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CONTACT GEOMETRY AND WAVE PROPAGATION )

by V.I. ARNOLD

Dedicated to the memory of O.P. Shcherbak

§ 1. BASIC DEFINITIONS

Symplectic geometry is at present generally accepted as the natural basis
for mechanics and for the calculus of variations.

Contact geometry, which is the odd-dimensional counterpart of the
symplectic one, is not yet so popular, although it is the natural basis for optics
and for the theory of wave propagation.

The relations between symplectic and contact geometries are similar to
those between linear algebra and projective geometry. First, the two related
theories are formally more or less equivalent: every theorem in symplectic
geometry may be formulated as a contact geometry theorem, and any assertion
in contact geometry may be translated into the language of symplectic
geometry. Next, all the calculations look algebraically simpler in the symplectic
case, but geometrically things are usually better understood when translated
into the language of contact geometry.

Hence one is advised to calculate symplectically but to think rather in
contact geometry terms.

Finally, most of the global, topological results are more natural in the
contact gometry context, and so we can up-date the well known slogan
““projective geometry is all geometry’’ by saying ‘‘contact geometry is all
geometry’’. For instance, most of the facts of the differential geometry of
submanifolds of Euclidean or of Riemannian space may be translated into the
language of contact geometry and may be proved in this more general setting.
Thus we can use the intuition of Euclidean or Riemannian geometry to guess
the general results of contact geometry, whose applications to the problem of

1) Survey lectures given at the University of Oxford in November and December 1988
under the sponsorship of the International Mathematical Union.

This article has already been published in Monographie de | "Enseignement Mathématique,
N° 34, Université de Genéve, 1989,
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ordinary differential geometry provide new information in this classical
domain.

Definition. A contact structure on an odd-dimensional manifold is a field
of tangent hyperplanes, which is generic at every point.

These hyperplanes are called the contact hyperplanes (of a given contact
structure).

By a theorem of Darboux (that we shall prove later) all the generic fields
of tangent hyperplanes are locally diffeomorphic to each other. Hence one may
consider one particular example of a contact structure on a manifold of a given
dimension, and substitute the genericity condition by the condition of being
equivalent to the chosen normal form.

Such a normal form may be described as the field of hyperplanes given by
o = 0, where

(1) o = dy — pdq

(here y,p = (p1s.-»Pn)> 9 = (q1, ...,qn) are called the Darboux coor-
dinates).

The nondegeneracy condition for the field a = 0 is o (do)” = 0. Or,
equivalently, do defines a bilinear symplectic structure on each contact hyper-
plane o = 0. Instead of the normal form (1) one uses also such forms as

(2) o = dz + (pdq—qdp)/2 .

These coordinates are also called Darboux coordinates (sometimes the 2 is
dropped or some of the signs are inversed).

Example 1. Let us consider the set of 1-jets of functions f: V" — R.

Let (qi, ..., q,) be local coordinates on V' = V" and y be the coordinate
in R. A 1-jet of a function y = f(q) is defined by the value of the function
and of its first partial derivatives at a given point. Hence the manifold of all
1-jets JU(V,R) is of dimension 2n + 1, and its local coordinates are
(Dis .oy Pny Qis---»Gn3Y), where p, = 0f/0q, (in PDE the coordinates
(p, g, y) are usually denoted by (&, x, u)).

The manifold of 1-jets is equipped with a natural contact structure defined
locally by the equation

This contact structure is independent of the particular choice of the coordinates
and hence is defined globally. To see this, let us associate to any function f
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its 1-graph, which is the set of its 1-jets at all the points of V. The tangent
spaces to the 1-graphs of all the functions at any given point of J LV, R)
belong to a hyperplane in the tangent space to J' at that point. This hyper-
plane’s local equation is dz = pdg. Hence this equation defines a hyperplane
independent of any coordinate system: it admits an intrinsic definition, given
above.

This contact structure of the manifold of 1-jets is called its canonical (or

natural) contact structure. '
Example 2. A contact element on a given manifold is a hyperplane in a

tangent space. The set of all contact elements on a given manifold B = B™ is
fibered over B, and the fibre over a point of B is the projectivized cotangent
space of B at this point (called the point of contact).

This set of all contact elements of B is called the space of the projectivized
cotangent bundle PT*B. Its dimension 2m — 1 is odd and it carries a natural
contact structure.

This structure is defined by the following construction. A velocity of
motion of a contact element is called admissible if the velocity of the point
of contact belongs to the contact element. It is easy to see that the admissible
velocities form a hyperplane at any given point of PT*B, and that these hyper-
planes define a contact structure.

