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TOPOLOGICAL SERIES

OF ISOLATED PLANE CURVE SINGULARITIES

by Robert Schrauwen

Abstract. For plane curve singularities, a topological definition of
series of isolated singularities, based on the Milnor fibration, is given. Several

topological invariants, including the spectrum, are computed.

1. Introduction

Let /: (C2, 0) -* (C, 0) be a plane curve singularity, in other words, let /
be an element of the ring of convergent power series C{x, y}. Assume / # 0.

Because C{x, y) is factorial, we can write / /f1 '*• f7r with all /,-

irreducible and whenever / j, there is no unit u with /; ufj. The

branches of / are the curves ffx, y) 0.

It is well-known that for s > 0 small, the intersection L / _1 (0) n S\ of
the curve X: f 0 and a small 3-sphere of radius 8 is a link, consisting of
r components corresponding to the branches of /, and that this link determines

the topological type of / (or of X). Moreover, the map f/\f\ : S\\L Sl is

a fibration, called the Milnor fibration.
It is natural to consider L as a multilink, i.e. a link with integral

multiplicities assigned to each component. We use the notation
L mxS\ + • • • + mrSr, where S, n S3e. These multiplicities
reflect in the behaviour of the Milnor fibre F (i.e. a typical fibre of the Milnor
fibration, which is a Seifert surface bounded by L) near S,: F approaches 5,

from ml directions (see [EN]).
The Milnor fibration is important in our discussion of topological series

of isolated singularities. A striking feature of Arnol'd's series A, D, E, J, etc.
(see [AGV]), is that they are somehow related to a non-isolated singularity.
For example: Dk: xy2 + xk~l is related to D^-.xy2 and Yr>s:x2y2 + xr+A

+ y5+4 to Foo,oo:x2y2. This relationship is still not completely understood.
In this paper we give (for plane curve singularities) a topological definition

of series (definition 3.1), as follows. A singularity belongs to the topological



116 R. SCHRAUWEN

series of a certain non-isolated singularity f, if its Milnor fibration arises from
that of / by removing tubular neighbourhoods of the multiple components
and putting something back in such a way that the result is the Milnor fibration
of an isolated singularity.

With this definition in hand, we first investigate which isolated singularities
belong to the series associated to a given non-isolated singularity. For example,
it follows from theorem 3.4 that Dk{k^A), is the only possibility when we

start with Dw (cf. [AGV], p. 243).
What interests us most is how the topology behaves within the series and

with regard to the non-isolated singularity. We compute the Milnor number,
the characteristic polynomial of the monodromy, and the spectrum of the
series. For example, we will find in proposition 5.2, that the Milnor number
of a series belonging to a singularity with transversal type increases

linearly with steps of one, just as in the familiar case of the Arnol'd series.

Many of these topological invariants have already been considered in the case

of series of the form / + zlk, with / a general linear function. This was

initiated by Iomdin (see [Lê]). But observe that in general such a series is a

very small subseries of our topological series belonging to /.
In the last section we consider the question what we have to add to / to

get a required element of the series. For instance, to Wfœ: (y2-x3)2, one

may add xA+qy and x3+qy2 for q ^ 1 to obtain the whole series W*p. In the

case that / has only transversal A\ singularities, we obtain explicit conditions

(theorem 6.5), mainly involving intersection properties.
We use the link I of / to describe the topological type. There is a nice

notation for algebraic links (i.e. links arising as the link of a plane curve

singularity) by means of graphs that we will call EN-diagrams after D. Eisen-

bud and W.D. Neumann, who developed these graphs in [EN].
The EN-diagrams and the underlying concept of splicing, which is due to

Siebenmann and studied extensively in [EN], are used to state our results and

proofs. For example, the definition of topological series is very clear in these

terms: the corresponding non-isolated singularity is visible as a subdiagram of
the diagram of the series. We will only recall the main points of splicing and

EN-diagrams in the next section. For details we refer to [EN] and [Ne], where

one can also find how to compute several familiar topological invariants from
the EN-diagram. A method of computing the spectrum and a splice formula
for spectra are of independent interest and they are given in section 4. We will
show that the spectrum of a singularity is 4'almost additive" under splicing.

Our definition of topological series presents a natural idea behind couterex-

amples (found by J. Steenbrink and J. Stevens) to the spectrum conjecture (the



ISOLATED PLANE CURVE SINGULARITIES 117

spectrum determines the topology of a plane curve singularity) and the

equivalent — conjecture involving the real Seifert form (cf. [SSS]). Also,

A. Neméthi used the idea of topological series to define his topological trivial

series [Nm].
In the Appendix, we have included the EN-diagrams and some invariants

of the Arnol'd series.

Acknowledgments. I wish to thank Dirk Siersma and Jan Stevens for

their remarks and help.

2. Splicing and series

2.1. It is clear that singularities occur in series. The simplest series have been

given names, such as A, D, J, etc., by Arnol'd. But how to define a series

is unclear. One looked at deformation properties such as adjacencies, etc.,

because the goal is to define what a series means analytically. A proper

analytical description can be given for series of the form / + lk, where / is

a sufficiently general linear form, see the work of Iomdin and Lê, [Le]. But

already in the case of Arnol'd's series, one finds that they are not of the

Tomdin-type'. Some series are multi-indexed, such as

Yr,s:x2y2 + V+4 + L+4

and others, such as W* :

w*m-y (y2-*3)2 + x4+qy

^1,2q: (y2-x2)2 + x3 + gy2

make smaller steps than a linear series.

