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TOPOLOGICAL SERIES
OF ISOLATED PLANE CURVE SINGULARITIES

by Robert SCHRAUWEN

ABSTRACT. For plane curve singularities, a topological definition of
series of isolated singularities, based on the Milnor fibration, is given. Several
topological invariants, including the spectrum, are computed.

1. INTRODUCTION

Let f:(C2,0) — (C,0) be a plane curve singularity, in other words, let f
be an element of the ring of convergent power series C{x, y}. Assume f # 0.
Because C{x, y} is factorial, we can write f = f{"'--- f7 with all f;
irreducible and whenever i # j, there is no unit u with f; = uf;. The
branches of f are the curves fi:(x,y) = 0.

It is well-known that for € > 0 small, the intersection L = f ~1(0) N Sg of
the curve X: f = 0 and a small 3-sphere of radius € is a /ink, consisting of
r components corresponding to the branches of f, and that this link determines
the topological type of f (or of X). Moreover, the map f/|f]: SS\L - Slis
a fibration, called the Milnor fibration.

It is natural to consider L as a multilink, i.e. a link with integral
multiplicities assigned to each component. We use the notation
L=mS + -+ m.S,, where ;= fi_l(O) N Sz. These multiplicities
reflect in the behaviour of the Milnor fibre F (i.e. a typical fibre of the Milnor
fibration, which is a Seifert surface bounded by L) near S;: F approaches S;
from m; directions (see [EN]).

The Milnor fibration is important in our discussion of topological series
of isolated singularities. A striking feature of Arnol’d’s series 4, D, E, J, etc.
(see [AGV]), is that they are somehow related to a non-isolated singularity.
For example: Dy:xy? + x¥! is related to Ds:xy? and Y, x2y? + xr+4
+ y$*t4 to0 Yo ! X2y2. This relationship is still not completely understood.

In this paper we give (for plane curve singularities) a topological definition
of series (definition 3.1), as follows. A singularity belongs to the topological
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series of a certain non-isolated singularity f, if its Milnor fibration arises from
that of f by removing tubular neighbourhoods of the multiple components
and putting something back in such a way that the result is the Milnor fibration
of an isolated singularity.

With this definition in hand, we first investigate which isolated singularities
belong to the series associated to a given non-isolated singularity. For example,
it follows from theorem 3.4 that D,(k > 4), is the only possibility when we
start with D, (cf. [AGV], p. 243).

What interests us most is how the topology behaves within the series and
with regard to the non-isolated singularity. We compute the Milnor number,
the characteristic polynomial of the monodromy, and the spectrum of the
series. For example, we will find in proposition 5.2, that the Milnor number
of a series belonging to a singularity with transversal type A,; increases
linearly with steps of one, just as in the familiar case of the Arnol’d series.
Many of these topological invariants have already been considered in the case
of series of the form f + e/*, with / a general linear function. This was
initiated by Iomdin (see [L€]). But observe that in general such a series is a
very small subseries of our topological series belonging to f.

In the last section we consider the question what we have to add to f to
get a required element of the series. For instance, to W .:(y>—x3)2, one
may add x**9y and x3*9y2 for ¢ > 1 to obtain the whole series Wffp. In the
case that f has only transversal A4 singularities, we obtain explicit conditions
(theorem 6.5), mainly involving intersection properties.

We use the link L of f to describe the topological type. There is a nice
notation for algebraic links (i.e. links arising as the link of a plane curve
singularity) by means of graphs that we will call EN-diagrams after D. Eisen-
bud and W.D. Neumann, who developed these graphs in [EN].

The EN-diagrams and the underlying concept of splicing, which is due to
Siebenmann and studied extensively in [EN], are used to state our results and
proofs. For example, the definition of topological series is very clear in these
terms: the corresponding non-isolated singularity is visible as a subdiagram of
the diagram of the series. We will only recall the main points of splicing and
EN-diagrams in the next section. For details we refer to [EN] and [Ne], where
one can also find how to compute several familiar topological invariants from
the EN-diagram. A method of computing the spectrum and a splice formula
for spectra are of independent interest and they are given in section 4. We will
show that the spectrum of a singularity is ‘‘almost additive’’ under splicing.

Our definition of topological series presents a natural idea behind couterex-
amples (found by J. Steenbrink and J. Stevens) to the spectrum conjecture (the
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spectrum determines the topology of a plane curve singularity) and the —
equivalent — conjecture involving the real Seifert form (cf. [SSS]). Also,
A. Neméthi used the idea of topological series to define his topological trivial
series [Nm].

In the Appendix, we have included the EN-diagrams and some invariants
of the Arnol’d series.

Acknowledgments. 1 wish to thank Dirk Siersma and Jan Stevens for
their remarks and help.

2. SPLICING AND SERIES

2.1. It is clear that singularities occur in series. The simplest series have been
given names, such as 4, D, J, etc., by Arnol’d. But how to define a series
is unclear. One looked at deformation properties such as adjacencies, etc.,
because the goal is to define what a series means analytically. A proper
analytical description can be given for series of the form f + /¥, where / is
a sufficiently general linear form, see the work of Iomdin and L€, [L€]. But
already in the case of Arnol’d’s series, one finds that they are not of the
‘lomdin-type’. Some series are multi-indexed, such as

Yrjs:xzyz + X"+4 + ys+4 ,
and others, such as W#:
# .
Wi, 10 (0F=x%)2 + x%+ay

make smaller steps than a linear series.