The set of all the contact elements, tangent to any particular submanifold
of B, is an integral manifold of this contact structure of P7*B. The dimension
of such integral manifolds is independent of the dimensions of the original sub-
manifold: it is always m — 1, that is almost one half of the dimension of the
whole contact manifold.

The integral submanifolds of this maximal dimension of a contact structure
are called Legendre manifolds.

Thus to every submanifold of the base manifold B there corresponds a
Legendre submanifold of the contact elements’ manifold P7*B. For instance,
let us start with a point of B (a 0-dimensional submanifold). The corresponding
Legendre manifold is the fibre of the bundle P7T*B — B. Hence these fibres
are Legendre submanifolds. A fibration (or a foliation) of a contact manifold
whose fibres (leaves) are Legendre submanifolds is called a Legendre fibration
(foliation). Thus the projectivized cotangent bundle is a Legendre fibration.
Another example is the natural fibration J!(V, R) — JO(V, R) which is the
“forgetting of the derivatives’’ mapping.

At the other extremity we have the hypersurfaces of B. In this case the
Legendre submanifold consists of the tangent spaces of the hypersurface. It
is naturally diffeomorphic to the hypersurface.
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Example 3. Let us consider the particular case PT*P" (the base space is
the projective space). In this particular case there exists a natural isomorphism

PT*P" ~ PT*(P")

where P"* is the dual projective space of P”. This isomorphism associates to
‘a contact element of P~ (that is to a projective hyperplane and to one of its
points) the dual contact element of P™* (consisting of the projective hyper-
plane considered as a point of P™*, and of the point of P”, considered as a
hyperplane in P7*),

Thus our manifold of contact elements of the projective space is equipped
with two contact structures: the first is that of P7*P”, the other comes from
Pr*pas

These two contact structures coincide. (This is a non-trivial theorem having
an easy geometrical proof; I leave to the reader the pleasure of discovering it.)

Now let us consider a smooth hypersurface in P”. Its tangent contact ele-
ments form a Legendre submanifold L in PT*P". The fibration
PT*P" — P™ is a Legendre fibration. The image of our Legendre submani-
fold L in P™* is called the dual hypersurface of the initial one.

We see that the dual hypersurface of a smooth hypersurface is the image
of the corresponding Legendre submanifold of PT*P" under the Legendre
projection PT*P" — P+,

The image of a Legendre submanifold under a Legendre projection is called
the front (of the corresponding Legendre submanifold). Hence the dual hyper-
surface is the front of the Legendre submanifold of tangent hyperplanes of
the initial hypersurface.

The affine version of this projective construction is called the Legendre
transformation. More precisely, if the initial hypersurface is given by the equa-
tion z = f(q), and the dual one by w = g(p), then the function g is called the
Legendre transformation of f.

The triple L — E — B where the left arrow is the embedding of a Legendre
submanifold and the second is a Legendre fibration is called a Legendre
projection. A germ of a Legendre projection at a point is called a Legendre
singularity.

An equivalence of two Legendre projections (or of two Legendre singu-
larities) is a commutative diagram
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whose vertical maps are diffeomorphisms, such that the middle vertical map
preserves the contact structure.

Equivalent Legendre projections (or singularities) have diffeomorphic
fronts.

Example 4. Let us consider a hypersurface in a Riemannian manifold.

The equidistant hypersurfaces are the fronts of the appropriate Legendre
mappings.

To see this let us consider the geodesic flow of the oriented contact
elements. At time ¢ the element contact point moves at distance ¢ along the
geodesic, orthogonal to the element, in the direction defined by the
co-orientation. And the moving contact element is always orthogonal to the
geodesic.

The geodesic flow of contact elements of B is a one-parameter family of
diffeomorphisms of the manifold ST*B of co-oriented contact elements.

THEOREM. The geodesic flow of contact elements preserves the natural
contact structure of the manifold of contact elements.

This non-trivial geometrical theorem is one of the formulations of
Huygens’ principle, which describes the moving wavefront as the envelope of
the spherical fronts issuing from the points of the initial front.

The diffeomorphisms of a contact manifold preserving contact structures
are called contactomorphisms. They form the contactomorphism group of the
manifold — one of the (pseudo) groups of E. Cartan’s list of series of simple
infinite dimensional groups (the other series are the diffeomorphism groups,
the symplectomorphism groups, the biholomorphism group and so on).