However, the most apparent properties that hold a series together, are the

topological invariants. For example, the Milnor number within Arnol'd's
series, increases with steps of 1. Therefore it is worthwhile to go not as far
as an analytical definition, but to look for a topological one.

Another property is that, as already mentioned in the Introduction, series

of isolated singularities are clearly related to non-isolated singularities, and
that the hierarchy of these non-isolated singularities reflects the hierarchy of
the isolated singularities. This relationship is also not completely understood.
Our topological definition, which works for plane curve singularities, makes
clear which isolated singularities belong to the series of a given non-isolated
singularity.
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2.2. The motivation for our definition comes from the topology of the link
exterior. We first need to recall some facts of splicing and EN-diagrams.

Let / e C{x, y) be a plane curve singularity, and L the link of / embedded

in S2. L completely describes the topological type of /. There is a notation
for L by means of a weighted graph, that we call an EN-diagram, introduced

by Eisenbud and Neumann [EN]. The EN-diagram of / is closely related to
the resolution graph of / (the dual graph of the good minimal resolution).
In fact, as a graph, the EN-diagram is equal to the resolution graph with all
linear chains contracted. We will call the vertices of valence 1 dots, and the

vertices of valence at least 3 nodes. The arrows correspond to the components
of L (or the irreducible components of /), and they have a multiplicity, equal

to the multilink multiplicity. The nodes, dots and edges have topological
meanings as well, we refer to [EN] for details. There are conversion rules from
EN-diagram to resolution graph and back, see [EN], chapter V.

It is known that M S3\N(L) (where N(L) is a open tubular
neighbourhood of L) is a Waldhausen manifold, see [EN] or [LMW]. This

means that there is a decomposition of M in Seifert manifolds (the basic

building blocks). The decomposition can be found in several ways, e.g. by

means of the resolution of / or the polar decomposition of /. This is explained
in detail in [LMW].

2.3. Glueing two pieces of this decomposition together uses the operation of
splicing, due to L. Siebenmann and studied extensively in [EN]. Consider two

(multi)links Lx mxS{ + L{9 L2 m2S2 + Lf embedded in (separate copies

of) S3. Let TVj, N2 be small tubular neighbourhoods of Su S2. Then the splice

I of Li and L2 is the link

L — L j + L 2

embedded in the homology sphere

L - ud(S3\N2)

the boundaries dNx and dN2 of the tubular neighbourhoods glued meridian to

longitude and vice versa. The EN-diagram T of L arises from the EN-diagrams

of Lx and L2 by replacing the two arrows representing Sx and S2 by an edge

(which represents the splice torus dN{ 9N2):

ÔNX dN2 dN
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If we impose two conditions, described below, then L is again an algebraic

link in S\

Splice Condition

i.e. m\ has to be equal to the linking number of S2 with the other components
of L2, counted with their multiplicities (and similarly for m2).

Linking numbers can be computed easily from the EN-diagram, see [EN],
section 10.

If the splice condition holds, then L is again a fibred link. In fact it forces

that the Milnor fibres cut the splice torus in an (mi9 m2)-torus link.
The second condition is a condition on the weights of the EN-diagram. It

follows from [EN], Theorem 9.4, that we need the following condition in order
that L is again algebraic:

Algebraicity condition

(a) The resulting link can be obtained by repeated cabling, and

(b) If the EN-diagrams of both links near the splice arrows are as follows:

then the inequality a0ß0 > cq •• • arßi • • • ßs must hold.

2.4. We now return to the ideas behind our definition of series. A typical
series is the series consisting of Wf2q_l and W*2qy introduced earlier. Their
EN-diagrams are:

mi lk(S2, L2) and m2 lk(Si, L[)

v 11+
2 2 2 1

It is clear that this is the result of splicing something to

'—(2)
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which is precisely the EN-diagram of (y2-x3)2. In terms of the resolution:

take a resolution of f(x, y) (y2-x3)2, and deform the double component

slightly into an Ap, we then get a — partial — resolution of one of the

W*p. In terms of the splice decomposition: Consider the splice decomposition

of a representative fp of W* It consists of two pieces, one of which
is the complement of the link of /, wheras the other depends on the parameter

p. This is equivalent to the statement that the Milnor fibration of fp results

from the Milnor fibration of / by removing a tubular neighbourhood of the

link component, and replacing it by something else in such a way that the result
is the Milnor fibration of fp and leaving the rest unchanged. We will see later
that this process will not give more than only the series WfiP. The link of fp
is a (2, 6+p)-cable on the link of the reduced singularity /R(x, y) y2 - x3,

which is a (2, 3)-torus knot.
If we have a singularity with more than one double component, we can

splice something to each of the components independently. We see this with
our example Yr>s, its EN-diagram is the result of splicing two pieces (one

depending on r and one on s) to (2) <-> (2), the EN-diagram of Yœ,O0:x2y2.

