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The stabilizer of the expression y = x*/24 + O(x®) has order 2 and is
generated by

7> — 7.

It follows that the non-degeneracy of a vertex is an invariant of inversive
geometry.

§7. THE CANONICAL MAP g:y =G

The considerations of the last section allow us to define a canonical map
g,:7 — G for vertex free curves y by mapping a point pey to g,(p) € G, which
is the unique group element such that g,(p) ' sends p to the origin and
g,(p) ~'(y) has oriented contact of order 4 with the standard curve y = x3/6
at the origin. We note that if ¥’ = A(y) for some AeG, then obviously
g, (h(p)) = h(g,(p)). Of course altering the initial choice of the origin and
the axes used there to describe the model will alter g,, but only by right
multiplication by some fixed element of G. If 6: (a, ) = Cis a parametrization
of the curve by Euclidean arc-length s, and o¢'(s) = e®, then the curvature
of the curve at o(s) is 0'(s) = k(s), and we have the following explicit formula
for g.

(1 © e®/2 () 1 0\ (|x’|-40
&) =1o 1 0 e-®2] \ (k" —2ikk")/4x’ 1]\ 0 || 14

The first two factors are Euclidean motions whose inverse puts y into oriented
first order contact with the oriented x-axis. The rest improve the order of
contact to 4 as in §6. It is convenient to regard g as a function of the inverse
arc-length v. Now g(v) is a curve on the Lie group G, with tangent vector dg/dv

at g(v). Left translation by g(v) ~! moves this tangent vector to the origin to
yield

(7.1 c(v) = g(v) ! o8

dv
which is a vector in the Lie algebra s/, (C) of 2 by 2 complex matrices of trace
zero. As v varies c(v) inscribes a curve on this Lie algebra. Indeed it is well
known (e.g. [13], p. 71) that this curve determines the original curve g(v) up
to left translation by an arbitrary constant element of G. Here is an explicit

formula for the curve c(v). It is easy but rather tedious to verify it.
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c(v) 01 here 7 = - (k) (Q@-1)
= ,  Wwher = —sgn —
(7o) o e 73

and Q1is asin §6. It follows that the inversive curvature Q determines the curve
up to an orientation preserving inversive automorphism.

§8. RELATION WITH CARTAN’S MOVING FRAMES

Let us sketch a more usual way of obtaining a Frenet lift. The connection
with the Schwartzian described here can be found, for example, in Cartan’s
book [4] and very succintly in [7]. The canonical line bundle

p:§—~PYC)
has a pedestrian description (away from the zero-section) as:

(z1,22) €& — {zero section} = C? — {0}
i) 2

Z
Z = 2o [z1, 2] P I(C)
V)

Let o:(a,B)>R>*CP!(C) be a curve; we choose an arbitrary Ilift
6 = (2:1(t), (1)) and set fy = A0, f2 = f1 = Mz1,22) + MZ1, Z2), where -

d
= ;1— Thus (f, f») is a frame in C2?. We try to choose A so that this
t

frame has area 1. The condition on A is:

1 = Area(f, f2) = Area(Mzi(1),22(1)) , MZ1, 22))
= Xz(Zléz—Zzél), or 1 = — (Kzz)zé .

l

Thus A = - will do, and we have
Zzl/Z i
f = = (Z: 1) ’
| I/Z
x 1 ... e
and f,=f = —Eizz*”(z, 1) +iz"%z,0) .

p 3., l ..
Finally a calculation shows that f, = Sf;, where S = 1 ey =X =5 g2& =1L,

Of course S is the Schwartzian derivative which this calculation interprets
as a ‘“‘curvature’’ of o. Now the Schwartzian S depends on the particular
parametrization which is used for the curve. For our purposes we wish to use




	§7. The canonical map g:γ→G