Remark. Locally any contact structure is defined as the field of zeroes
of an 1-form; any such form is called a contact form (associated to a given
contact structure). Sometimes one can choose such a form globally (this is the
case, for instance, for the 1-jet space’s natural contact structure).

In such cases one is tempted to consider the group of diffeomorphisms,
preserving the contact form (which is only a subgroup of the true group of
contactomorphisms). Some bad people require contact transformations to be
elements of this subgroup. This is a mistake to avoid: the subgroup is not

intrinsically related to the contact structure, it depends on the particular choice
of the contact form.
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Example 5. The pedal hypersurface of a given hypersurface in the Eucli-
~ dean space is formed by the points where the tangent hyperplanes meet the
perpendiculars issuing from the origin.

The pedal hypersurfaces of smooth hypersurfaces have singularities. Some
experimentation shows that they are (generically) the same as singularities of
(generic) equidistants or that of hypersurfaces dual to the (generic) smooth
ones of the fronts of the generic Legendre submanifolds.

For instance, in the case of plane curves the generic front singularities are
just cusp points of order 3/2 (the front being locally diffeomorphic to the semi-
cubical parabola x? = y3). The generic singularities of the front surfaces in
the usual 3 space are cusped edges and swallow tails — the surfaces, locally
diffeomorphic to the set of polynomials x* + ax? + bx + ¢, having multiple
(real) roots (this swallowtail hypersurface has been studied by Kronecker).

Example 6. Let us consider a smooth hypersurface in a Euclidean space
(the origin excluded). The family of all the hyperplanes, normal to the radius-
vectors of the hypersurface of all the points of the hypersurface has an enve-
lope. This envelope may have singularities. Some experimentation shows that
they are the same as those of the fronts, equidistants of the graphs of the
Legendre transformations and so on, as in the preceeding example.

The geometric reason for these coincidences is that in all these different
cases, there is somewhere a Legendre singularity.

THEOREM. The transformations leading to the singular hypersurfaces of
examples 5 and 6 may be described as products of the projective duality trans-
formation and the inversion transformation. (The order of the use of these two
involutions in the two examples is different.)

Since the inversion transformation is a diffeomorphism, the singularities
of examples 5 and 6 are Legendre singularities.

Example 7. Let V = V2" be a vector space of dimension 2n, equipped
with a linear symplectic structure (a nondegenerate bilinear skew-symmetrical
form). The projectivized space P?"~! carries a natural contact structure. (We
associate to a point of V its skew-orthocomplement hyperplane, thus defining
a hyperplane field on P?"-1))

This contact structure is invariant under the natural action of the linear
symplectic group on P?*-1,

Example 8. Let V = {apx? + ... + azy9 be the vector space of all binary '
forms of degree d. The group SL, of linear unimodular transformations of
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the (x, y)-plane acts on V. If d is odd, the dimension of V which is d + 1 is
even and V carries a linear symplectic structure, invariant under the SL,
action. This 2-form is unique up to a nonzero multiple. It defines on V a trans-
lation invariant symplectic structure.

[The explicit formula for this structure may be described in terms of the
Darboux coordinates reducing the symplectic form to Xdp; A dg;. The expres-
sion of the binary form ¢ € V in terms of these Darboux coordinates is

CD(X, 1) = QIXd + . Qan - ann—l + .+ (__1)np1
where X, = x/fj!, d =2n—1

and the signs preceeding the p,’s alternate.] _
Combining this natural symplectic structure of the space of binary forms
with the construction of example 7 above we obtain:

PROPOSITION. The projective space of the 0-dimensional hypersurfaces
of degree d = 2n — 1 of the projective line carries a natural PL(2)-invariant
contact structure.

[For instance, in the domain of the projective space of hypersurfaces
represented by the polynomials ¢(x, 1) with g, = 1, the above contact
structure is defined as the set of zeroes of the 1-form

o = p'dq — q'dp’ — dp,
p/ = (pZJ"'J pn)? q’ = (q?.:"': qn)] g

COROLLARY. The set of 0-dimensional hypersurfaces of degree 2n — 1
containing any given point with multiplicity n (or higher than n) is a
Legendre submanifold.

This follows from the above explicit formula for the case of the point

x = 0. Since the contact structure is PL, invariant, it is still true for any given
point.

Example 8. The Gibbs (1873) ‘‘graphical methods in thermodynamics’’
is pure contact geometry. Let v be the volume, p the pressure, ¢ the (absolute)

temperature, € the energy, m the entropy. The contact structure of ther-
modynamics is defined by the equation

de = tdn — pdv.
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Every substance is represented as a Legendre 2-surface in this
5-dimensional contact manifold of the thermodynamical states. Different
physical states of the same substance correspond to different points of this
Legendre surface, but the evolution of state is severely restricted by the contact
structure.