If we have a singularity / with a component of multiplicity greater than

two, then we can get non-isolated singularities with lower multiplicities when

we splice something to it. The simplest example is f(x, y) y3. In this case,

the Milnor fibre consists of three discs. If we want to replace a small tubular
neighbourhood of the knot with something else, in such a way that the result
is again an algebraic link, we first of all have to take care that the fibres in
the solid torus that we put back in, approach the boundary in a (3, 0)-torus
link. It is intuitively clear that this is only possible with 3 components of
multiplicity 1 or with 1 single and 1 double component. Indeed, in 3.8 we will
see, that this gives the possibilities E6k, Eèk+U E6k+2 and Jktand if we

apply the same procedure again to Jkt00, we get the series Jk>p. In Arnol'd's
list we find all these singularities in the series of jv3.

In the Appendix we have included the EN-diagrams of all Arnokd series,

and one sees that they all arise from splicing something to the link of the

corresponding non-isolated singularity.
These examples motivate our definition of topological series, which will be

presented next.
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3. The definition of topological series

3.1. Definition. Let / e C{x., y} have a non-isolated singularity. The

topological series belonging to / consists of all topological types of isolated

singularities whose link arise as the splice of the link of / with some other link.

So what we want is that the Milnor fibration of an element of the series

differs from that of / only in small neighbourhoods of the components with

higher multiplicities.
In terms of EN-diagrams: All arrows in the diagram of / with

' (m) ' (m > 1) in front of them, have to be replaced by subdiagrams with arrows
with multiplicity 1 only, taking the splice and algebraicity conditions into
consideration. The advantage of using EN-diagrams instead of resolution

graphs can be observed here: it is not easy to describe the linear chains that
arise in the resolution graphs of the isolated singularity.

Below, we investigate what possibilities there are to replace an arrow
' {mf by something else, in the sense of the preceding remarks. It will follow
that the topological series do not contain more singularities than we want them

to. The method is purely combinatorial. We start with m 2 and end with
a formula giving the number of such possibilities.

3.2. Notation. If E is an EN-diagram, then we denote by A(E) the set of
arrow-heads of E, by 7V(T) the set of non-arrow-heads (dots and nodes) and

by V(T) — A(T) u N(T) the set of all vertices.
The corresponding (multi)link is L L(E) £ r rriiSi, and for

ieN(T),Si will denote the corresponding virtual component (cf. [EN]).

3.3. The case of a double component.

Suppose f eJ? has link L £ ,W)m,S,. Suppose one of the
components, S«, has multiplicity 2, i.e. m0 2. Near the arrow 0, the EN-
diagram F of Llookslike this:

where the boxes may denote anything and the arrow is o e A (E) (the second
picture is only defined when r •-> (2)). Define the following numbers:
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2(Xj • • as
N0 where [ ] denotes integral part

a

c£ ///, lk (.S,,
jeA(T),j* o

i.e. c is the linking number of S0 with the other components, counted with
their multiplicities.

Note that we work with minimal EN-diagrams, which means that redundant

dots (those attached to a node with weight 1) must be removed by using
theorem 8.1 of [EN].

We now show what possibilities there are to replace the double component,
in the sense of the remarks at the beginning of this section. Let

Ak det (tl-h*)
be the characteristic polynomial of the monodromy on Hk(F), and let

A* A]/A0. This function is related to the zeta function L# of the

monodromy (cf. [A'C]) by the relation £,/(/) t~liF)(where %{F) is

the Euler characteristic of F).

3.4. Theorem. The only two (classes of) possibilities to replace a double

component, are:

A>i- JV/1»i

with N > Nq odd with N > Nq even

Furthermore, let A J be the A* of L L(T), and A* be the A*
of the new link. Then we have:

A5f(0 Aï(0 • 0"+c-(-l)")
In particular, the Milnor number is linear in N with coefficient one.

Proof. The EN-diagrams of the theorem can be regarded as being the

results of splicing the links L - L(T) L(f) and those defined by the EN-

diagrams T^v in the next figure, along the components S0 and the one with

multiplicity c, which we call S* with * eA(T'N). (Note that c can be zero, in

[EN] this has been given a natural interpretation).
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M (c) - */VTi

That the multiplicity must be c follows from one half of the splice condition.

The other half, 2 £ heA{rN)Jl** mh lie (Si, S'h), implies that these two

diagrams are the only two essentially different EN-diagrams with the required

property, for we want mh 1. For the first link the splice condition reads

'2 2* 1' and for the second '2 1 • 1 + 1 • 1\
Finally, the algebraicity condition gives N > N0.

The A* formula follows from [EN], theorem 4.3.

The last statement of the theorem implies that if L is not the unknot, the

Milnor numbers are related as follows:

We see for example that in case / is of type Aœ, the series is precisely the

whole ^4-series, and in case f(x, y) x2y2, the series is the complete doubly
indexed T-series.

3.5. Definition. We combine the two possibilities in one graph, where,

depending on whether N is odd or even, the first or the second graph of the
theorem must be substituted.

Observe that for N even, this represents the graph with two arrows and edge

weight N/2.

3.6. Remark. If a 1 or a 2 (see the figure at the beginning of this
section), then the case N N0 is also allowed, although then the diagram has
to be minimized by applying theorem 8.1 of [EN]. The monodromy formula
still holds.

3.7. Example. JktO0 has the equation f{x,y) y2(y + xk), its EN-diagram
is pictured below:

ITv Fco + N + c if Fis connected,

Pn hoo + N + c - 1 if F is not connected

2

V

1
(2)

t3k — 1

ar(t) (t- i)L_T
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We have c k and N0 2k. The series is J/ctP:y3 + y2xk + x2k+p,p ^ 0.

