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12 L. H. KAUFFMAN

is admissible and contributes (—z)*8 to the summation for the negative trefoil

IV. A SKEIN MODEL FOR THE KAUFFMAN POLYNOMIAL

The work of section 3 goes over essentially verbatim for the Dubrovnik
version of the Kauffman polynomial. Recall that in this context a template
is obtained by first orienting the edges of the universe U underlying the
unoriented K, and then labelling the edges of U.

The chart in Figure 7 shows the cases of admissible splices at crossings
(with respect to the skein template algorithm). Each splice has been labelled
with its corresponding vertex weight. Note that a splice is admissible if it
indicates the form of passage that is obtained from an approach to the
crossing that meets it as an under-crossing. Such approaches give active
crossings in the skein template algorithm.

I have retained only the arrow for the first passage after each split,
because the orientation on the other edge may change under the direction
of the template. The crossings are oriented because each end-node (unlink)
produced by the skein template algorithm acquires an orientation from the
directions of travel given by the template.
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In order to understand the pattern of these admissible splices, consider
an unoriented crossing

I have labelled two of its regions 4. These are swept out by turning the
overcrossing line counterclockwise. The other two regions are labelled B.
The A-splice of the crossing is that splice that joins the two regions
labelled 4. The B-splice joins the two regions labelled B.

We then see that a passage is admissible in the A-splice if it occurs on
the right for an observer who stands in between the strands, facing in the
direction of the passage from basepoint. Similarly, the admissible B-splices
are on the left for such an observer.

Call an admissible splice negative if it is of B-type. (This receives a
(—z) in Figure 7.)

With these definitions we have

t(L) = number of splices to obtain L from K .

t (L) = number of negative splices .

Au (K, T) = set of admissible unlinks relative to K and T (here K is
unoriented).
Then the Dubrovnik polynomial is given by the formula

Dy = Z (_I)I‘(L)Zt(L)aW(L)HILI—l
LeAu(K, T)

(R=1+(a—a"1)z).

As a state-expansion we can write

D/\, = z(D}: + D.:() - Z(DM+ DM)
+ a(Dx, + DP(+ DN+ D,§<)
+ éi(DK + D% + D)<+ D§<).

Once again,

DK = Z <KIL> H]Ll—l

LeAu(K, T)
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where <K | L> denotes the product of vertex weights (all relative to the
given template). Independence of the template follows from the well-
definedness of the polynomial itself.

Remark. It would be very interesting to know the relationship between
this state model for the Kauffman polynomial and the extraordinary model
of Jaeger [34]. Jaeger gives a state expansion where the states are a collection
of oriented knots and links. Each state is itself evaluated via the regular
isotopy version of the Homfly polynomial.

V. GRAPH POLYNOMIALS

The two skein polynomials (Homfly and Kauffman) each have three
variable extensions to rigid vertex isotopy invariants of 4-valent graphs
imbedded in three-space. This construction has been announced in [45].
(See also [56] and [74].) Our skein models involve 4-valent graphs implicitly,
and so give rise to a natural definition for these extended polynomials as state
models.

Let the new variables A and B be given, with z = A — B the usual z
for the skein polynomials. The extended polynomials are then defined by
the axioms:

HoMFLY EXTENSION AXIOMS

o = R
e Bop = dinay + By

R\/I: BR/\_z+ RE,
2 RK = usual regular isotopy
Homfly polynomial if K is
free of graphical vertices ().

KAUFFMAN EXTENSION AXIOMS

1. DXZADx‘f'BD)("}'DX,
D

K= usual regular isotopy

Dubrovnik polynomial if K is

free of graphical vertices (X).
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