However, the most apparent properties that hold a series together, are the
topological invariants. For example, the Milnor number within Arnol’d’s
series, increases with steps of 1. Therefore it is worthwhile to go not as far
as an analytical definition, but to look for a topological one.

Another property is that, as already mentioned in the Introduction, series
of isolated singularities are clearly related to non-isolated singularities, and
that the hierarchy of these non-isolated singularities reflects the hierarchy of
the isolated singularities. This relationship is also not completely understood.
Our topological definition, which works for plane curve singularities, makes

clear which isolated singularities belong to the series of a given non-isolated
singularity.
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2.2. The motivation for our definition comes from the topology of the link
exterior. We first need to recall some facts of splicing and EN-diagrams.
Let f € C{x, ¥} be a plane curve singularity, and L the link of f embedded
in S3. L completely describes the topological type of f. There is a notation
for L by means of a weighted graph, that we call an EN-diagram, introduced
by Eisenbud and Neumann [EN]. The EN-diagram of f is closely related to
the resolution graph of f (the dual graph of the good minimal resolution).
In fact, as a graph, the EN-diagram is equal to the resolution graph with all
linear chains contracted. We will call the vertices of valence 1 dots, and the
vertices of valence at least 3 nodes. The arrows correspond to the components
of L (or the irreducible components of f), and they have a multiplicity, equal
to the multilink multiplicity. The nodes, dots and edges have topological
meanings as well, we refer to [EN] for details. There are conversion rules from
EN-diagram to resolution graph and back, see [EN], chapter V.

It is known that M = S3\N(L) (where N(L) is a open tubular
neighbourhood of L) is a Waldhausen manifold, see [EN] or [LMW]. This
means that there is a decomposition of M in Seifert manifolds (the basic
building blocks). The decomposition can be found in several ways, e.g. by
means of the resolution of f or the polar decomposition of f. This is explained
in detail in [LMW].

2.3. Glueing two pieces of this decomposition together uses the operation of
splicing, due to L. Siebenmann and studied extensively in [EN]. Consider two
(multi)links L, = m;S; + L{, L, = m,S, + L;, embedded in (separate copies
of) S3. Let N;, N, be small tubular neighbourhoods of S;, S,. Then the splice
L of L, and L, is the link

£ =L+ Ly,
embedded in the homology sphere
L= (S3\N1) Ua(S\ V) ,

the boundaries OV, and AN, of the tubular neighbourhoods glued meridian to
Jongitude and vice versa. The EN-diagram I of L arises from the EN-diagrams
of L, and L, by replacing the two arrows representing S; and S, by an edge
(which represents the splice torus ON; = 9NV,):

r

T > - I I'y T,
s } f
0N, ON, ON
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If we impose two conditions, de_scribed below, then L is again an algebraic
link in S3.

SPLICE CONDITION
m, = 1k(S,,L;) and m, =1k(S,,L7),

i.e. m, has to be equal to the linking number of S, with the other components
of L,, counted with their multiplicities (and similarly for m,).

Linking numbers can be computed easily from the EN-diagram, see [EN],
section 10.

If the splice condition holds, then L is again a fibred link. In fact it forces
that the Milnor fibres cut the splice torus in an (1, m,)-torus link.

The second condition is a condition on the weights of the EN-diagram. It
follows from [EN], Theorem 9.4, that we need the following condition in order
that L is again algebraic:

ALGEBRAICITY CONDITION

(a) The resulting link can be obtained by repeated cabling, and

(b) If the EN-diagrams of both links near the splice arrows are as follows:

\al
. ao

. o——n (mq) (m2) o
/)‘T ﬁs\\
then the inequality aofo > o; - a,B; * - - B, must hold.

2.4. We now return to the ideas behind our definition of series. A typical

series is the series consisting of W7{, _, and W 24> introduced earlier. Their
EN-diagrams are:

. 31 11+2¢ 1 . . 3.1 6+q¢-1
9 Tz F P

It is clear that this is the result of splicing something to

1

3oL

. j[2 - (2)
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which is precisely the EN-diagram of W7 _: (y?—x3?)2. In terms of the resolu-
tion: take a resolution of f(x, ) = (y>—x?)?, and deform the double compo-
nent slightly into an A4,, we then get a — partial — resolution of one of the
Wff ,- In terms of the splice decomposition: Consider the splice decomposi-
tion of a representative f, of W{‘f ,- It consists of two pieces, one of which
is the complement of the link of f, wheras the other depends on the parameter
p. This is equivalent to the statement that the Milnor fibration of f, results
from the Milnor fibration of f by removing a tubular neighbourhood of the
link component, and replacing it by something else in such a way that the result
is the Milnor fibration of f, and leaving the rest unchanged. We will see later
that this process will not give more than only the series Wffp. The link of f,
is a (2, 6+ p)-cable on the link of the reduced singularity fz(x, ») = y? — X3,
which is a (2, 3)-torus knot.

If we have a singularity with more than one double component, we can
splice something to each of the components independently. We see this with
our example Y, ,, its EN-diagram is the result of splicing two pieces (one
depending on r and one on ) to (2) < (2), the EN-diagram of Y. .:x2%y2

If we have a singularity f with a component of multiplicity greater than
two, then we can get non-isolated singularities with lower multiplicities when
we splice something to it. The simplest example is f(x, ¥) = y3. In this case,
the Milnor fibre consists of three discs. If we want to replace a small tubular
neighbourhood of the knot with something else, in such a way that the result
is again an algebraic link, we first of all have to take care that the fibres in
the solid torus that we put back in, approach the boundary in a (3, 0)-torus
link. It is intuitively clear that this is only possible with 3 components of
multiplicity 1 or with 1 single and 1 double component. Indeed, in 3.8 we will
see, that this gives the possibilities Egr, Egpr1, Eerr2 and Ji o, and if we
apply the same procedure again to Jy ., we get the series J; ,. In Arnol’d’s
list we find all these singularities in the series of y3.