The case p 0 is the special case with N N0.

Jk,o

Q-

(N p + 2k)

We have

A"(/) (?-!) 0N+* - (-1)") - 1

t3 - 1

3.8. Higher multiplicities.
When we have higher multiplicities, exactly the same method can be used.

The splice condition gives us always a finite number of links that can be spliced
to the component with multiplicity m. We enumerate the possibilities when

m 3 and m 4. The names refer to the simplest case when f(x, y) ym.

In the diagrams, the splice edges have variable weight N, N having no common

factor with the other weights. Further omitted edge weights are equal to 1.

We only listed the diagrams with one node; some have an arrow of multiplicity
greater than 1, which should be treated again.

The four possibilities for m 3:

Jk,0 E6k,Eßk+ 2

The nine possibilities for m 4:

Xh,*

(2)

(3)

Wife,«

(2)

r
Eßk+i

Wl2/e + l(5)

W*
k,oo

(2)

Jk, o.

Wl2 fc( + 6)

(2)

(2)

(2)
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We now give a formula giving the number of essentially different diagrams

with one node and only multiplicities less than m, that can be spliced to a

component of multiplicity m.

Proposition. The number is:

Lp (m/g) +L E 1

q\m 1 C/j ^ /?! - 1 q\(m-p),q>\

where p (/?) is the number of integer partitions of n.

Proof. In such a diagram at most one dot appears, with at the node a

weight ^ 2. The number of edges emerging from the node must be at least 3.

There is at most one weight > 1. These are consequences of the algebraicity
condition. The splice condition demands that the total linking number of the

other components with the splice component equals m. The formula is now
a matter of counting.

For m ^ 15 we obtain:

m 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

number 0 2 4 9 12 22 27 42 54 76 91 134 159 211 263

This can be regarded as an upperbound on the number of symbols (such as

A, W*, etc.) needed to give names to all singularities of corank m.

4. The spectrum of a plane curve singularity

4.1. In this section we compute the spectrum of a plane curve singularity
from the EN-diagram and we prove a splice formula for spectra. This will be
needed in the next section, where we look at several invariants within a series.
First we need to define a number of polynomials.

4.2. We denote by F the Milnor fibre of a plane curve singularity /.
Definition.

A0 (t) char. pol. of H0(h) : H0{F) -> H0(F)

Ai (0 char. pol. of Hx (h) :Hl(F)-> Hx (F)

A*(0 - A^O/AoWeQCO
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Recall that Hq(F) and HX(F) have ranks d and p, respectively, where d equals
the number of connected components and \x the Milnor number.

We will also need the following polynomials. Let h*: H{(F) -» H\(F) be

the algebraic monodromy.

Definition:

(a) A1 is the characteristic polynomial of h* |Ker(/z* -1), where N is a

common multiple of the order of the eigenvalues of h*,
(b) A' is the characteristic polynomial of h*\lm(H\(dF) H\{F)).
The roots of A1 are the eigenvalues of the 2 x 2-Jordan blocks of /z*.

Observe that all polynomials defined above can be obtained easily from the

EN-diagram, cf. [EN], section 11 and [Ne].

4.3. The spectrum of a holomorphic function germ is a set of rational
numbers with integral multiplicities, denoted as DaeQ«a(oO (an element of
the free abelian group on Q), which can be regarded as logarithms of the
eigenvalues of the algebraic monodromy.

In the isolated singularity case we have that Aj(0 na 0~exp(27t/a))v
In the case of plane curve singularities, the spectrum numbers a satisfy

- 1 < a < 1, so for each eigenvalue X ^ 1 there are two possible a's with
X exp(27i/a).

4.4. We follow [St] for a brief description of the spectrum. For details we

refer to this source. Let /: (Cn+l, 0) -> (C, 0) be non-zero holomorphic function

germ, and denote by Fits Milnor fibre. The reduced cohomology groups
H*(F) H*(F; C) carry a canonical mixed Hodge structure. The semi-simple

part Ts of the monodromy acts as an automorphism of this mixed Hodge

structure, and in particular it preserves the Hodge filtration Write

GrV Sfp/ ff and let sp be the dimension of Gr^r.There are rational
numbers apj with 1 ^j^sp,n-p - 1 < apj ^ n - p such that

Sp

det(t Id - Ts; Grpy)exp( —27traw-))
I

Now we define Sp„(//*(F;C), Ts)£y(aw-) and:

Sp(/) t (- l)"-*Spfl(//*(iO, ^
k 0

It is clear that the spectrum is a finer invariant than the characteristic

polynomial. Steenbrink has proved for instance that the spectrum distinguishes



ISOLATED PLANE CURVE SINGULARITIES 127

all quasi-homogeneous isolated singularities (not only curves). But already

for plane curves the spectrum is not a complete invariant of the topological

type. Details of these facts can be found in [SSS].

4.5. Example. Consider f(x,y) xy(y2 - x3) and g(x,y) xy(y-x5).
Then / and g have the same integral monodromy (see [MW]), their

characteristic polynomial is Aj (/-1) (C1 -1). But

4.6. In [LS] a method is given to compute the spectrum of a reduced curve

singularity from the resolution graph. However, the non-reduced case follows
by the same methods. The results are closely related to those of Neumann on
the equivariant signatures of the isometric structure on Hi (F; C) given by the

monodromy and the sesquilinearized Seifert form, see [Ne]. Below we combine
the results of [LS] and [Ne] to obtain a purely topological method to compute
the spectrum.

