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certainly, as we shall see, an indecomposable EP f for which ¢, has a
cubic factor lies in C, but whether this extends is unclear. More generally,
in connection with EPs two questions naturally arise.

(1) Are all indecomposable EPs over F, semi-factorable ?
(i) Are all indecomposable semi-factorable EPs C-polynomials?

I would tentatively suggest that the answer to (i) might be “yes” but
hesitate to speculate on the answer to (i).

2. THE SEMI-FACTORABLE FAMILIES

The classes C;, C, and C; are described briefly (see [8], for example).
More detail is given for C,.

Cy. Cyclic polynomials. These have the form c,(x) = x", where p } n.
Obviously ¢, is factorable and is an EP (or PP) if and only if gc.d.
(n, g—1) = 1. Trivially, of course, ¢, is indecomposable over F , i and only
if n is a prime (#p).

C,. Dickson polynomials. For any n(>1) with p tn and any a(%0)
in F,, a typical member g,(x, a) has the shape

) = 5 " (”Ti>(—ayxn-2f.

As in [13], over Fq we have
[n/2]

(2.1) Pg, (%, ¥) = (v—x) [] O —oxy+x2+pa),
i=1

where o; = (' + (7 B, = ' — {7, ¢ being a primitive nth root of unity in
F,. Since each of the quadratic factors in (2.1) is irreducible, g, 1s not factorable.
Yet it is semi-factorable. Set R(x) = g,(r(x), a), where r(x) = x + ax~ .
Then, by equation (7.8) of [8],

R(X) = Tan(ca(x)) = x" + (a/x)"

and hence

Pr(X, y) = H(y C'x) (xy— C‘)
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Thus R is factorable and g, semi-factorable.
From (2.1) we can easily deduce the familiar facts that g, is an EP
or PP if and only if (n, g>—1) = 1 while the identity

G, m(X, @) = Gul(gmlx, a), a™)

((7.10) of [8]) yields the conclusion that g,(x, a) is indecomposable over F,
if and only if n is a prime (#p).

C5. Linearised polynomials. These have degree n = p*(k>1), a typical
specimen having the form

(2.2) L(x) = i a;x? |
i=0

where ag, ..., ar € F, with apa, # 0. Because ¢,(x, ) = L(y — x), evidently L
is factorable and is an EP (or PP) if and only if L has no non-zero
roots in F,. Suppose that L is given by (2.1) but that, for some
s 2 1,a; = 0 unless s|i. Then, for any ae F,; and any Bqu, we have

(2.3) L{ox+B) = al(x) + B,

and we refer to L as a p’-polynomial (cf. [&], § 3.4).

C,. Sub-linearised polynomials. These polynomials (for whom a better
title is requested) had their genesis in [1]. We construct a sub-linearised
polynomial S(x) of degree n = p(k>1) as follows. Let L in C; be a
p*-polynomial of degree p* and d(>1) be an integer such that (p})d|p® — 1.
Then L(x) = xM(x? for some M(x) € F,[x] and we set S(x) = xM?%x). Thus

S(x%) = L),
or, equivalently,
(2.4) S(ca) = ciL) .

The polynomial S as defined above will also be referred to as a (p®, d)-
polynomial. We note that, by (2.4) and Theorem 1.1 of [1], S(c,) 1s factorable
and hence S is semi-factorable.

We remarked in [1] that a (p%, d)-polynomial S(x) = xM%x) for which M
has no roots in F, is an EP provided (d, p*”?—1) = 1. In fact, the last
condition is unnecessary and we state the definitive result as follows.

TueoREM 2.1. Let S(x) = xM%x) be a (p%, d)-polynomial in F[x],
where d|p° — 1. Then
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(i) the irreducible factors of ¢©§ over F, all have degree d ;

(i) S is an EP over F, if and only if M has no roots in F,.

q

Proof. (i) Since d|p* — 1, then {, a primitive dth root of unity, lies
in F,., and the non-zero roots of L(x) (=xM(x%) can be arranged in the
form {¢%y,,j=0,.,d—1,h=1,.., N}, where N = degM = p* — 1/d and
{y& h=1,.., N} is the set of roots of M. By (2.3) and (24), we have

Ps(x?, y9) = @ra(x, y)
d—1

= ] (L»)—CLx)

i=0

:ﬁuww

s;,g.
>—AO

”:.— O:j|

ﬁ fj (y— sz CJYh)
NI

(2.5) = (y*—x9) Cy—Cx—74).

Now, for any v in Fq, it is clear that the polynomial

d—1 d—1 . ‘
1:[0 EO Gy —8x—7v)

lies in F,[x% %] and therefore may be written P,(x% y%), where P.(x, )
e F [x, y] has degree d (in both x and y). We claim that P, is irreducible.
For suppose P.(x,y) has a non-constant factor Q(x,y) in F,[x, y]. Then
O(x?, y9y must be divisible by (ix — {/y —+y for some i and j with
0<ij<d-— 1 0Ky, however, is invariant under x — (*x, y — (’y for
any u, v. It follows easily that Q(x, y%) is divisible by P(x?, %) and we deduce
that Q = P,, as required. Consequently, by (2.5),

X y) n PYh(x y

is the prime decomposition of ¢ & over l_Tq and (1) is proved.
(i) Continuing with the same notation, we have

d—1

Px4yY) = (=D T] (v*—=(—C%)%

i=0

= (DY —d(y (=0 D)
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It follows that, if y“ is a root of M and P,(x, y) lies in F,[x, y], then
both y** and y**~" are members of F,, whence y' € F ;- This means that S
is an EP unless M has a root y* in F,. The converse is clear and the
result follows.

3. SUBSTITUTION POLYNOMIALS WITH A QUADRATIC FACTOR

Throughout, let f(x) be an indecomposable polynomial in F,[x] for
which @/(x, y) is divisible by an irreducible quadratic factor Q(x, y) in
I_?q [x, y]. Denote by Q* the factor of ¢, irreducible over F, itself, that is
divisible by Q.

Lemma 3.1.  Gal Q*(x, y)/F (x) has order deg Q* and so is regular as a
permutation group on the roots of Q*(x,y) over F,[(x) (see [12], p. 8).

Proof. Let F,a be the field generated over F, by the coefficients of
— d

Q (in F,). Then Q* = [[ Q;, where Q,, .., Q, are the distinct conjugates
=1

of Q obtained by applying the d F -automorphisms of F . to the coefficients
of Q. Thus deg Q* = 2d. But, evidently, the splitting field of Q* over F (x)
can be constructed by adjoining the splitting field of Q to F,a. Its Galois
group therefore has order 2d as required.

With Lemma 3.1 as a spur, we formulate some group theory in terms of
polynomials (see [2]). For an indecomposable polynomial g(x) in F,[x],
G = Gal(g(y)—z/F q(z)) is primitive. Moreover, the orbits of a point stabiliser
G, of G correspond to the irreducible factors of ¢, over F_; in particular,
when P(x, y) is such a factor of ¢, so also i1s P(y, x) and the associated
orbits are “paired” (see [12], § 16). The following result is therefore a

(slightly weakened) version of [12], Theorem 18.6.

LEMMA 3.2. With g and P as above, suppose that both Gal P(x, y)/F (x)
and Gal P(y, x)/F (x) are regular. Then Gal @ (x, y)/F (x) = Gal P(x, y)/F (x).

COROLLARY 3.3. With f and d asin Lemma 3.1, @f isa product
over K, of irreducible polynomials of degree 2d, each of which is a product
of irreducible quadratics over F,. Furthermore, all these quadratics have a
common splitting field over l_Tq(x).
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