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We need only to prove that SL2(Q) contains a non-commutative free subgroup F.

If Q has characteristic zero, we may take any torsion-free subgroup of SL2(Z).

Let now p char Q be >0. Then, by the arithmetic method, using division

quaternion algebras over global fields, we can construct a discrete cocompact
subgroup of SL2(L), where L is a local field of characteristic p (cf. A. Borel-G.

Harder, Crelle J. 298 (1978), 53-74). The latter has a torsion-free subgroup F of
finite index (H. Garland, Annals of Math. 91 (1973), 375-423) which is then free,

since it acts freely on a tree, namely the Bruhat-Tits building of SL2(L).
2) For any non-zero ne Z, the power map g i— gn is dominant (because it is

surjective on any maximal torus [1: 8.9]), hence Theorem 1 is obvious if the sum
of the exponents of one letter in the word w is not zero. (See [11] for a similar
remark in the context of compact groups.)

3) If U and V are non-empty open subsets in a connected algebraic group H,
then H U • V [1: 1.3].. It follows then from Theorem 1 that if w, W are two
words in two letters, say, then the map G4 -> G defined by

fig1,01,03,04-) M.0U • w'(g3, 04.)

is surjective. For instance, every element of G(Q) is the product of two
commutators. However, the map fw itself is not always surjective; for instance
x i-> x2 is not surjective in SL2(C), as pointed out in [11].

4) If K C, then Theorem 1 implies that Im fw contains a dense open set in
the ordinary topology. If G is defined over R, then Theorem 1 also shows that
/W(G(R)) contains a non-empty subset of G(R) which is open in the ordinary
topology. However it may not be dense. For instance, it is pointed out in [11]
that for SU2, the image of the map defined by [x2, yxy

~ *] omits a neighborhood
of — 1 ; however this map is surjective in S03.

It seems that little is known about the image of /w, even over R or C. A general
fact however is that the commutator map is surjective in any compact connected
semi-simple Lie group [9].

§2. Free subgroups with strongly regular elements

1. In the sequel, K is a field of infinite transcendence degree over its prime
field. We shall need the following lemma:

Lemma 2. Let X be an irreducible unirational K-variety. Let L be a
finitely generated subfield of K containing a field of definition of X, and
Vi{ieN) a sequence ofproper irreducible algebraic subsets of X defined over an
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algebraic closure L of L. Then X(K) is not contained in the union of the

Vt n X(K\ (ieN).

By definition of unirationality, there exists for some ne Na dominant K-
morphism (p : A" - X, where A" denotes the affine n-dimensional space.

This map is already defined over some finitely generated extension of L.

Replacing L by the former, we may assume (p to be defined over L, hence cp" HK)

to be defined over L. It is a proper algebraic subset since cp is dominant. This
reduces us to the case where X A". But then any point whose coordinates

generate over L a field of transcendence degree n will do.

Theorem 2. Assume G to be defined over K. Let F [Vf O'gN) be a

family ofproper subvarieties of G, all defined over an algebraic closure L of a

finitely generated subfield L of K over which G is also defined. Then G(K)
contains a non-commutative free subgroup F such that no element of F — {1}
is contained in any of the Vfis. Given m ^ 2, the set of m-tuples which freely
generate a subgroup having this property is Zariski dense in Gm.

We may (and do) assume that the identity element is contained in one of the

K's.

Let w and fw be as in §1. Then fw is defined over L hence f~ l(Z) is defined

over L for every Z g F and is a proper algebraic subset by Theorem 1. The sets

f~ 1(Z), as w runs through all the non-trivial reduced words (in m letters and their
inverses) and Z through F, form then a countable collection of proper algebraic

subsets, all defined over L. But G, hence Gw, is a unirational variety over any field
of definition of G [1: 18.2]. Lemma 2 implies therefore the existence of g

(gl) e G(K)m not belonging to any of these subsets. Then the g- s are free

generators of a subgroup which satisfies our conditions. In fact, we see that we

can take for g any point of G(K)m which is generic over L and, since L has finite
transcendence degree over the prime field, such points are Zariski-dense. This
establishes the second assertion.

Remark. If G S02„ (resp. S02n+1), this shows for instance the existence

of a free subgroup T, no element of which except 1 has the eigenvalue 1 (resp. the

eigenvalue 1 with multiplicity >1).

2. Any semi-simple element x of G is contained in a maximal torus [1 :

11.10] ; x is called regular if it is contained in exactly one maximal torus. We shall

say that x is strongly regular if it is not contained in any non-maximal torus, i.e., if
the cyclic group generated by x is Zariski-dense in a maximal torus.