For a root of unity X the signature o^ is defined in [Ne] and computed
as the sum of the of all the splice components. Consider a (very general)
splice component:

For the moment, put mt 0 for ie{k + 1,...,«}; so

m • • • âj - • • anmj

is the multiplicity of the central node. Choose integers ß/(l^yC«) with
ßyai - "àj"' an 1 (mod a,-) and put Sj (mj - ßym)/ay.

Remark. The numbers Sj are, modulo m, equal to the multiplicities of
the neighbour vertices in the resolution graph.

For a real number x, let {x} be the fractional part of x, and let

Sp(g)

wuu«
ll) + (ll)

ie{0,1,2,3,4,5}
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(<.v>)
{a} if x$Z

2

0 if xeZ
4.7. Proposition. Write X exp(2nip/q) with g.c.d. (p,q) - 1. Then

we have (see Neumann [Ne]):

co
0 if q does not divide m,

2 X 1=
i ((siP/q)) tf Q divides m.

4.8. For X a root of unity, let b0>x, bx, b[, b[ be the multiplicities of X as

a root of A0, Al5 A1, A', respectively (these polynomials have been defined
in section 4.2) Let o] be the signature as computed above. Write
e(a) exp(27ua). Sp (/) denotes the spectrum of /.

Theorem. Sp(/) £/za(a) with:

na

(be{a) + b'e{^ - Oe(a))/2

r - 1 (r # branches)

ife{a) — é(a) + Ge(a))/^ ~ ^0,e(a)

if - 1 < a < 0

if a 0

if 0 < a < 1

Proof. The proposition is a translation of the results of [LS], extended

to the case of non-reduced singularities. The difference with [LS] is, that the

roots of A', coming from the boundary, must be added to the weight one part,
and the roots of A0 must be subtracted from the weight zero part. In the

language of [Ne]: The and the -A^ part contribute to the negative

(weight 1) spectrum numbers, the A[ part contributes to the positive

(weight 0) spectrum numbers. The pairs of eigenvalues in the 2 x 2-Jordan

blocks are evenly distributed among the positive and negative parts. The roots
of A0 give only weight 0 spectrum numbers and they have negative

multiplicity.

4.9. A point which may cause confusion is the fact that in the definition of
spectrum reduced (co)homology is used. Therefore we define

Sp*(/) Sp(/) - (0). It is now possible to compare Sp* with A*: If
Sp*(Z) tan«(a)'then AW) ILcT-eCa))""-

Example. The A„ singularity has Sp* - |-j - (0). Recall that its

A* equals (t2 - 1)_1. Dœ has spectrum Sp (0), so Sp* 0 ('empty'). Let

f(x,y) (y2-x3) (y3-x2) be the A'Campo singularity. Then:
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&*</>-( 4)+2(-£)+2(-sMs)
+ 2(^) + (i)'

As with all isolated singularities, this spectrum is symmetrical (i.e. if (a) is in

the spectrum, then so is — a)). This is not the case with non-isolated

singularities. The asymmetry comes from the fact that the Milnor fibre can

have more than one connected component and from the fact that the

monodromy possibly acts non-trivially on the boundary of F. Both can be seen

in:

Sp*(x2y2) i)-(i)-2>

Observe that the A* of x2y2 is just 1, as with Dœ.

4.10. The À He behaves well under splicing: it is the product of the A* of the

splice components. Our topological way of looking at spectra asks for a
formula of splicing spectra. It appears that Sp* Sp - (0) is almost additive.

Example. In the example above we computed the spectrum of the

A'Campo singularity. Both splice components are isomorphic to that of the
non-isolated singularity x2(y2 -x3), which has spectrum:

Sp,-("i) + (""^) + (^)
(iT(

So we have to add both spectra, but instead of 21 — — 1 we have(4)
This is the result of the new edge in the EN-diagram, giving

a new 2 x 2-block.

4.11. Theorem. Let L be the result of splicing L' and L" along
components S' and S'\ respectively. Let m'(m") be the multilink
multiplicity of S'(S") and put q g.c.d.(m', m"). Then

q=\
Sp*(L) Sp*(Z/) + Sp*(L") + (i/q) — — i/q)

i 1
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Proof. If q 1 the theorem is clear. Now suppose q > 1. Consider the
behaviour of the polynomials A05A! and A' under this splice operation.
Splicing introduces a new edge E which contributes to A1 with a factor
tq - 1. This introduces new 2 x 2-Jordan blocks. Both splice components

have X) • / —I in their spectrum (coming from A'). But, as both eigen-
\ QJ

values in a 2 x 2-block are of different weight, L has X L / — I + — I

\ Q) \q)
instead of the sum of both parts. It is clear from theorem 4.8 that all other

parts of the spectra of L' and L" have to be added.

5. Invariants in the case
THAT / HAS ONLY TRANSVERSAL Ax SINGULARITIES

In this section we describe the topology and equation of a topological series

that belongs to a non-isolated singularity with only transversal Ai
singularities.

Throughout this section, / e J? is of the form f f\ • • • f2rg, with
irreducible and g reduced. The critical set of / is

E Zj u • • • u Zr, and the transverse type of / along E/ is Ax. For all

ze{l,...,r}, we have numbers N0i and ct as defined in section 3.3. Let
Ni > Noi (1 ^ ^ r). According to theorem 3.4, a typical element of the series

belonging to / has the topological type (EN-diagram) T*:

V- -Aii.