§2. CHARACTERISTICS

Let us consider a hypersurface in a contact manifold.

Example 1. A hypersurface in the manifold of 1-jets of functions is called
a 1% order nonlinear differential equation.

Example 2. Let us consider pseudo-Euclidean space-time. Among all the
contact elements of the space-time one distinguishes the light elements: those
tangent to the light cone. The light elements form a hypersurface in the contact
space of all the contact elements of the space-time.

More generally, a hyperbolic PDE (or a hyperbolic system of PDE) defines
a field of ““Fresnel cones’’ (of cones of zeroes of the principal symbol) in the
cotangent spaces of the space-time manifold. This field defines the ‘‘light
hypersurface’’ in the contact space of all the contact elements of the space-time
manifold. The contact geometry of this hypersurface is crucial for the
understanding of the propagation of the waves defined by the hyperbolic equa-
tion (or system).

The tangent plane to a hypersurface in a contact manifold is generically
different from the contact plane (they coincide, generically, at some isolated
singular points of the hypersurface). Let us first consider the nonsingular
points. At a nonsingular point the hypersurface in the contact manifold carries
a distinguished tangent line, called the characteristic direction. The word
‘“‘characteristic’’ in mathematics always means ‘‘intrinsically associated’’.
Thus the characteristic equation of a matrix of an operator is independent of
the basis, the characteristic subgroups are invariant under automorphisms, and
SO on.

The characteristic direction at a given point of a hypersurface in a contact
manifold may be defined as the only direction associated intrinsically to the
hypersurface and to the contact structure. Indeed, the subgroup of the contac-
tomorphisms which preserve the point and the hypersurface, preserves exactly
one line tangent to the hypersurface at this point. (We still suppose that the
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tangent plane of the hypersurface is transversal to the hyperplane of the con-
tact structure at this point.)

One might prefer a more explicit definition of the characteristic direction.
For the simplest case of a 3-dimensional contact manifold it is the intersection
of the contact plane with the tangent plane of the hypersurface at the given
point.

In the general case the intersection is not a line, but a hyperplane in the
contact hyperplane. To transform a hyperplane into a line, we use the natural
(conformally) symplectic structure of the contact hyperplane.

Let a be a contact form, defining (locally) our contact structure, a = O.
The 2-form da defines the bilinear symplectic structures in the contact
hyperplanes o = 0.da is nondegenerate at the plane a = 0, since a is a contact
form. The 1-form a is defined up to multiplication by nonzero functions. Since
the 2-form d(fa) = dfaa + fdo is reduced to fda at the plane a = 0, the
bilinear symplectic form da in the plane o = 0 is well defined up to a nonzero
constant multiple.

The characteristic direction at a point of a hypersurface in a contact
manifold is the skew-orthocomplement to the intersection of the tangent plane
of the hypersurface with the contact plane at the given point. The characteristic
direction of a hypersurface is tangent to the hypersurface, since the skew-
orthocomplement of a hyperplane in a symplectic space belongs to the
hyperplane.

The integral lines of the field of characteristic directions are called the
characteristics of the given hypersurface.

Example. Let us consider the hypersurface K = 0 in the space with con-
tact structure a = 0, where

[After some calculations] one finds the equation of the characteristics:

. p . q . p q
p = —Kq—l-EKz, q—-Kp+§Kz, z = —EKP——z—Kq.

Example. The characteristics of the light hypersurface in the projectivized
cotangent bundle of the space-time manifold defines the wave propagation for

the corresponding (pseudo) differential hyperbolic equation. This is one more
form of the Huygens principle.
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A submanifold of a contact manifold, tangent to the contact planes, is
called an infegral submanifold of the contact structure. For instance, a
Legendre submanifold is a maximal integral manifold.

Let us consider an integral submanifold of the contact structure, lying in
a given hypersurface of the ambient contact manifold. Let us suppose that the
characteristics of the hypersurface are nowhere tangent to the submanifold.
An easy fact on characteristics is the following

THEOREM. The characteristics, issuing from points of the given integral
submanifold, form (at least locally) an integral submanifold.

COROLLARY 1. The characteristics of a Legendre submanifold belong to
the submanifold.

This property of the characteristics can be used as their definition.

COROLLARY 2. If the dimension of the integral submanifold in the
theorem is one less than the dimension of a Legendre manifold, then the
characteristics intersecting the submanifold form (at least locally) a Legendre
submanifold — the unique Legendre submanifold of the hypersurface contain-
ing the given integral submanifold.