The following result contains Theorem C of the introduction.
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Corollary 1. Assume G to be defined over K. Then G(K) contains a

non-commutative free subgroup T all of whose elements ^ 1 are strongly

regular. Given m ^ 2, the set of m-tuples (<gt) e G(K)m which generatefreely a

subgroup with that property is Zariski dense in Gm.

The field K contains a field of definition L of G which is finitely generated

over its prime field. Let L be an algebraic closure of L in our universal field Q.

Then the subfield generated by L and K has infinite transcendence degree over L.
Let S be the set of singular elements of G (i.e., of elements g e G such that Ad g

has the eigenvalue one with multiplicity > rk G). It is algebraic, defined over L.
Fix a maximal L-torus T of G [1: 18.2]. Every proper closed subgroup of T is

contained in the kernel of a rational character [1: 8.2]. The characters are all
defined over a finite separable extension L of L [1: 8.11] and form a countable
set. For X e X*(T), X ^ 1, let Tx ker X, and Vx the Zariski-closure of GT^.

The Vx and S form a countable set ir of proper algebraic subsets of G which are

all defined over L.
Our assertion is now a special case of the Theorem.

3. We can now prove the Corollary in the introduction. Let Q be an

algebraically closed extension of K. Since G{K)/H(K) may be identified to an
orbit of G{K) in G{Q)/H(Q) it suffices to show :

Corollary 2. Assume K to be algebraically closed. Then every y g F

- {1}, operating by left translations on G(K)/H{K), has exactly x(G> H)
fixed points.

For y e T - {1}, let Fy be the fixed point set of y in G(K)/H{K\ and let Ty be
the maximal torus in which the cyclic group generated by y is dense. Clearly, Fy is
also the set of fixed points of Ty(K). Thus, if Fy is non-empty, then Ty is conjugate
to a subgroup of H, and H has maximal rank. Assume this is the case and let T0 be
a maximal K-torus of H. Since the maximal tori of F[ (or G) are conjugate, it is
elementary that Fy may be identified with Tr(T0, Ty)/NH(T0). But, if x g Tr(T0, Ty\
then Tr(T0, Ty) x • NG{T0), whence the Corollary.

4. We now generalize slightly the Corollary in case H contains a maximal
torus of G, dropping again the assumption that K is algebraically closed. Assume
instead

(*) The maximal K-tori of H are conjugate under H(K).
If T0is a maximal K-torus of H, we then set

X(G(K), H(Kj) [Nom(T0) : NH(K£T0)]
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If K is algebraically closed, then (*) is fulfilled and x(G(K), H{K)) is our previous
X(G, H). We again set %(G(K\ H(K)) 0 if H does not contain any maximal
torus of G.

Corollary 3. Let T be as in Theorem 2. Let H be a closed K-
subgroup of maximal rank and assume (*) to be satisfied. Then y e F — {1}
acts freely if Ty is not conjugate under G(K) to T0 and has x(G(K), H(K j)

fixed points otherwise.

The argument is the same as before : Fy is also the set of fixed points of Ty. The
latter is defined over K. If Fy ^ 0, then there exists x e G(K) such that xTy e //,
hence by (*),

TrG(K)(T0, Ty) ^ 0
and we have, as above, bijections

Fy TrGW(T0, Ty)/NH{K}(Tq) NG(K](T0)/NH{K)(T0).

5. (i) If K R, C or also is a non-archimedean local field with finite
residue field, then G(K), endowed with the topology stemming from K, is a Lie

group over K, and in particular is a locally compact topological group. In that
case, we can use in Theorem 2 a category argument instead of Lemma 2 : the

/ ~ :(Z), being proper algebraic subsets, have no interior point, the intersection of
their complement is then dense by Baire's theorem, whence the last assertion of
Theorem 2 with "Zariski-dense" replaced by "dense in the K-topology".

(ii) In [4] it is asked whether the hyperbolic n-space admits a non-
commutative free group of isometries which acts freely. More generally, one has

the

Proposition. Let S be a connected semi-simple non-compact Lie group
with finite center, U a maximal compact subgroup of L and X L/U the

symmetric space ofnon-compact type of S. Then S contains a non-commutative

free subgroup which acts freely on X.

If rk S ^ rk U, this could be deduced from Corollary 2. However, the

existence of one such subgroup can be proved much more directly in all cases : if
s sl2(R) or PSL2(R), then we may take for T a free subgroup of finite index in

SL2(Z) or SL2(Z)/{± 1}. If S is of dimension >3, then it contains a copy of

SL2(R) or of PSL2(R), and therefore a discrete non-commutative free subgroup
T. No element y e T — {1} is contained in a compact subgroup of S, hence T acts

freely on X.
A similar argument would be valid over a non-archimedean local field K for

the Bruhat-Tits buildings attached to semi-simple K-groups.
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