All volumes

L'Enseignement Mathématique

L'Enseignement Mathématique Volume 36 (1990)
Heading Page
Issue 1-2: L'ENSEIGNEMENT MATHÉMATIQUE
Front matter
PDF
Table of Contents
PDF
Front matter
PDF
Index
PDF
Front matter
PDF
Article STATE MODELS FOR LINK POLYNOMIALS
PDF
1
Chapter I. Introduction
PDF
1
Chapter II. Skein polynomials
PDF
2
Chapter III. A SKEIN MODEL FOR THE HOMFLY POLYNOMIAL
PDF
9
Chapter IV. A Skein Model for the Kauffman polynomial
PDF
12
Chapter V. Graph polynomials
PDF
14
Chapter VI. The Conway Polynomial
PDF
18
Chapter VII. Yang-Baxter Models
PDF
21
Chapter VIII. Applications and questions
PDF
27
Chapter IX. Relations with mathematical physics
PDF
28
Appendix Appendix on state model formalism
PDF
31
Bibliography
PDF
33
Article GAUSS SUMS AND THEIR PRIME FACTORIZATION
PDF
39
Chapter Introduction
PDF
39
Chapter 1. Gauss sums and some of their properties
PDF
39
Chapter 2. The prime factorization of p in Q(pm)
PDF
42
Chapter 3. The prime factorization of the Gauss sum: statement of the result
PDF
43
Chapter 4. A USEFUL LEMMA
PDF
44
Chapter 5. The prime factorization of the Gauss sum: proof of the result
PDF
46
Chapter 6. Annihilators of the ideal class group of a cyclotomic field
PDF
47
Bibliography
PDF
51
Article EXCEPTIONAL POLYNOMIALS AND THE REDUCIBILITY OF SUBSTITUTION POLYNOMIALS
PDF
53
Chapter 1. Introduction
PDF
53
Chapter 2. The semi-factorable families
PDF
55
Chapter 3. Substitution polynomials with a quadratic factor
PDF
58
Chapter 4. Substitution polynomials with a cubic factor
PDF
63
Bibliography
PDF
65
Article THE POMPEIU PROBLEM REVISITED
PDF
67
Abstract
PDF
67
Chapter 1. Introduction
PDF
67
Chapter 2. Spectral analysis of radial functions
PDF
70
Chapter 3. POMPEIU PROBLEM FOR THE M(2) ACTION ON $R^2$
PDF
73
Chapter 4. A LONG-STANDING CONJECTURE !
PDF
77
Chapter 5. Pompeiu property in non-compact symmetric spaces
PDF
78
Chapter 6. Symmetric spaces of the compact type
PDF
82
Chapter 7. Pompeiu property for two-sided translations on groups
PDF
85
Chapter 8. CONCLUDING REMARKS
PDF
88
Bibliography
PDF
89
Article LINK SIGNATURE, GOERITZ MATRICES AND POLYNOMIAL INVARIANTS
PDF
93
Abstract
PDF
93
Chapter 1. P-SKEINS AND SIGNATURE
PDF
93
Chapter 1.1. PRELIMINARIES
PDF
93
Chapter 1.2. Signature and oriented skeins
PDF
95
Chapter 2. Goeritz matrices and the F-polynomial
PDF
100
Chapter 2.1. The Goeritz matrix and graph of a link
PDF
100
Chapter 2.2. Kauffman's polynomial and the Goeritz matrix
PDF
104
Bibliography
PDF
113
Article TOPOLOGICAL SERIES OF ISOLATED PLANE CURVE SINGULARITIES
PDF
115
Abstract
PDF
115
Chapter 1. Introduction
PDF
115
Chapter 2. SPLICING AND SERIES
PDF
117
Chapter 3. The definition of topological series
PDF
121
Chapter 4. The spectrum of a plane curve singularity
PDF
125
Chapter 5. Invariants in the case that f has only transversal $A_1$ singularities
PDF
130
Chapter 6. Equations
PDF
132
Appendix
PDF
136
Bibliography
PDF
140
Article VALUES OF QUADRATIC FORMS AT INTEGRAL POINTS: AN ELEMENTARY APPROACH
PDF
143
Appendix Appendix Trajectories of unipotent flows and minimal sets
PDF
162
Bibliography
PDF
173
Article ON THE INVERSIVE DIFFERENTIAL GEOMETRY OF PLANE CURVES
PDF
175
Chapter §1. Introduction
PDF
175
Chapter §2. THE INFINITESIMAL COXETER INVARIANT
PDF
178
Chapter §3. The four vertex theorem in $R^2$
PDF
181
Chapter §4. A GENERALIZATION OF THE INVARIANCE OF ω
PDF
181
Chapter §5. A GENERALIZED FOUR VERTEX THEOREM
PDF
184
Chapter §6. Normal form and inversive curvature
PDF
184
Chapter §7. The canonical map g:γ→G
PDF
187
Chapter §8. Relation with Cartan's moving frames
PDF
188