That is: each arrow of the EN-diagram T of / belonging to a double

component, is replaced in the way described in theorem 3.4. So varying the Ni
will give us the complete series belonging to /.

The following two propositions are easy consequences of theorem 3.4. Let

N (Nu Nr) and let fN have topological type T*.

5.1. Proposition. Let A*[/] and A*[/tv] be the A* of f and

fN respectively. Then:

A, [/;V] (o A* in in n (A+<. -(-iro.
/= 1
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5.2. Proposition. Let |x„ be the Milnor number of f and \iN that

of fN.Let no e {1,2} be the number of connected components of the

Milnor fibre of f. Then:

r

\In M-oo - Ho + 1 + E (M + c{)
i= 1

The numbers jioc, Po and L (1^/^f*) depend only on f. D

5.3. We conclude this list of topological invariants with the formula of the

spectrum of a series (see section 4).

Proposition. Define for 1 ^ ^ r: y, 0 if c-x is even and

ji 1/2 when Cj is odd. Write v,- Nj + c; Then:

sP(/n) sP(/) + t Ï1=1 y 0 \ 2 Vf J

Proof. One can use the proof of [St], theorem 4.5, but it is also possible

to work out the various cases using the method of section 4. For the proof
of [St], the following observation is needed. Let F- be a transversal slice

transverse to E, (in this case F\ consists of two points — the transverse type
is Ai). Let Tj\ H0(F- H0(F) be the monodromy of the local system over
the punctured disc E/\{0}. Then it is well-known that 7} is the identity if <y

is even and - identity if cx is odd. In fact, even if the transversal type is not
A], the following holds. Let ty. Hq{F\) H0(Fj) be the Milnor fibration
monodromy of / restricted to a transversal slice through x e E/. Then tl is a

cyclic permutation of the finite number of points in F\, and Tt t^Ci.

Example. Let fix, y) (y2-x4)2(x2-y4)2; its EN-diagram is:

Observe that according to the proposition, the spectrum of fN is independent
of the order of Nu ...,7V4. If we take N (5,5,6,6) and N (5,6,5,6) we
get the same spectrum but different topological types, because the EN-
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diagrams are not equivalent. This is the counterexample to the spectrum
conjecture found by Steenbrink and Stevens, cf. [SSS].

6. Equations

In this section we discuss the equations of series: what do we have to add

to / to obtain a required element of its series?

In the example W* at the beginning of section 4, we had:

.—y ii+y
w*2q-i ' y2-x3)2+ x4+gy 2 2

The Puiseux expansion of W*^: f(x,y) (y2-x3)2, is x t2,y t3.

When we substitute this in x4 + gy, we get tn + 2q, which is just the number N
in the EN-diagram.

More generally, it appears that adding (p e J? with (p(t2,t3) of order
11 + 2q, gives the same result, although there are various kinds of exceptions.

In theorem 6.5 below, we give conditions on (p such that / + ecp has the

required type, where s is introduced in order to fulfil transversality properties.
This avoids exceptional cases such as when f (x, y) y2 and

(p(x, y) 2xky + x2k, the sum is then a non-isolated singularity.
Again, / has only transversal Ax singularities; but the following lemma is

valid in greater generality.

6.1. Lemma. Let f,\and assume f has a non-isolated

singularity. If for all small s > 0 / + s\p has a singularity topologically
equivalent to f, then for almost all s the zero sets of f and f + sip

are equal.

Proof. First take f(x, y) yn with n > 1. Assume that for no s, / and

/ + sv|/ have the same zero set. Then we may assume

/ + Bip (y + F(x, s))" where F(x, s) # 0, regarded also as a function, of s,

can be written as

Fix,e)Xa,(e)x'
/>0

Here afz) may have positive fractional powers of s. / + s\j/ is linear in 8. By

writing out the equation
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0
-{y +F{x,£))"0

08

one immediately sees that this impossible. If / is not of the form y then

there always is a small neighbourhood away from the origin where it is. There

we can apply the above argument. D

6.2. Let f f\-" f2rg have EN-diagram T, and let Nt > Noi and c, be

defined as usual. We are looking for (p with the property that / + scp has the

topological type of EN-diagram T* T*(Ni, ...,Nr):

r*

V

ilol
V

By Puiseux's Theorem [Ph], we can choose coordinates x, y of C2 in such

a way that the Puiseux expansions of the I, ,(l ^ ^ r) have the form:

fx tn>

It h/(0 E^i cîktk

For each i we have the valuation function [)/:/-^Nu{oo} given by

Vi(ip) ord,(p(r>, Ti/(0) dimc (p)

After considering various examples, one is tempted to think that whenever for
all /, L»/((p) Ni + C/, / + 8(p has, for general 8, the required topological type

given by EN-diagram T*(NU Nr). The following example shows that this

is not true. Take f{x, y) y2, and <p(xy y) xky + xN. Although ü(cp) N,
the topological type is determined by k and not by N when 2k < N. So we

have to take care of low order multiples of /. We will do this by considering
u and an extra valuation v{2).

