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^Alg(F) is the set of distinct algebraic structures on V Hence a natural problem is

to compute S^Alg(V), or at least produce nontrivial elements of this set. For
example if we take M c F as in Proposition 2.10, then by Theorem 2.12 (V, M) is

diffeomorphic to nonsingular algebraic sets (V\ AT). Let \V\ \ Vr] denote the

underlying smooth structures and let V | V |, V \ V | be the forgetful maps.

Then (K g) and (V, g') are distinct elements of ^Aig(|L|), otherwise M would be

isotopic to a nonsingular algebraic subset of V

An interesting question is whether algebraic structures on smooth manifolds

satisfy the product structure theorem ; that is, whether the natural map

^Alg(M) x R" - ^Alg(M x R"), (V, g)^(Vx R", g x id)

is surjection. The answer would be negative if one can find a smooth manifold M
and 0 e H^,(M ; Z/2Z) such that M can not be diffeomorphic to a nonsingular
algebraic set AT with 0 e H^(M' ; Z/2Z). To see this, pick any smooth

representative N M of 0 öuC-ZV]. By graphing g, we can assume N a M
x Rn for some n and g is induced by projection. By Theorem 2.12 we can find a

diffeomorphism X : M x R" V to a nonsingular algebraic set V with X(N) is

an algebraic subset (one has to modify Theorem 2.12 to apply to this

noncompact case). Then there can not exist a birational diffeomorphism p : V

- M' x R" where AT is a nonsingular algebraic set diffeomorphic to M,
u projection

otherwise X(N) AT x R" AT would represent 0 e H^(M' ; Z/2Z).

§3. Blowing Down

Real algebraic sets obey some simple but useful topological properties :

Proposition 3.1.

(a) One point compactification an algebraic set is homeomorphic to an algebraic
set.

(b) Given algebraic sets L a V, then V — L is homeomorphic to an algebraic
set.

(c) Given algebraic sets L a V with V compact then V/L is homeomorphic
to an algebraic set.
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Proof:
(a) Let Z c R" be an algebraic set and assume that Z # R" and 0 Z

(otherwise translate Z). Let Z /" *(0) for some polynomial /(x); then define

F(x) I x —|2^j ' where à is the degree of /(x). Clearly F(x) is a poly-

xnomial and F TO) is the one point compactification of Z, since x i—> 5- is the
1*1

inversion through the unit sphere.

(b) Let V f~1(0), L « g~l(0) for some polynomials f g : R" R.

Define G(x, t) | /(x) |2 + | tg(x) — 1 |2, then G_1(0) « V — L.

(c) By applying (a) we get the one point compactification of G~ *(0) to be an
algebraic set; if V is compact this set is homeomorphic to V/L.

This proposition implies that a set is homeomorphic to an algebraic set if and

only if the one point compactification is homeomorphic to an algebraic set.

Hence any noncompact algebraic set has a collar at infinity, since every algebraic
set is locally cone-like [M]. Also we get that the reduced suspension ZnX X
x Sn/X V Sn of any algebraic set X is homeomorphic to an algebraic set.

There is a fancier version of the blowing down operation (c) (Proposition 3.3).

First we need to discuss projectively closed algebraic sets. Let p : R" -> R be a

polynomial. Another interpretation of this concept is the following : Let X : R"
d. We call p(x) an overt polynomial ifpf ^0) is either the empty set or {0}. We call

an algebraic set V p~ x(0) a projectively closed algebraic set if p(x) is an overt

polynomial. Another interpretation of this concept is the following : Let X : R"

- RP" be the inclusion X(xl5..., xn) [1 ; xx ;xj then V — p~x{0) is

projectively closed if and only if X is a projective algebraic subset of RP" in other
words X(V) is Zariski closed in RP" (see also [AK2]). Real algebraic sets along
with maps can easily be made projectively closed by the following.

Proposition 3.2. Let f : Z -> W be an entire rational function between

algebraic sets with Z nonsingular and compact. Then there is a projectively
closed algebraic set V cz W x R" a birational dijfeomorphism g which makes

the following commute

V c> W x R"

0 Î « I 71

z L

where n is the projection, n is some integer.
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Proof: By taking the graph of / we can assume that Z cz W x Rm <= Rr

for some r, and / is induced by projection. Also identify Rr c: RPr via X. Then let

Z be the Zariski closure of Z in RPr. We claim dim(Z —Z) < dim(Z). This is

because if U is an irreducible component of Z then U n Z # 0, and therefore
U — Z — U n RPr_1 is a proper algebraic subset of U where RPr_1

{[0; xx ;xj 6 RPr}. Since U is irreducible dim(U — Z) < dim(I/), also

dim(U) dim(Z). Therefore dim(Z —Z) < dim(Z). So Z — Z Sing(Z). By
resolution of singularities [H] (Theorem 1.1) there is a nonsingular algebraic set

V a RPr x Y[ RPai such that the projection induces birational diffeomorphism
i

between V and Z. In particular V <= Rr x nRpai
i

RPr X U RPa' g. RC + d' +^ + I)2

i

is a projectively closed algebraic set. Hence V is projectively closed (check
details).

Now assume that L cz W c Rm be real algebraic sets, and V a W x Rn be

a projectively closed algebraic set. Let q : Rw - R be a polynomial with q~\0)
L. Define

Dq : W x R" ^ W x R"

by P>q(x,y) (x9yq(x)). Dq is a diffeomorphism on (W — L) x R" and Dq(L
x R L x 0. Therefore Dq(V) is the quotient space of V by the equivalence
relation (x, y) ~ (x, 0) if x g L. We call the operation V -> Dq(V) u L (L is
identified by L x 0) blowing down V over L.
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Proposition 3.3. Given L, W, V as above, then Dq(V) u L is an

algebraic subset of W x R".

Proof: Let p : Rm x Rn - R be an overt polynomial of degree e with V

p_1(0) and let <2 be as above. Define a polynomial r : Rm x R" R by

We claim r ^0) Dq(V) u L. It is easy to see that

r_1(0) n (W-L) x R" Ö,(L) n (IT-L) x R",

so it suffices to show that r_1(0) n (LxR") L x 0. We decompose p(x, y)

— y) + y) where pe(x, y) is homogeneous of degree e and a(x, y) is a

polynomial of degree less than e. Hence if (x, y)er_1(0)n(Lx Rn) then r(x, y)
0 and q(x) 0, which implies r(x, y) — pe(0, y) 0. Then y 0 since p is

overt, so (x, y) e L x 0. Conversely if (x, y) g L x 0 then y 0 and q(x) 0.

Hence r(x, y) pe(0, 0) 0, i.e. (x, y) g r~ ^0) n(Lx R").

There is a more useful version of Proposition 3.3 which says that after

modifying Dq we can get Dq(V) u L to be a projectively closed algebraic set

(Proposition 3.1 of [AK6]). This allows us to iterate this blowing down process.

The topology of real algebraic sets with isolated singularities is completely
understood by the following Theorem.

Theorem 4.1 ([AK2]). X is homeomorphic to an algebraic set with isolated

singularities ifand only if X is obtained by taking a smooth compact manifold W
r

with boundary dW u Mh where each Mt bounds, then crushing some

§4. Isolated Singularities

i 1

s to points and deleting the remaining M-s.
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