In the Appendix we have included the EN-diagrams of all Arnol’d series,
and one sees that they all arise from splicing something to the link of the
corresponding non-isolated singularity.

These examples motivate our definition of topological series, which will be
presented next.
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3. THE DEFINITION OF TOPOLOGICAL SERIES

3.1. Definition. Let f e _#’= C{x, y} have a non-isolated singularity. The
topological series belonging to f consists of all topological types of isolated
singularities whose link arise as the splice of the link of f with some other link.

So what we want is that the Milnor fibration of an element of the series
differs from that of f only in small neighbourhoods of the components with
higher multiplicities.

In terms of EN-diagrams: All arrows in the diagram of f with
‘(m)’ (m > 1) in front of them, have to be replaced by subdiagrams with arrows
with multiplicity 1 only, taking the splice and algebraicity conditions into
consideration. The advantage of using EN-diagrams instead of resolution
graphs can be observed here: it is not easy to describe the linear chains that
arise in the resolution graphs of the isolated singularity. |

Below, we investigate what possibilities there are to replace an arrow
‘— (m)’ by something else, in the sense of the preceding remarks. It will follow
that the topological series do not contain more singularities than we want them
to. The method is purely combinatorial. We start with m = 2 and end with
a formula giving the number of such possibilities.

3.2. Notation. If I' is an EN-diagram, then we denote by A(I') the set of
arrow-heads of I', by N(I') the set of non-arrow-heads (dots and nodes) and
by V({I') = A(I') u N(I') the set of all vertices.

The corresponding (multilink is L = L(T) = ) ., ,/mS;, and for
ie MI'), S; will denote the corresponding virtual component (cf. [EN]).

3.3. THE CASE OF A DOUBLE COMPONENT.

Suppose f e/ has link L = y ieaq™MiSi. Suppose one of the com-
ponents, S, , has multiplicity 2, i.e. m, = 2. Near the arrow ¢, the EN-
diagram I' of L looks like this:

I (2) = o (2)

where the boxes may denote anything and the arrow is ¢ e A(I') (the second
picture is only defined when I" # e— (2)). Define the following numbers:
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20+ * O )
Ny = | — | , where [ . ] denotes integral part ,
o

c= )y mlk(S,,S),
jeAD),j# ¢
i.e. c is the linking number of S, with the other components, counted with
their multiplicities.

Note that we work with minimal EN-diagrams, which means that redun-
dant dots (those attached to a node with weight 1) must be removed by using
theorem 8.1 of [EN].

We now show what possibilities there are to replace the double component,
in the sense of the remarks at the beginning of this section. Let

A, = det (¢t - hy)

be the characteristic polynomial of the monodromy on H,(F), and let
Ay = Ay/Ay. This function is related to the zeta function (, of the
monodromy (cf. [A’C]) by the relation {(f) = ¢ DA, (¢ ~') (where y(F) is
the Euler characteristic of F).

3.4. THEOREM. The only two (classes of) possibilities to replace a double
component, are:

N1 g __N/2 1 A
TQ 1’1
with N > Ng odd with NV > Ny even

Furthermore, let A5 bethe A, of L= L), and ALY bethe A,
- of the new link. Then we have:

AY(@) = AZ (@) - (¢Vre—(=DM)
In particular, the Milnor number is linear in N with coefficient one.
Proof. The EN-diagrams of the theorem can be regarded as being the
results of splicing the links L = L(I') = L(f) and those defined by the EN-
diagrams I'}, in the next figure, along the components S, and the one with

multiplicity ¢, which we call S with * € A(I' ). (Note that ¢ can be zero, in
[EN] this has been given a natural interpretation).
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N/2 J1

N 1 N i
(c) = F - - (9 F

That the multiplicity must be ¢ follows from one half of the splice condi-
tion. The other half, 2 = ), peaiones i 1K (Sk, S3), implies that these two
diagrams are the only two essentially different EN-diagrams with the required
property, for we want m, = 1. For the first link the splice condition reads
‘2 =2-1" and for the second ‘2=1-1+1-1".

Finally, the algebraicity condition gives N > Nj.

The A, formula follows from [EN], theorem 4.3. [

The last statement of the theorem implies that if L is not the unknot, the
Milnor numbers are related as follows:

Uy = Lo + N+ C if F is connected,
Uy = Ueo + N+ c— 1 if F is not connected.
We see for example that in case f is of type A., the series is precisely the

whole A-series, and in case f(x, ¥) = x%y?, the series is the complete doubly
indexed Y-series.

3.5. Definition. We combine the two possibilities in one graph, where,
depending on whether N is odd or even, the first or the second graph of the
theorem must be substituted. '

[N}
Y

Observe that for N even, this represents the graph with two arrows and edge
weight N/2.

3.6. Remark. .If a =1 or o = 2 (see the figure at the beginning of this
section), then the case N = Nj is also allowed, although then the diagram has

to be minimized by applying theorem 8.1 of [EN]. The monodromy formula
still holds.