Chapter §9. LOXODROMES
PDF
189
Chapter §10. The complex of geometric forms on a curve in $R^2$
PDF
192
Bibliography
PDF
196
Rubric COMMISSION INTERNATIONALE DE L'ENSEIGNEMENT MATHÉMATIQUE (THE INTERNATIONAL COMMISSION ON MATHEMATICAL INSTRUCTION)
PDF
197
Chapter ASSESSMENT IN MATHEMATICS EDUCATION AND ITS EFFECTS
PDF
197
Chapter DISCUSSION DOCUMENT
PDF
197
Chapter Background and outline of the study
PDF
197
Chapter Call for papers
PDF
205
Obituary GEORGES DE RHAM 1903-1990
PDF
207
Bibliography
PDF
213
Article CONTACT GEOMETRY AND WAVE PROPAGATION
PDF
215
Chapter §1. Basic definitions
PDF
215
Chapter §2. Characteristics
PDF
222
Chapter §3. Submanifolds
PDF
235
Chapter §4. Legendre fibrations and singularities
PDF
246
Chapter §5. Legendre varieties and the obstacle problem
PDF
252
Bibliography
PDF
265
Article YANGIANS AND R-MATRICES
PDF
267
Chapter 0. Introduction
PDF
267
Chapter 1. Yangians
PDF
271
Chapter 2. Highest weight representations
PDF
276
Chapter 3. A COMBINATORIAL INTERLUDE
PDF
280
Chapter 4. Classification
PDF
283
Chapter 5. R-MATRICES AND INTERTWINING OPERATORS
PDF
294
Chapter 6. CONCLUDING REMARKS
PDF
299
Bibliography
PDF
302
Article EXTERIOR ALGEBRAS AND THE QUADRATIC RECIPROCITY LAW
PDF
303
Abstract
PDF
303
Rubric
PDF
304
Bibliography
PDF
307
Article THE HADAMARD-CARTAN THEOREM IN LOCALLY CONVEX METRIC SPACES
PDF
309
Chapter 1. Introduction
PDF
309
Chapter 2. Conjugate points
PDF
311
Chapter 3. Proof of Theorem 1
PDF
315
Chapter 4. COHN-VOSSEN'S THEOREM AND SPACES WITHOUT CONJUGATE POINTS
PDF
317
Bibliography
PDF
320
Article THE DISTANCE BETWEEN IDEALS IN THE ORDERS OF A REAL QUADRATIC FIELD
PDF
321
Chapter 1. Introduction
PDF
321
Chapter 2. Basic definitions
PDF
322
Chapter 3. The homomorphism θ
PDF
330
Chapter 4. Reduced ideals
PDF
335
Chapter 5. Lagrange's reduction procedure
PDF
337
Chapter 6. Periods of reduced cycles
PDF
343
Chapter 7. COMPARISON OF DISTANCES BETWEEN CORRESPONDING IDEALS IN DIFFERENT ORDERS
PDF
350
Chapter 8. GAUSS'S REDUCTION PROCESS
PDF
352
Bibliography
PDF
357
Article THE ROLE OF GAMES AND PUZZLES IN THE POPULARIZATION OF MATHEMATICS
PDF
359
Abstract
PDF
359
Chapter popularization of mathematics
PDF
359
Chapter Games and mathematics
PDF
362
Chapter Games and puzzles as a means for popularization
PDF
364
Bibliography
PDF
368
Article CATÉGORIES DÉRIVÉES ET DUALITÉ, TRAVAUX DE J.-L. VERDIER
PDF
369
Chapter 1. Catégories dérivées
PDF
369
Chapter 2. Dualité
PDF
378
Bibliography
PDF
388
Bibliography
PDF
389
Bibliography
PDF
390
Chapter Note sur la bibliographie
PDF
391
Article MANIN'S PROOF OF THE MORDELL CONJECTURE OVER FUNCTION FIELDS
PDF
393
Chapter I. The Theorem of the Kernel
PDF
393
Chapter 0. Review of connections and hypercohomology
PDF
393
Chapter 1. Extensions of connections
PDF
395
Chapter 2. The Gauss-Manin connection
PDF
398
Chapter 3. Sections of a family and extensions of connections
PDF
399
Chapter 4. Abelian schemes
PDF
402
Chapter 5. The algebraic proof
PDF
403
Chapter 6. The analytic proof
PDF
409
Chapter II. PICARD-FUCHS EQUATIONS
PDF
412
Chapter 1. PICARD-FUCHS DIFFERENTIAL EQUATIONS
PDF
412
Chapter 2. PICARD-FUCHS COMPUTATIONS
PDF
415
Chapter III. MORDELL'S CONJECTURE
PDF
417
Chapter 1. Sets of bounded height
PDF
417
Chapter 2. Lang-Siegel towers
PDF
418
Chapter 3. COROLLARIES OF THE THEOREM OF THE KERNEL
PDF
419
Chapter 4. Proof of Mordell's conjecture
PDF
420
Appendix Appendix: Chai's proof of the Theorem of the Kernel
PDF
424
Bibliography
PDF
427
Rubric
PDF
Rubric BULLETIN BIBLIOGRAPHIQUE
PDF
1
Rubric BULLETIN BIBLIOGRAPHIQUE
PDF
27
Back matter
PDF
Back matter
PDF