This corollary contains the theory of the Cauchy problem for first order
nonlinear PDEs. Such a PDE F(p, g, y) = 0 defines a hypersurface in the space
of 1-jets of functions y(g), equipped with its natural contact structure
dy = pdq. The initial data define an integral submanifold. The characteristic’s
equation is

Z]:Fp: b:_Fq—pr, 5):pr

The Legendre submanifold, formed by the characteristics, is the 1-graph
of the solution.

As another example let us consider a hypersurface in space. The contact
elements of space-time, tangent to this submanifold and belonging to the light
hypersurface, form an integral submanifold of the contact structure. The
characteristics of the light hypersurface, issuing from points of this sub-
manifold, form a Legendre submanifold of the light hypersurface in the space
of contact elements of the space-time which is called the big front. The intersec-
tions of the big front with the isochrones are called the momentary fronts.
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Thus the light hypersurface of the projectivized cotangent bundle of the
space-time (considered as a hypersurface in a contact manifold) defines both
the evolution of the wave fronts (the Legendre manifold) and the rays (the
characteristics). This description of the wave propagation is one more formula-
tion of Huygens’ principle.

There exist two other types of characteristic in a contact manifold. Let us
consider a contact form o on a contact manifold (a form, defining its contact
structure, oo = 0). Such a form might be nonexistent globally and it is not
intrinsically defined by the contact structure, but we can choose it locally.

The 2-form do is as nondegenerate as possible for a skew-symmetric 2-form
in an odd-dimensional space — it has at every point a 1-dimensional kernel.
This kernel direction is called the characteristic direction of the contact 1-form
a. It is the only direction, associated to the 1-form intrinsically (i.e. preserved
by the contactomorphisms which do not change the form).

The integral lines of this field of directions are called the characteristics
of the 1-form. They are transversal to the contact planes.

Example 1. The characteristics of the form dz — pdg are the vertical
lines generated by the vector field 8/8z. The same is true for the form

dz + P44~ qdp
2

Example 2. Let us consider the standard embedding of S3 in C? or in the
standard symplectic R*. The complex structure of C2 defines on S3 a field of
complex lines, which is a contact structure.

The symplectic structure of R* also defines on S3 a field of 2-planes (con-
sider the skew-orthocomplements to the radius-vectors). This 2-plane field
coincides with the contact structure induced on S3 by the complex structure
of C? and is called the natural (or standard) contact structure of S3.

This structure may be defined globally as the field of zeroes of an
SU(2)-invariant 1-form. This 1-form is unique up to a scalar multiple.

The characteristics of this 1-form are some of the great circles of the sphere.
They are the fibres of the Hopf fibration S3 — S2.

In both these examples the characteristics of a contact form form a
symplectic manifold. Indeed, the 2-form da is well defined on the space of
characteristics, since it vanishes along the characteristics.

COROLLARY. Let us consider any Legendre curve (that is, any integral
curve) of the contact structure in R* defined by the contact Jorm dz — pdg.
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Then there exists at least one characteristic chord of this curve (that is, at
least one characteristic of the form intersecting the curve twice).

Proof. Let us consider the projection of the curve along the
characteristics to the space of the characteristics (that is the projection to the
(p, g-plane) along the vertical z-lines). Since the curve was a Legendre curve,
its projection is a 0-area curve (gipdqz()). Hence the projection has self-
intersections, and the Legendre curve has characteristic chords.

An old conjecture on the contact 1-forms defining the standard contact
structure on S3, is the existence of characteristic chords for any Legendre
curve (warning: a characteristic chord may have geometrically only one com-
mon point with the Legendre curve if this chord is closed, i.e. diffeomorphic
to a circle).

This is a particular case of a set of general conjectures in the higher-
dimensional contact topology of Legendre manifolds of greater dimension.
These conjectures are not discussed here since even the simplest case of
Legendre curves in S? still remains unsettled.

The two-sided relation between the contact and symplectic geometries
depends on the fact that one can obtain an even number from an odd one either
by adding or by subtracting one.

THEOREM. The manifold of the characteristics of a contact form has a
natural symplectic structure.

Example. Let us consider the unit sphere S?'-1 C C” with its natural
contact form. The space of characteristics is CP” with its natural symplectic
form. Let us consider a contact structure, defined globally by a contact form.

THEOREM. The total space of the bundle of all the linear forms on the
tangent spaces to a contact manifold, which are zero exactly on the contact
hyperplanes, has a natural symplectic structure.