3.7. Example. J; o has the equation f(x, y) = y2(y +x*), its EN-diagram
is pictured below:

| lel - 12) AT = (- i~

3 -1
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We have ¢ = k and N, = 2k. The series is Jy ,:¥3 + y2xk + x3*+7, p > 0.
The case p = 0 is the special case with N = N,.

Jep (N =p+ 2k)

We have

3k — 1
P11

AN@) = (1=1) (V= (=)

3.8. HIGHER MULTIPLICITIES.

When we have higher multiplicities, exactly the same method can be used.
The splice condition gives us always a finite number of links that can be spliced
to the component with multiplicity m. We enumerate the possibilities when
m = 3 and m = 4. The names refer to the simplest case when f(x, y) = y™.

In the diagrams, the splice edges have variable weight N, N having no com-
mon factor with the other weights. Further omitted edge weights are equal to 1.
We only listed the diagrams with one node; some have an arrow of multiplicity
greater than 1, which should be treated again.

The four possibilities for m = 3:

R R R A

Jk,0 B¢k ,Eek42 Egk+1 Ik, 00

1

The nine possibilities for m = 4:

--———%2_ ---——T—z——s --———F—-»
Wi o
(2) ﬁ—% (2
Wk,oo

Il

Xh,0 Wizk+1(s) Wizk(+s)

(2)

) o (2) —o<
I (2)
wE¥_,

|

Yh

00,00

Xh,oo

(3)

|

Zh

00,00
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We now give a formula giving the number of essentially different diagrams
with one node and only multiplicities less than 7, that can be spliced to a com-
ponent of multiplicity m.

PROPOSITION. The number is:

Ypm/g) + ) Y p(m-pvg) — 1

qlm 1<p<m—1 qlm-p),g>1

where p (n) is the number of integer partitions of n.

Proof. 1In such a diagram at most one dot appears, with at the node a
weight > 2. The number of edges emerging from the node must be at least 3.
There is at most one weight > 1. These are consequences of the algebraicity
condition. The splice condition demands that the total linking number of the
other components with the splice component equals m. The formula is now
a matter of counting. L[]

For m < 15 we obtain:

‘ m |1|2,314‘5‘6|7|8 9110\11[12{13'14‘15‘

’ number IO|2|4’9|12.22!27|42’54t76|91 [134|159|211‘263l

This can be regarded as an upperbound on the number of symbols (such as
A, W#, etc.) needed to give names to all singularities of corank m.

4. THE SPECTRUM OF A PLANE CURVE SINGULARITY

4.1. In this section we compute the spectrum of a plane curve singularity
from the EN-diagram and we prove a splice formula for spectra. This will be
needed in the next section, where we look at several invariants within a series.
First we need to define a number of polynomials.

4.2.  We denote by F the Milnor fibre of a plane curve singularity f.
Definition.
Ao () = char. pol. of Hy(h): Hy(F) = Hy(F) ,
Ay (¢) = char. pol. of H,(h): H,(F) = H,(F) ,
Ax(t) = A1)/ Ao(2) € Q(2)
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Recall that Hy(F) and H, (F) have ranks d and p, respectively, where d equals
the number of connected components and p the Milnor number.

We will also need the following polynomials. Let A, : H,(F) = H,(F) be .
the algebraic monodromy.

Definition:
(@) A'! is the characteristic polynomial of h*|Ker(h1,,§' —1), where N is a
common multiple of the order of the eigenvalues of /.,

(b) A’ is the characteristic polynomial of hy|Im(H;(OF) — H,(F)).

The roots of A! are the eigenvalues of the 2 x 2-Jordan blocks of /.
Observe that all polynomials defined above can be obtained easily from the
EN-diagram, cf. [EN], section 11 and [Ne].

4.3. The spectrum of a holomorphic function germ is a set of rational
numbers with integral multiplicities, denoted as Y, wcq Mo (@) (an element of
the free abelian group on Q), which can be regarded as logarithms of the eigen-
values of the algebraic monodromy.

In the isolated singularity case we have that A,(¢) =[], (t—expQnria))ne.
In the case of plane curve singularities, the spectrum numbers o satisfy
— 1 < a <1, so for each eigenvalue A # 1 there are two possible a’s with
A = exp(mia).

4.4. We follow [St] for a brief description of the spectrum. For details we
refer to this source. Let f: (C"*1, 0) — (C, 0) be non-zero holomorphic func-
tion germ, and denote by F'its Milnor fibre. The reduced cohomology groups
H*(F) = H*(F; C) carry a canonical mixed Hodge structure. The semi-simple
part 7, of the monodromy acts as an automorphism of this mixed Hodge
structure, and in particular it preserves the Hodge filtration &. Write
Gr’y= &P/ %P+1 and let s, be the dimension of Gr”.There are rational
numbers a,; with 1 <j<s,,n —p — 1< a, <n— p such that

Sp
det(¢-1d — Ty; Gr”’») = [] (¢ — exp(—2miay)))
j=1
Now we define Sp,(H*(F;C), 7, T;) = Y, Y (o)) and:
Sp(f) = Y (=) *Sp,(H*(F), &, T)
k=0

It is clear that the spectrum is a finer invariant than the characteristic
polynomial. Steenbrink has proved for instance that the spectrum distinguishes
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all quasi-homogeneous isolated singularities (not only curves). But already
for plane curves the spectrum is not a complete invariant of the topological
type. Details of these facts can be found in [SSS].

