcpn—Cnm)
hence
Coy = M 75C, + ¢y = 0 S,y + ¢,
and
(m*—5—1), = (n' *—1)c,, .
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Sinces # 1, these factorsm! ™ — 1 cannot all be zero. It now follows easily that

f(0) exists and is unique. O]

For the functions f(x) studied in §2, it is interesting to note that f(0) is always
an appropriate value of the Riemann zeta function. Thus for the version
f(x) = I(x) of the polylogarithm function, the appropriate choice is

f0) = &)

In fact, if Re(s) > 1, then I(x) is continuous on R/Z with [(0) = {(s), so the
required identity

(m* =) = L(1/m) + ... + I((m—1)/m)

holds by continuity as x — 0. It follows by analytic continuation that this
formula is true for all s # 1. (Since the right side is holomorphic for all s, this
identity provides an alternative proof that {(s) extends to an holomorphic
function for s # 1.)

Similarly, if f(x) = {, _{(x) for 0 < x < 1, then by continuity as x — 1 the
appropriate choice is

f0) = L1-s).

Note that Lemma 7 is definitely false in the exceptional case s = 1. In the
case of the even function

f(x) = log|2sin x| = log |1 — e2™*|,
which satisfies () in the open unit interval, the identity
(10) fA/m) + f2/m) + .. + f((m—1)/m) = log m # 0

shows that it is not possible to define f(0) so as to satisfy (*,) at zero. This identity
is proved by substituting ¢ = 1 in the equation
m—1

L+t4+ .+t = ] (-89
1

where & = ¢?™™ and then taking the logarithm of the absolute value of both
sides.

On the other hand, for the Bernoulli polynomial
f(x) =x—1/2 for 0<x<1,

the value f(0) can be defined arbitrarily and (*,) will always be satisfied.
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