Indeed, this manifold is fibred over the contact manifold (with fibres R\0).
Each point of the bundle is a linear form on the tangent space to the total
space at our point. This way we define a canonical 1-form a on the total space.
The required symplectic structure is da.

The symplectic manifold thus obtained is called the symplectization of the
original contact manifold.
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Conversely, one may start from a symplectic manifold and obtain (at least
locally) a contact manifold whose dimension is greater by 1 or smaller by 1
than that of the symplectic manifold.

The two standard models for this are the fibrations

JYV,R) — T*V
contact symplectic
dy — pdg dp ~ dg
and
T*B\B - PT*B
symplectic contact
dp ~ dq pdg = 0.

We may think of J1(V, R) as being the contactization of T*V and of T *B\B
as being the symplectization of PT *B.

Example. Let L be an (immersed) Legendre submanifold of J!(V,R).
Then its projection to T*V is an (immersed) Lagrange submanifold of T*V.

Let us start with an arbitrary connected Lagrange submanifold A in T*V.
Let us fix a point in J(V, R) over some point of A. Then locally there exists
one and only one Legendre manifold in J!(V, R) containing the fixed point
and projecting diffeomorphically to A (y=§»pdq is locally independent of the
path joining two given points).

But globally such a Legendre manifold might exist or not exist. In the first
case the initial Lagrange manifold A is called an exact Lagrange manifold
(since in this case the 1-form pdq is exact on A).

For instance, the graph of the differential of a function on ¥V is an exact
Lagrange submanifold of 7*V.

Definition. A quasifunction on V is an imbedded Legendre submanifold
of JI(V, R), which is isotopic to the zero section in the class of the imbedded
Legendre submanifolds.

A quasicritical point of a quasifunction is a point where its Lagrange pro-
jection intersects the zero section of T*V.

THEOREM (Tchekanov). The number of quasicritical points of a quasi
Sfunction on a compact manifold is bounded below by the sum of the Betti
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numbers of the manifold (when counted with multiplicities) and the number
of geometrically different critical points is bounded below by the cuplength
of the manifold.

One conjectures that both the ‘‘algebraic’’ and the ‘‘geometric’’ numbers
are bounded below by the minimal ‘‘algebraic’’ and ‘‘geometric’’ numbers of
critical points of a function on the manifold. But this is proved not for the
functions on the original manifold, but for functions on a vector bundle over
the manifold coinciding with a nondegenerate quadratic form of signature zero
at the infinity of every fibre.

The characteristics of the third type are the orbits of the flows of contac-
tomorphisms. Let us suppose that the contact structure is defined by a global
I-form o and let us fix this 1-form.

A vector field on a contact manifold is called a contact vector field, if its
flow preserves the contact structure. The contact vector fields form a Lie
algebra — the Lie algebra of contact vector fields.

Let V be a contact vector field and let a be the fixed contact form. Then
the function K = a| V' is well defined. This function is called the contact
Hamilton function. If we choose another contact form the contact Hamilton
function acquires a nowhere zero functional multiplier. Hence the hypersur-
face (the ‘‘divisor’’) of the zeroes of K is intrinsically defined by the contact
structure and by the contact vector field. The choice of a global contact form
is a trivialization of the line bundle of the linear forms vanishing on the contact
planes. The contact Hamilton function K is in fact a section of the dual line
bundle. But I prefer to fix a trivialization and to call K a function.

THEOREM. Any function on a contact manifold is the contact Hamilton
function of some contact vector field, which is defined uniquely by this
function.

In Darboux coordinates, where

dq — qd
+pq qap

= d
04 A 5

the contact vector field V with the contact Hamilton function K defines the
“‘contact Hamilton differential equations’’

Ik .
2

b:-—-Kq—l— ézKp—*—%Kz’ ‘.Z:KP_J'—

Since the last part of the theory is computational, it might be easier to under-
stand it from the symplectic geometry point of view.
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Let us consider the manifold of 1-forms in the tangent spaces to our contact
manifold which vanish exactly on the contact planes.

This manifold has a natural symplectic structure (defined above) and a
natural action of the multiplicative group R* of nonzero scalars. It is a prin-
cipal R* bundle over the initial contact manifold.

We lift the contactomorphisms to the bundle space and we obtain the
symplectomorphisms, commuting with the action of the multiplicative group.
The corresponding Hamilton functions may be chosen to be the homogeneous
functions of degree 1 along the fibres.