4.5. Example. Consider f(x,») = xy(y2—x3) and g(x, y) = xy(y—x°).
Then f and g have the same integral monodromy (see [MW]), their
characteristic polynomial is A; = (£—1) (¢! —1). But

Sp(/) ¥ ( i ) ' ( i )
p — — -
ie{0,1,2,3,4,6) 11 11

[ I
Sp(g) = ) (———) + (—)
ie{0,1,2,3,4,5) 11 11

4.6. In [LS] a method is given to compute the spectrum of a reduced curve
singularity from the resolution graph. However, the non-reduced case follows
by the same methods. The results are closely related to those of Neumann on
the equivariant signatures of the isometric structure on H,(F'; C) given by the
monodromy and the sesquilinearized Seifert form, see [Ne]. Below we combine
the results of [LS] and [Ne] to obtain a purely topological method to compute
the spectrum.

For a root of unity A the signature ¢, is defined in [Ne] and computed
as the sum of the o, of all the splice components. Consider a (very general)

splice component:

\ / )
wzk\\
mk)

For the moment, put m; = 0 for ie{k+ 1,...,n}; so

m = Z oy v C 0L,

is the multiplicity of the central node. Choose integers B;(1 <j < n) with

Biay - - &j o, =1 (moda;) and put s; = (m; —B,m)/0,.

Remark. The numbers s; are, modulo m, equal to the multiplicities of
the neighbour vertices in the resolution graph.

For a real number x, let {x} be the fractional part of x, and let
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1
() = 5—{x} if x¢Z
0

if xeZ

4.7. PROPOSITION. Write A = exp(2nip/q) with g.c.d. (p,q) = 1. Then
we have (see Neumann [Ne]):

- {0 if q does not divide m,
e) =
' 2 ) ?:1((S,~p/q)) if q divides m. []

4.8. For A a root of unity, let by ,, by, bi, b; be the multiplicities of A as
a root of Ay, Ay, A, A", respectively (these polynomials have been defined
in section 4.2) Let o, be the signature as computed above. Write
e(a) = exp(2mia). Sp(f) denotes the spectrum of f.

THEOREM. Sp(f) = Y. ny(a) with:

(be(a) + be,'(a) - G;(a))/z if —-1<a<0
n, = \r— 1(r= # branches) if a=0
Det@) = Doy + Oew)/2 = boje If 0<a <1

Proof. The proposition is a translation of the results of [LS], extended
to the case of non-reduced singularities.' The difference with [LS] is, that the
roots of A’, coming from the boundary, must be added to the weight one part,
and the roots of Ay must be subtracted from the weight zero part. In the
language of [Ne]: The I'y and the —Ai part contribute to the negative
(weight 1) spectrum numbers, the A, part contributes to the positive
(weight 0) spectrum numbers. The pairs of eigenvalues in the 2 X 2-Jordan
blocks are evenly distributed among the positive and negative parts. The roots
of A, give only weight 0 spectrum numbers and they have negative
multiplicity. [

4.9. A point which may cause confusion is the fact that in the definition of
spectrum  reduced (co)homology is used. Therefore we define
Sp«(f) = Sp(f) — (0). It is now possible to compare Spy with A,: If
Sp«(f) = X 7ta(@), then Ay (t) = ], — e(@) .

1
Example. The A, singularity has Spy = — (5) — (0). Recall that its

Ay equals (¢2—1)~'. D, has spectrum Sp = (0), so Spyx = 0 (‘empty’). Let
fx, ) = (¥2—=x3) (y3—x?) be the A’Campo singularity. Then:
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Sps (/) = (—%) +2(—%) +2(_%) +2(%)
1)

As with all isolated singularities, this spectrum is symmetrical (i.e. if (a) is in
the spectrum, then so is (—a)). This is not the case with non-isolated
singularities. The asymmetry comes from the fact that the Milnor fibre can
have more than one connected component and from the fact that the
monodromy possibly acts non-trivially on the boundary of F. Both can be seen

mn:
srary - (1) (1
Px y 5 5

Observe that the Ay, of x2y? is just 1, as with D, .

4.10. The A, behaves well under splicing: it is the product of the Ay of the
splice components. Our topological way of looking at spectra asks for a for-
mula of splicing spectra. It appears that Spy, = Sp — (0) is a/most additive.

Example. In the example above we computed the spectrum of the
A’Campo singularity. Both splice components are isomorphic to that of the
non-isolated singularity x2(y% —x3), which has spectrum:

1 3 1
Sps={ =} +|—-——]+ | —
2 10 10
1 3
+1l=]+(—=.
() (%)
So we have to add both spectra, but instead of 2(—%) we have

1 1
( —5) + (5) . This is the result of the new edge in the EN-diagram, giving

a new 2 X 2-block.

4.11. THEOREM. Let L be the result of splicing L' and L" along
components S and S, vrespectively. Let m'(m”) be the multilink
multiplicity of S'(S"”) and put q = g.c.d.(m’, m”). Then

1

Sp« (L) = Spx (L) + Spx (L") + i (i/q) = (=i/q) .

=1



130 R. SCHRAUWEN

Proof. 1If g = 1 the theorem is clear. Now suppose ¢ > 1. Consider the
behaviour of the polynomials Ay, A! and A’ under this splice operation.
Splicing introduces a new edge E which contributes to A! with a factor
1?7 — 1. This introduces new 2 X 2-Jordan blocks. Both splice components

_ i
have fz 11 ( -—) in their spectrum (coming from A’). But, as both eigen-

i=1

_ i i
values in a 2 X 2-block are of different weight, L has ¥ 7 1 ( ——) + (—)

q q
instead of the sum of both parts. It is clear from theorem 4.8 that all other
parts of the spectra of L’ and L’ have to be added. O]

5. INVARIANTS IN THE CASE
THAT f HAS ONLY TRANSVERSAL A; SINGULARITIES

In this section we describe the topology and equation of a topological series
that belongs to a non-isolated singularity with only transversal A,
singularities.