6.3. Definition. Consider h /zfed, where hxtde J? is irreducible with
Puiseux expansion x tl\y Y aitl - Let ß be the largest characteristic

exponent. For aeC,/ieN, define watN: J?- N u {oo} by :

Wa,yv(<P) ordT((p(x2", Y tf/T21 + aT2ß + /v~No))

Finally, define ih2L ^->N u {oo} by:
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mina^o Wa,w((P) (40 if ((p) ^ o°

mina *oWa> 2u(q>/h) (<P) if ^(^P) ~ 00 •

Notice that i>(2)((p) oo ^ (p e (h). If TV - TVo is odd, the number /2)((p) is

equal to the intersection number of cp with some curve which has as its Puiseux

pairs the Puiseux pairs of /zred with one extra pair, (N-N0, 2), added.

6.4. Example. Take fix, y) y2 and (p(x, y) xky + xN. Then *;((p) N
and i>(2)((p) min{2k + N, IN). Observe that the type of / is Am_x with
m - 6>(2)(cp) - v{ip).

6.5. Let / f\ • • • f2rg be as above. For 1 ^ / ^ /* we now have valuations
u-2) as in the preceding definition. Recall r*(Nu Nr) is obtained from the

EN-diagram T of / by replacing all multiple arrows as in the last picture.

Theorem. Suppose (p eJ? satisfies U2)(cp) - ^i2)((p) * * * < oo.

Then f + scp has, for almost all e ^ 0, the topological type given by EN-
diagram T* (TVj, ...,Nr), with for 1 < / < r:
(a) Nif-2)(cp) — f,- (<p) — Ciif f/ (cp) < oo, or

(b) N 2c;,-(cp//,) - ciif y;(cp) oo,

provided that Nt > Ni0 for all i.

Proof. Since the order of (p|Ez is > N0i + c, and s is general (use

lemma 6.1), the good minimal resolution of /+S(p also resolves the

singularities of /. So the EN-diagram of / is a subdiagram of that of / + s(p.

Hence, according to theorem 3.4, / + 8(p has the EN-diagram:

for certain numbers #/, (1 ^ ^ r). It remains to prove that equals the

number Nt stated in the theorem.

For this purpose we consider one specific i at the time, and draw /,- in the

same picture as / + scp. That is, we draw the EN-diagram of their product,
unless f i happens to be a branch of / + scp. Using an argument analogous

T —-—^

V

2 2

V
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to the one presented in section 3.3 (which provided the two possible extensions

to the EN-diagram), we conclude that the situation near /,- is as in one of the

five following cases:

^>l e;/2

.Si/ifJ-

-TT

In each picture, the arrow pointing downwards represents //. Observe that
when fj is removed (replaced by a dot) we get back the situation of the

original picture as it should. We now compute qt in each case, using the

interpretation of the valuations as intersection numbers with fj. Recall that they
can be computed by walking from arrow to arrow in the EN-diagram, see

[EN], section 10. To clarify matters, we explain in each case the local situation
as follows. In the resolution of / we take suitable local coordinates u, v near
the strict transform of the branch // in such a way that /• v2 and that the
branches of /Tscp near /,- have the form mentioned.

Pictures #1, #2 and #5: One computes i>/((p) #/ T C/ and
2qt T 2ci. Therefore qt Nh In picture #1, q^ is odd and in picture

# 2 even. In both cases the local situation is u(u2 T us) with s q[: - Ni0. In
picture #5, the two branches have intersection number ß > qt/2 with each
other.

Picture #3: One computes ^((p) oo and ui(q>/fi) qi/2 + ci.
Therefore qt Nh The local situation is u(u T us/1) with 5 as before.

Picture #4: One computes ^((p) qt/2 T a T C/ and ^J2)((p)

3^//2 T a T 2ct. Again we obtain that qt equals the number of the
theorem. The local situation is u(v2 T us/2u T ua + s/2).

6.6. Remark. We want to point out at this point that it is easy to find a
cp satisfying the condition. One can use the method of [EN], pages 57-58. An
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interesting observation is, that in general the monomials of (p themselves will
have a smaller order in t than (p.

6.7. The case that / is arbitrary.
If / ff1 • • • frg with // irreducible, /rz, ^ 2 and g reduced, we still

have that / + scp has the diagram of / with the multiple arrows replaced. We

know exactly which replacements are possible (see section 3.8). To find out
what is the type of / + scp, it again suffices to investigate linking behaviour.
Some possibilities that only become apparent when // and / + scp are drawn
in one diagram (that is the diagram of their product), have to be opted out
by considering linking with cables which are known to be correct, using such

valuations as u(2K

Although the tests become increasingly difficult, this gives a way to
generalize theorem 6.5.

6.8. IOMDIN TYPE SERIES.

We end with a remark on series of the form / + slk, where / is a linear
form not tangent to any branch of / and k ^ k0, the largest polar ratio of

/. These series have been studied by Iomdin and Lê, see [Lê], not only in the

curve case but for general dimensions. Siersma [Si] has given a formula for
the A* of these series. In the curve case this is just a special case of our results.

Notice that:

Vj (I) dik where dt <?/(£,) — Z/ • /,
vf\ I)2 dik.We would like to stress again that these Iomdin type series are generally much

coarser than our topological series: they are single indexed and for example
the Milnor number increases with steps of d d\ + • • • + dr within the

series.

Appendix

In this appendix the EN-diagrams of the series of plane curve singularities
listed in [AGV] are drawn.