The choice of the bundle’s trivialization o associates to these homogeneous
functions contact Hamilton functions. The formula for the contact vector field
is the usual formula for the Hamilton field, projected to the contact base from
the symplectic total space (taking into account the homogeneity).

In the same way, the usual Poisson bracket on the symplectic R* bundle
space, restricted to the homogeneous functions of degree 1 along the fibres,
defines a ‘‘Lie bracket’’ on the space of functions on a contact manifold. This
contact Lie bracket is a particular case of a ‘‘Lie structure’’ on a manifold:
it is a Lie algebra structure on the space of functions, the bracket being a first
order differential operator in each of its two arguments.

Lie structures are generalizations of Poisson structures (which correspond
to brackets homogeneous in the derivatives). A Poisson manifold is decom-
posed into a collection of symplectic leaves (manifolds of different dimensions)
unified by the smoothness of the common Poisson bracket. The simplest
example is the Lie-Berezin-Kostant-Kirillov bracket on the coadjoint space of
a Lie algebra. For the SO(3) case the leaves are defined by the equation
M, = const (they are spheres of dimension 2 when the constant is positive,
and their common centre — a symplectic manifold of dimension 0 — when
the constant vanishes).

The leaves are defined as the sets of points, attainable from a given one
by Hamiltonian paths, [namely a Poisson structure on a manifold associates
to a function on the manifold a vector field such that the Poisson bracket with
this function is differentiation along this field. This field is called the Hamilto-
nian field, associated to a given Hamilton function. The Hamiltonian paths
are defined by the time-dependent Hamilton functions (or, equivalently, by
broken paths containing several segments of the time-independent Hamilto-
nian field’s orbits).]

For Poisson structures there exists an elaborate theory of singularities,
mainly reducing them locally to the transversal slice of the singular leaf
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(A. Weinstein). In coordinates the Poisson structure has the form
{a, b} = Ec}k(x)aa/axj 0b/0x; . For the transversal structure all the coefficients
¢ vanish at the origin.

The linear part of the transversal structure defines a finite dimensional Lie
algebra. If this algebra is semisimple, the whole transversal structure is
equivalent to its linear part ([Co]). To be precise, the last theorem holds for
analytic Poisson structures. In the C* case the semisimple algebra should be
the Lie algebra of a compact Lie group.

The problem of the linearization of transverse Poisson structures was
discussed in my 1963 paper [Al]. The reduction of the 3-body problem here
1s based on the study of the Poisson leaves for O(3).

Interesting Poisson structures are provided by the period mappings of the
versal deformations of singular hypersurfaces ([GV]). The simplest of these
Poisson structures lives in the three-dimensional (a, b, ¢) space of the
swallowtail. [It is described axiomatically by the 3 conditions: (i) all the leaves
are two-dimensional, (ii) the self-intersection line of the swallowtail is con-
tained in one of the leaves, and (iii) the leaf containing the origin is transversal
to the tangent plane of the swallowtail at the origin. For the swallowtail
{x*+ ax? + bx + ¢ = (x+ t)?...] the tangent plane is dc = 0.]

One can locally reduce any such structure to the normal form {a, ¢} = 1,
fa, b} = {b,c} =0 by a local swallowtail-preserving diffeomorphism. The
leaves are the vertical planes b = const. The Poisson structure’s normal form
implies this normal form of the corresponding fibration of the space into

planes.
A Lie structure on a manifold, like a Poisson structure, defines a decom-

position of the manifold into submanifold leaves. In this case some of the
leaves are even dimensional symplectic manifolds, while others are odd dimen-
sional contact manifolds ([Ki]).

The transversal structure theory for this case has not been yet constructed,
as far as I know.

From the algebraic point of view Poisson structures are better objects than
honest symplectic manifolds, and general Lie structures are better than
nondegenerate contact ones.

The algebraic objects include automatically all the degenerations of the cor-
responding geometric structures. Perhaps because of this advantage the
algebraic theory is so difficult that it contains almost no general results. The
few general results that I know were first obtained geometrically (for some
mild degenerations) and then the geometrical proofs were translated into the
algebraic language, and hence had become general. The dictionary of the
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translation is simple: one substitutes principal ideals for the hypersurfaces, one
controls the Poisson brackets vanishing at subvarieties by corresponding condi-
tions on the ideals and so on. For instance, the nondegeneracy condition for
the hypersurface f = 01is “‘{f, g} = 1 for some function g”’. The algebraic study
of the degenerate symplectic and contact varieties is an important but almost
unexplored domain.