Throughout this section, fe # is of the form f = f;--- flg, with
fi,..., f» irreducible and g reduced. The critical set of f is
Y =2, U - U, and the transverse type of f along X; is A;. For all
ie{l,...,r}, we have numbers N, and c¢; as defined in section 3.3. Let
N; > Ny; (1 <i<r). According to theorem 3.4, a typical element of the series
belonging to f has the topological type (EN-diagram) I'*:

I
et

1"*

That is: each arrow of the EN-diagram I" of f belonging to a double com-
ponent, is replaced in the way described in theorem 3.4. So varying the N,
will give us the complete series belonging to f.

The following two propositions are easy consequences of theorem 3.4. Let
N = (Ny, ..., N,) and let f» have topological type T'*.

5.1. PROPOSITION. Let A4lf] and Ay[fn] be the Ay, of [f and
f~ respectively. Then:

r

Aclfnl(@®) = Alf1@) - T (@M= (=1)N) . ]

i=1
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5.2. PROPOSITION. Let w. be the Milnor number of f and un that
of fn. Let poe{l,2} be the number of connected components of the
Milnor fibre of f. Then:

r

Uy =He —Ho+ 1+ 2 (Ni+c).

i=1

The numbers .,y and ¢ (1<i<r) depend only on f. ]

5.3. We conclude this list of topological invariants with the formula of the
spectrum of a series (see section 4).

PROPOSITION. Define for 1<i<r:yvi=0 if ¢ Iis even and
v = 1/2 when c¢; is odd. Write v; = N;+ ¢;. Then:

roovi—1 4
SO = SN+ ¥ X (1 - u1)
i=1 j=0 \2 V;

Proof. One can use the proof of [St], theorem 4.5, but it is also possible
to work out the various cases using the method of section 4. For the proof
of [St], the following observation is needed. Let F; be a transversal slice
transverse to X; (in this case F consists of two points — the transverse type
is Ay). Let T;: Ho(F!) = Hy(F]) be the monodromy of the local system over
the punctured disc £;,\{0}. Then it is well-known that 7; is the identity if ¢
is even and — identity if ¢; is odd. In fact, even if the transversal type is not
A,, the following holds. Let #;: Hy(F) = Ho(F;) be the Milnor fibration
monodromy of f restricted to a transversal slice through xe ;. Then 7, is a
cyclic permutation of the finite number of points in F;, and T; = ¢, . [

Example. Let f(x,y) = (y?—x*)2(x?—y*)?; its EN-diagram is:

(2)\ 2 2 /(2)

(2) / N (2)

Observe that according to the proposition, the spectrum of f is independent
of the order of Ny, ..., Ny. If we take N = (5,5,6,6) and N = (5,6,5,6) we
get the same spectrum but different topological types, because the EN-
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diagrams are not equivalent. This is the counterexample to the spectrum con-
jecture found by Steenbrink and Stevens, cf. [SSS].

6. EQUATIONS

In this section we discuss the equations of series: what do we have to add
to f to obtain a required element of its series?
In the example W# at the beginning of section 4, we had:

| 3.1 1142 1
Whaes (2 = 23 4 2440y F §

The Puiseux expansion of W7 _: f(x,y) = (y2—x3)2, is x = 12,y = 13
When we substitute this in x**9y, we get ¢11+29, which is just the number N
in the EN-diagram.

More generally, it appears that adding ¢ e # with ¢(¢2, #3) of order
11 + 2q, gives the same result, although there are various kinds of exceptions.

In theorem 6.5 below, we give conditions on ¢ such that f + ¢ has the
required type, where ¢ is introduced in order to fulfil transversality properties.
This avoids exceptional cases such as when f(x,y)=y%? and
o(x, ¥) = 2xky + x?%, the sum is then a non-isolated singularity.

Again, f has only transversal A, singularities; but the following lemma is
valid in greater generality.

6.1. LEMMA. Let f,ye.?Z and assume f has a non-isolated
singularity. If for all small ¢ >0, f + ey has a singularity topologically
equivalent to f, then for almost all € the zero sets of f and [ + ey
are equal.

Proof. First take f(x, y) = y” with n > 1. Assume that for no ¢, f and
f +ey have the same zero set. Then we may assume
f + ey = (y + F(x, €))" where F(x, €) # 0, regarded also as a function, of ¢,
can be written as

F(x,e) = Y ai(e)x'.
i>0

Here a;(¢) may have positive fractional powers of €. f + gy is linear in €. By
writing out the equation
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—a—(y+F(x,s))” =0,
o€

one immediately sees that this impossible. If f is not of the form y" then
there always is a small neighbourhood away from the origin where it is. There
we can apply the above argument. ]

6.2. Let f = f2-+- f*g have EN-diagram I', and let N; > No; and ¢; be
defined as usual. We are looking for ¢ with the property that f + g¢ has the
topological type of EN-diagram I'* = I'*(Ny, ..., IV,):

T* = - 1 N, ° T * Ny 1
2 2

By Puiseux’s Theorem [Ph], we can choose coordinates x, y of C? in such
a way that the Puiseux expansions of the X;, (1 <7< r) have the form:

