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¥ ag(V)is the set of distinct algebraic structures on V. Hence a natural problem is
to compute ¥ (V), or at least produce nontrivial elements of this set. For
example if we take M = V asin Proposition 2.10, then by Theorem 2.12 (V, M) 1s
diffeomorphic to nonsingular algebraic sets (V', M'). Let | V| = | V'] denote the

underlying smooth structures and let V 5 |V |,V 5 | V| be the forgetful maps.

Then (V, g) and (V, ') are distinct elements of 4 ,(|V]), otherwise M would be
isotopic to a nonsingular algebraic subset of V.

An interesting question is whether algebraic structures on smooth manifolds
satisfy the product structure theorem; that is, whether the natural map

'SpAlg(M) X R" — yAlg(MXR")a (V, g9) — (V xR", g x id)

is surjection. The answer would be negative if one can find a smooth manifold M
and 6 € H (M ; Z/27) such that M can not be diffeomorphic to a nonsingular
algebraic set M’ with 8 e HXM';Z/2Z). To see this, pick any smooth
representative N LS Mof = g«[N]. By graphing g, we can assume N < M
x R"for some n and g is induced by projection. By Theorem 2.12 we can find a
diffeomorphism A : M x R" — V to a nonsingular algebraic set V' with A(N) is
an algebraic subset (one has to modify Theorem 2.12 to apply to this
noncompact case). Then there can not exist a birational diffeomorphism p: V
— M’ x R" where M’ is a nonsingular algebraic set diffeomorphic to M,

projection

otherwise A(N) > M’ x R" =" M’ would represent 0 ¢ H4(M'; Z)2Z).

§3. BLOWING DowN

Real algebraic sets obey some simple but useful topological properties:

ProrosiTiON 3.1.

(a) One point compactification an algebraic set is homeomorphic to an algebraic
set.

(b) Given algebraic sets L < V, then V — L is homeomorphic to an algebraic
set.

(¢) Givenalgebraic sets L = V with V compactthen V/L is homeomorphic
to an algebraic set.
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Proof:

(a) Let Z = R” be an algebraic set and assume that Z # R" and 0¢ Z
(otherwise translate Z). Let Z = f~}(0) for some polynomial f(x);then define

X
F(x) = | x|*f <W>’ where d is the degree of f(x). Clearly F(x) is a poly-
nomial and F ~1(0) is the one point compactification of Z, since x — % is the
X

inversion through the unit sphere.

(b) Let V = f~10), L = g~ *0) for some polynomials f,g:R" — R.
Define G(x, t) = | f(x)|* + | tg(x) — 1%, then G"}(0) ~ V — L.

(c) By applying (a) we get the one point compactification of G~ 1(0) to be an
algebraic set; if V is compact this set is homeomorphic to V/L. ]

This proposition implies that a set is homeomorphic to an algebraic set if and
only if the one point compactification is homeomorphic to an algebraic set.
Hence any noncompact algebraic set has a collar at infinity, since every algebraic
set is locally cone-like [M]. Also we get that the reduced suspension "X = X
x S"/X V S" of any algebraic set X is homeomorphic to an algebraic set.

There is a fancier version of the blowing down operation (c) (Proposition 3.3).
First we need to discuss projectively closed algebraic sets. Let p: R" — R be a
polynomial. Another interpretation of this concept 1s the following: Let A: R”
d. We call p(x) an overt polynomial if p; *(0) is either the empty set or {0}. We call
an algebraic set V = p~1(0) a projectively closed algebraic set if p(x) is an overt
polynomial. Another interpretation of this concept is the following: Let A : R”
— RP" be the inclusion Mxy,..,x,) = [1;x;..;x,] then V = p~}0) is
projectively closed if and only if A is a projective algebraic subset of RP" in other
words MV) is Zariski closed in RP” (see also [AK,]). Real algebraic sets along
with maps can easily be made projectively closed by the following.

PROPOSITION 3.2. Let f:Z — W be an entire rational function between
algebraic sets with Z nonsingular and compact. Then there is a projectively
closed algebraicset V < W x R" abirational diffeomorphism g which makes
the following commute

Vv o W x R"

ta L
z L ow

where T is the projection, n is some integer.
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Proof: By taking the graph of f we can assume that Z <« W x R™" = R’
for some r, and f is induced by projection. Also identify R” < RP" via A. Then let
Z be the Zariski closure of Z in RP". We claim dim(Z — Z) < dim(Z). This is
because if U is an irreducible component of Z then U n Z # (), and therefore
U—-Z=U~nRP ! is a proper algebraic subset of U where RP""*
= {[0; x,;..; x,] € RP"}. Since U is irreducible dim(U—2Z) < dim(U), also
dim(U) = dim(Z). Therefore dim(Z —2Z) < dim(Z). So Z — Z = Sing(Z). By
resolution of singularities [H] (Theorem 1.1) there is a nonsingular algebraic set
V < RP" x [] RP%such that the projection induces birational diffeomorphism

between V' and Z. In particular ¥ < R” x || RP%.
RP" x [ RP% ¢, RC* D7+t 17

is a projectively closed algebraic set. Hence V is projectively closed (check
details). ]

Now assume that L ¢ W < R™ be real algebraic sets,and V < W x R" be
a projectively closed algebraic set. Let g : R” — R be a polynomial with g~ *(0)
= L. Define

D,:W xR"> W x R"

by Dy(x, y) = (x, yq(x)). D, is a diffecomorphism on (W —L) x R" and DL
xR") = L x 0. Therefore D (V) is the quotient space of V by the equivalence
relation (x, y) ~ (x, 0) if x € L. We call the operation V — D(V)u L (L is
identified by L x 0) blowing down V over L.

Wx R = R3

| e

D(V)uUL
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PROPOSITION 3.3. Given L,W,V as above, then D,(V)u L is an
algebraic subset of W x R".

Proof: Let p:R™ x R" —» R be an overt polynomial of degree e with V
= p~1(0) and let g be as above. Define a polynomial r: R x R" — R by

", ) = q(x)° p(x, i)
q(x)

We claim r~'(0) = D(V) u L. It is easy to see that
r 10) n(W—L) x R" = D(V) n(W—L) x R",

so it suffices to show that r"}(0) n (LxR") = L x 0. We decompose p(x, y)
= pJSx,y) + a(x, y) where p,(x, y) is homogeneous of degree e and o(x, y) is a
polynomial of degree less than e. Hence if (x, y) € r~ *(0) n (L x R") then r(x, y)
= 0 and g(x) = 0, which implies r(x, y) = p,0, y) = 0. Then y = 0 since p is
overt, so (x, y) € L x 0. Conversely if (x, y)e L x 0 then y = 0 and g(x) = 0.
Hence r(x, y) = p,0,0) = 0, ie. (x, y) e r~1(0) n (L x R"). n

There is a more useful version of Proposition 3.3 which says that after
modifying D, we can get D (V) U L to be a projectively closed algebraic set
(Proposition 3.1 of [AK]). This allows us to iterate this blowing down process.

§4. ISOLATED SINGULARITIES

The topology of real algebréic sets with isolated singularities is completely
understood by the following Theorem.

THEOREM 4.1 ([AK,]). X ishomeomorphicto an algebraic set with isolated
singularitiesif and only if X isobtained by taking a smooth compact manifold W

with boundary O0W = U M, where each M; bounds, then crushing some
i=1

Ms to points and deleting the remaining M.
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