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402 R. F. COLEMAN

({COU_ dx/sguts{fuv—(gu— gv)})

for some one-chain {gy} with coefficients in 4’y such that

s*fuv = w* fu v = s*(@gy—gy) and *fuyv=0*fuy=1*gu—28y) .

Let ny = wy — dgy. Now

s*ny — s*ny = s*dfuy v —s*dgu—gv) =0

by the conditions that {gy} must satisfy and the fact that ({wy},{fv v}) is a
hypercocycle. Similarly, #*ny — #*n, = 0. Let 1, and n; be the the elements of
Qfg determined by the cocycles {s*ny} and {7*ny} respectively.

Now to compute VA([w]) we must lift ®, — dx,sgy to a section of Q/IY,Z.
Let e,y and e,y be elements of Zx(U) such that s*e,, = 11*e, y = 0,
t*e, y = 1 and s*e, y = 0. These elements exist since Z is étale over S. Then
Nu — (es,uMs + €, yM,) 1s such a lifting. To compute VA([w]) we must take the
hyper-coboundary of ({ny— (&, vns + e,vM)}, {fu.v — (gu—8&n}). Tt is

({Tls® dxsses,u+ M@ dxsse,ut, (N @ (es,u—ée,v) + @ (e,uv—e, )}, O) .
The class of this hypercocycle is the image of
N -M€Qf in QiR Hpy(X/S,Z)

(recall that we’ve determined a map of K[S] into HLR(X/S, Z)). Hence

Vha([o]) =n, — ;.
The proposition now follows from the fact that

({ns + ds*gu}, {s*gu — s*gv}) = u*({ou}, {fuv})

and

(n, + dt*gu}, {t*gu — t*gv}) = v*({ou}, {furv)) . U

COROLLARY 1.3.4. If, in the above, u and v are constant, then
M(s, t) = 0.

4. ABELIAN SCHEMES

Suppose now that A is an Abelian scheme over S. Let m: A XsA — A be
the addition law and e the zero section. For s, t € A(S), let M(s) = M(e, s) and
s+t =m(s,1).

THEOREM 1.4.1. The map M from A(S) to Ext(H})R(A/S),K[S])
is a homomorphism.
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Proof. Let s and ¢ be elements of A(S). Define the map g: 4 = A by
g =mo(id, tof)(g(x) = x + 1(f(x))). Then g*:H}p(A/S) = Hpp(A/S) is
the identity so that g*M(e,s) = M(e,s) on the one hand and
g*M(e,s) = M(t,s + t) by Proposition 1.3.2 on the other. Hence,

M(s) + M(t) = M(e,s) + M(e, ) = M(t,s + ) + M(e,t) = M(e,s + 1)
by Proposition 1.3.1. [

Let (B, 1) denote the K(S)/K trace of A (see [L-AV]). In particular, B
is an Abelian scheme over K and t:B X spec(K(S)) = Ak is @ homomor-
phism. Since K has characteristic zero T is a closed immersion. Philosophically,
B is the largest constant Abelian subscheme of Aks) defined over over K. The
morphism 1 extends uniquely to an S-morphism T:B X xS — A. It follows
that B(K) maps naturally into A(S). We call the elements s of A (S) such that
ns 1s in the image of B(K), the constant sections of A/S.

PROPOSITION 1.4.2. The kernel of M contains all constant sections
of A/S.

Proof. Let s be a constant section of A/S. Then there exists a positive
integer n such that ns = t1o(¢ X id) where ¢t € B(K). Hence it follows from
the above theorem, Proposition 1.3.2 and Proposition 1.3.4 that
nM(s) = M(ns) = M(T(t X id)) = T*M(t X id) = 0. Since

Ext(H pg(4/5),K[S])

is uniquely divisible, by Corollary 1.1.2, the proposition follows. ]
We wish to prove the conserve of this proposition. I.e. we wish to prove:

THEOREM 1.4.3.  The kernel of M is precisely the group of all constant
sections of A/S.

We will give two proofs of this result. The first is Algebraic. The second
is analytic and is essentially a reformulation of Manin’s proof based on
remarks by Katz [K2] in a letter to Ogus.

5. THE ALGEBRAIC PROOF

a. Differentials with logarithmic singularities

(See [K] §1.0). Suppose X is a smooth scheme over a scheme 7 and Z
is a hypersurface in X whose irreducible components are smooth over 7 and
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