{x = [
y=n) = Zkzlciktk
For each i we have the valuation function v;: .£Z—= N U {0} given by

vi(9) = ord, (7, n;(2)) = dime 2/ (fi, @) -

After considering various examples, one is tempted to think that whenever for
all i, v;(p) = N; + ¢;, f + €@ has, for general €, the required topological type
given by EN-diagram I'* (Vy, ..., N,). The following example shows that this
is not true. Take f(x, y) = ¥?, and ¢@(x, y) = xky + xV. Although v(p) = N,
the topological type is determined by k& and not by N when 2k < N. So we
have to take care of low order multiples of /. We will do this by considering
v and an extra valuation v,

6.3. Definition. Consider h = h’,, where he ¢ is irreducible with

Puiseux expansion x = ",y = E a;t'. Let f be the largest characteristic
exponent. For a € C, neN, define w, y: .2 = N U {} by:

WQ,N(([)) = ordr((p(rz'?, E a['fo " (XTZB+N'N0)) )

Finally, define v®: _#—> N U {} by:
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U(2)((D) = {minaiowa,v((p)((p) if V(P) < >,

ming 40 Wa, 2000/ (@) if () = .

Notice that V@ (p) = © & @ e (h). If N — Ny is odd, the number v? (o) is
equal to the intersection number of ¢ with some curve which has as its Puiseux
pairs the Puiseux pairs of A4 with one extra pair, (N— Ny, 2), added.

6.4. Example. Take f(x,y) = y? and ¢(x, y) = x*y + xV. Then v(p) = N
and v®@(p) = min{2k + N, 2N}. Observe that the type of f is A4,,_; with

m = v@(p) — v(p).

6.5. Let f = f--- flgbeas above. For 1 < i < r we now have valuations
ng) as in the preceding definition. Recall I'* (N, ..., N,) is obtained from the
EN-diagram I" of f by replacing all multiple arrows as in the last picture.

THEOREM. Suppose ¢e 2 satisfies v@(@) = v2(9) - - vP(9) < .
Then f + €@ has, for almost all € + 0, the topological type given by EN-
diagram T*(N,,...,N,), with for 1 <i<r:

(@) N;i=0P©@) —vi(@) — ¢ if vil(g) <o, or
(b) N;=20(0/f))— ¢ if vi(p)= o,
provided that N; > N;, for all 1.

Proof. Since the order of ¢|X; is > Ny + ¢; and ¢ is general (use
lemma 6.1), the good minimal resolution of f +&¢@ also resolves the
singularities of f. So the EN-diagram of f is a subdiagram of that of f + €¢.
Hence, according to theorem 3.4, f + e¢ has the EN-diagram:

« 1 ¢ ° T Tl .

for certain numbers q;, (1 <i<r). It remains to prove that g; equals the
number NN, stated in the theorem.

For this purpose we consider one specific i at the time, and draw f; in the
same picture as f + €¢. That is, we draw the EN-diagram of their product,
unless f; happens to be a branch of f + e¢. Using an argument analogous
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to the one presented in section 3.3 (which provided the two possible extensions
to the EN-diagram), we conclude that the situation near f;is as in one of the
five following cases:

/2 1 ﬂLl
1

In each picture, the arrow pointing downwards represents f;. Observe that
when f; is removed (replaced by a dot) we get back the situation of the
original picture as it should. We now compute g; in each case, using the inter-
pretation of the valuations as intersection numbers with f,;. Recall that they
can be computed by walking from arrow to arrow in the EN-diagram, see
[EN], section 10. To clarify matters, we explain in each case the local situation
as follows. In the resolution of f we take suitable local coordinates u, v near
the strict transform of the branch f;in such a way that f; = v2 and that the
branches of f + ep near f; have the form mentioned.

Pictures #1, #2 and #5: One computes v;(Q)=g¢g; + ¢; and
v = 2g; + 2¢;. Therefore g; = N;. In picture # 1, g; is odd and in picture
# 2 even. In both cases the local situation is v(v? + u®) with s = g; — Njy. In
picture # 5, the two branches have intersection number B > ¢;/2 with each
other.

Picture #3: One computes v;(¢) = o and v;(p/f;) = q;/2 + c;.
Therefore g; = N;. The local situation is v (v + u*/?) with s as before.

Picture #4: One computes 0(¢) =g/2+a+c¢ and 02 (p)

= 3q;/2 + a + 2¢;. Again we obtain that ¢; equals the number N, of the
theorem. The local situation is v(v2 + us/2p + uo+s/2), ]

6.6. Remark. We want to point out at this point that it is easy to find a
¢ satisfying the condition. One can use the method of [EN], pages 57-58. An
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interesting observation is, that in general the monomials of ¢ themselves will
have a smaller order in 7 than ¢.

6.7. THE CASE THAT f IS ARBITRARY.

If f=f"" - f"g with f; irreducible, m; > 2 and g reduced, we still
have that f + €@ has the diagram of f with the multiple arrows replaced. We
know exactly which replacements are possible (see section 3.8). To find out
what is the type of f + €0, it again suffices to investigate linking behaviour.
Some possibilities that only become apparent when f; and f + e are drawn
in one diagram (that is the diagram of their product), have to be opted out
by considering linking with cables which are known to be correct, using such
valuations as v®@.

Although the tests become increasingly difficult, this gives a way to
generalize theorem 6.5.

6.8. IOMDIN TYPE SERIES.

We end with a remark on series of the form f + &/*, where / is a linear
form not tangent to any branch of f and k& > k,, the largest polar ratio of
f. These series have been studied by Iomdin and L&, see [L€], not only in the
curve case but for general dimensions. Siersma [Si] has given a formula for
the A, of these series. In the curve case this is just a special case of our results.
Notice that:

vi(l) =dik where di=¢e(X)=2%"1,
vP () = 2dik .