The first part consists of the exceptional families E, W and Z.

The second part contains the infinite series A, D, J} W, W#, X, Y and

Z. All variants are given. In the tables, we have that:
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(a) p. the Milnor number;

(b) N0 and the graph constant c are as in theorem 3.4;

(c) A* is the A* of the non-isolated singularity, the A* of an element of the

series can be obtained by multiplying with /N*1 - (- 1)N.

Name Formula M EN-diagram

# 3fc+l(
Eek y3 + QßSk+l 6k

2A+1,

3

^6fc+1 y3 + x2k+1y 6k + 1 ?2

y3 + x3fc+2
3*+2<

E§k+2 6£ + 2 Î3

y4 + a?4*+1
4fc+1t-\ _

w12k 12/:
• V

[4

Wl2fc+1 y4 + ya;3^4-2
3fc+lrN

12Ä: + 1 ;f3

Wl2fc+5 y4 + yrr3^4-2 12/: -f 5 r
Wl2fc+6 y4 + yx3k4~3

4/r+3„
12/: + 6 1y ^

4

x(y3 -+- ya;2^4-3 -f x3k+4)
.3H4-\ - 1

%6k+11 6/: -j" 11 1 3

^6k+12 x(y3 -|- ya:2^4-3 + x3k+5) 6k + 12 .,2fc+3^2

ry x(y3 + y£2/:4~4 + a;3/:4~5)
,3k+5r

^6^+13 6/: + 13 1 3
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Name Formula P EN-diagram

^oo 112 0 A OO _
1

y • * v*/ *2 - 1

^0 y 0 p > 2, N pF 1,

Ai y2 F x2 1 N0 1, c 0

Ap y2 -f xp+1 P
• -

î2

xy2 1 -(2) A~ 1

D± xy2 F x3 4 j p > 5, N p - 2,
N0 2, c 1

Dp xy3 F xp_1 P 1

Jk,oo y3 F xky2 3k-2
• ^ -(2) î

A00
*3 - 1

Jkfi y3 F xky H- x3k 6k-2 "f" k >2,p> 1 ,c k
N pF2fc, N0 2k

Jk,p y3 F xky2 + x3k4~p 6fc—2Fp
1
1

wktCO y4 4" y2x2k4~1 8&F1 -(2) f8k+4 _ î
A? At4 - 1

Wkto 2/4 F y2x2k4~1 F £4k+2 12&F3 2*+4

f
k>l,p> 1,

iV p F 2fc F 1

Wk* 2/4 F y2x2k4r1 F a?4^4"2'^'?) 12&F3FP
_2*±lç2 ÙU _

ï f iV0 2k F 1,

c 2k F 1
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Name Formula P EN-diagram

wtfc,oo
(:y2 4- z2**1)2 4fc

^±lo »- (2) Aoo_^+2 + 1

tA -1

wtk,2q—\ (yf2 + x2k+1)2 + yx^^4^ 12fc+2?4-2
» 2fe4iQ Kç ^

r f k >l,q> 1,

c 0

wtMq
(;y2 + x2^1)2 + 2/2Z2A:+1+<* 12fc+2g+3

.M+lp
*72^

JV 8fc "I- 2ç -f- 3

JV' 8k+ 2ç + 4

Xoo + X22/2 5 <j> -(2) t4 - 1

X9 y4 + x2y2 + a;4 9 + p > 10, JV 7,
N0 2,c 2

x„ y4 + a:2y2 + £4+p-9 P I'

Xh,oo Î/4 + sÄ03 + x2hy2 8/i-3 A «, C4" - I)'• 0 - {*) ' - 1

Xh,0 yA + xhy3 + z2/l?/2 + x3/lî/ 12/i—3 Sr 7V
h>2,p> 1,
TV p + 2/i,
TV0 2h, c 2h

Xh,P 2/4 4- xhy3 4- x2fly2 4- ar4/,,+p 12/1-3+p

Y1 00,00 x2y2 4
(2) * (2)

A°o,°o x

y1 r, 00 y4+r + z2y2 7*4-5 J*2- « r,5 > 1,

a c2 2

y-* r,s 2^4+r _j_ /j»2y2 _|_ ^4+s 9+r-fs
^ n24r 2+5q ^f f
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Name Formula EN-diagram

yh
OO.(

yh See [AGV], p. 248

Ah-2

12/i-4~r -|-S—3

(2)- (2)1 h > 2, r, s > 1

Zk, c

Zk,o

Zk,P

3 4- .t^+2?/2ary3 4- ar

ary3 4- xk+2y2 + ar3*+4

xy3 -f- ar*+2y2 4- #3k+4+p

3Ar+5

6Ar+9

_fc±i^_

Js±l

'(2)

Ar+1^ A

Aoo j3*+4 _ x

kyp > l,c Ar 4- 2

JV p 4- 2fc 4- 2,
iV0 2 Ar 4- 2

4,oc

4,0

4,p

See [AGV], p. 249

See [AGV], p. 249

8/j+3fc-3

12h+6k-3

12ft+6fc-3+p

-Arv-à±Èrr
/in ft+ib,

' (2)

• —à±àç—-N<>iii
A°°
(t4Ä—1 t4Ä+3fc—1

t4 - 1

h > 2, Ar,y > 1,

iV 2) 4- 2h 4- 2 Ar,

No 2h 4- 2Ar,

c 2/i 4- Ar
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