We would like to stress again that these Iomdin type series are generally much
coarser than our topological series: they are single indexed and for example
the Milnor number increases with steps of d = d;, + -+ - + d, within the
series.

APPENDIX

In this appendix the EN-diagrams of the series of plane curve singularities
listed in [AGV] are drawn.

The first part consists of the exceptional families E, W and Z.

The second part contains the infinite series A, D, J, W, W#, X, Y and
Z. All variants are given. In the tables, we have that:
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(a) p = the Milnor number;
(b) N, and the graph constant ¢ are as in theorem 3.4;

(c) A% isthe Ay of the non-isolated singularity, the A, of an element of the

series can be obtained by multiplying with >-< — (= 1)V,
Name | Formula 7 EN-diagram
3k+1
Esp y3 + g3kl 6k Ts
2k+1
Eerp1 | y° + 22ty 6k + 1 iz
3k+2
Feryo | y3 + z8k+2 6k + 2 i:i
4k+1
Wiar | y* + ztkH1 12k ' T4 '
3k+1
Wioksr | y* + ya3kt+? 12k + 1 ia
3k+2
Wiskys | y* + ya36+2 12k + 5 is
4k+3
Wiskye | y* + yz3kt3 12k + 6 i4
3 3k+4
Zekv11 | T(Y° + yz2Ft3 4 23%44) | 6k 4 11 Is
3 2%k4+3 | .3k ._A;T__,% 3
Zek+12 | z(y° + yz + 235+3) | 6k + 12 2
3 2k+4 3k 3k+5
Zek+13 | o(y® + yo2ktd 4 g3545) | 6k 4 13 Ts >
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Name | Formula I EN-diagram
1
Y 0 (2) AS =57
AO Yy 0 b b > 2> N = P+ 1>
Ay y2+w2 1 — No=1,¢c=0
N
AP y2 + xp+1 P l2
Dy zy? 1 -—(2) A® =1
2 3 Y2 2 '5> N = D—- 2’
Dy |zy*+a 4 | No=2,c=1
N
D, | a+ar ’ g
k 3k _
Jeso | 4% +2ky? 3k—2 ) T " A=t =1
' 3 -1
k > 2 >1l,¢c= ]C
3 k 3k _ k Z 4p2 i,
Jk0 v+zfy+z 6k—2 ——%—‘ N = p+2k, No = 2k
k N
Jk,p y3 o= xky2 4 r3k+p Gk——?-{-p I I2
Wk y4 + y2$2k+1 8k+1 ’_251:72—' (2) AOO — t8k+4 = ]
100 -1
k>1,p>1
W, 4 2..2k+1 4k+2 2k+1 Z Lp2 4,
ko | Y Ty +z 12k+3 2 N=p+2k+1
%% 44 y242k+1 4 g4k+24p | 19K+ 34 N x No=2k+1,
k,P y y p c = 2k + 1
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Name Formula 7 EN-diagram
2k+1 4k+2
Wio | (B2 +a2+1) 4k e Ap=* m JE 1
2k+1 N
>
W’fzq_l (y® + x2k+1)2 + yadktite 12k+2¢42 °—j'—*>—T—‘>2 : ’ _é,q > 1,
2k+1 N'/2
N =8k+2¢+3
# 2 2k+1)2 2..2k+1+
Wk,?q (y + T ) + y Z q 12k+2q+3 ‘2 NI — 8k + 2q+4
Xoo y4 + z2y2 5 . o o (2) A:o — t4 _1
4, .22 .4 p210,N=p-1,
Xo yt+ iyt + 2 9 v—}-— No=9.c—2
N
X, y4 + z2y? 4 pitr-9? p ‘—T——f——'
44  h,3 4 o 2h,2 hl o _ (#*h 1)
Xh,o0 ¥+ zy + 2y 8h—3 (2) AP = 1
h2>2,p2>1,
X vt + 2Py + 2?hy? 4 23hy | 12R-3 -—"<< N =p+2h,
’ No = 2h,c=2h
Xhp yd + zhyd + 2?hy? 4 24hte | 12h—34p . h[ N
L
Yoo,00 x2y? 4 @ @ AZ® =1
742
) r,s> 1
447 2,2 * iz " 18 2 4,
lf‘r,oo Y + z°y r+45 1 = cp =2
24r 2+s
Yr R y4+r + x2y2 + $4+s 9+r+s 2 2
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Name | Formula 7’ EN-diagram
YA o 4h—2 ® Ih @ h>2,7,8>1
24T 24s
Y | See [AGV], p. 248 12h+r45-3 2 h
Zroo | TY3+ zht+2y2 3k+5 v_LT_—b A® = 3kt _ 1
k,p>l,e=k+2
Zro | zyd + aht2y? 4 o3k+4 6k+9 N=p+2k+2,
No=2k+2
k N
Zrp | zy® + 2kt2y? 4 23k+44p | 6k4+94p l 2
AR =
Z;'J,oo 8h+3k—3 l I (t4h_1)(t4h+3k_1)
-1
h2>2 kp2>1,
ZP, | See [AGV], p. 249 12h+6k— P ’
o ee [ l,p T 3 ’—T_L%‘ No = 2h + 2k,
c=2h+k
h, hik N
Z,';'p See [AGV], p. 249 12h+6k—3+p | l §2
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