For instance, let us consider the generalized swallowtail surface
x>+ Ax3+ Bx?+ Cx + D = (x+1)2...} in the 4-space of the versal deforma-
tion of the singularity 44 (i.e. x> or SU(5)). The Givental-Varchenko period
mapping equips this 4-space with a natural symplectic structure (one may find
an explicit formula in the last chapter of the book [AGV]). The generalized
swallowtail has with respect to this structure very special properties (for
instance, the selfintersection subvariety {(x+¢)?(x+s)?...] is Lagrangian,
because different cycles, vanishing at the same critical level of a function, do
not intersect each other. But it is unkown whether this swallowtail is uniquely
defined (up to symplectomorphisms) by the ranks of the restrictions of the
symplectic form to the tangent cones of its strata.

Let us return to a usual contact space, equipped with its Darboux coor-

dinates (p, g, z) and with its Darboux contact form o = dz +M.

Let K, as above, be the contact Hamilton function of a contact vector field
V. We shall denote by a dot over the name of a function the derivative of this
function along V. The explicit formula for the components of the field V in
the Darboux coordinates is given above (it precedes the Lie structure discus-
sion). This formula implies the

COROLLARY. K = KK, Lyo = K0 (where L isthe Lie derivative). If
H(p, q) is a quadratic form, then

H = {K,H} + HK,

where (K, H) = K,H, — H,K, is the symplectic Poisson bracket.

Now we shall compare the three types of characteristics.

Let us fix a contact 1-form o and a function X. Let us consider all the three
characteristic directions at every point: that of the hypersurface K = const,
that of the 1-form o and that of the contact Hamilton vector field, defined
by K.

In general they are different.
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THEOREM. These three lines lie in a 2-plane.

Proof. This is clear from the above formula for the vector field V in Dar-
boux coordinates and from the formula for the characteristics of a hypersur-
face. The only difference is the additional term K9/9z in the formula for V.
This additional term is vertical, i.e. directed along the characteristics of the
I-form a.

Exercise. Find a direct proof, independent of the Darboux coordinates.

The tangent hyperplanes of a generic hypersurface in a contact manifold
coincide with the contact planes at some isolated points of the hypersurface.
Those points are called the characteristic points. They are the singular points
of the field of the characteristic directions.

A smooth generic hypersurface may be reduced to a simple normal form
in a neighbourhood of its characteristic points by a smooth contactomorphism
(Lychagin, 1975). In Darboux coordinates the Lychagin normal form is

z =09,

where Q is a nondegenerate quadratic form. In the complex case one may
reduce Q further to the ‘‘eigenvalues’’ normal form QO = XAyprq, (since
any linear symplectomorphism, (p, q) — (P, §) induces a contactomorphism
(p, q, 2) — (P, 4, 2)).

The classification of characteristic points of holomorphic hypersurfaces in
contact manifolds is very different from this simple normal form. The formal
series, which reduces the hypersurface and the contact structure to their normal
forms is generically divergent.

However in the case of a 3-dimensional contact manifold the situation is
better. Let us consider an implicit ordinary differential equation defined by
the hypersurface F(p, g, y) = 0 in the 3-space of 1-jets of functions y = f(q)
equipped with its natural contact structure dy = pdq and with the structure
of the Legendre fibre bundle J! — J°((p, q, ¥) — (g, ¥)).

The characteristics of the surface F' = 0 projected to the base (g, y)-plane,
are called ‘‘integral curves’ of the implicit differential equation.

For a generic function F' the surface F = 0 is smooth, but its projection
to the base plane may have singularities. Those singularities are generically fold
lines and ordinary Whitney cusp points.

The contact planes are vertical (they contain the fibre directions). Hence
the characteristic points of the surface belong to the fold line (generically those
points will not coincide with the cusp points).
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THEOREM (A. Davydov, 1985). In a neighbourhood of a characteristic
point of the surface F = 0 a generic implicit differential equation may be
reduced to the local normal form

(%) y = (p+kq)?

by a local diffeomorphism of the base (y, q)-plane.

This diffeomorphism is C> for the C<=-equations, analytic for the
analytic equations and so on. The (real) number k is a modulus — a parameter,
on which the normal form depends.

A (local) diffeomorphism of the base space of our Legendre fibration
induces a (local) contactomorphism, of the fibration total space. Hence the
surface, F = 0 is reduced to the special form (*) by a (local) contactomor-
phism. Thus the family of characteristics on a generic surface in a contact
3-space is locally diffeomorphic (in a neighbourhood of a characteristic point)
to the family of the characteristics on the standard surface (*).

The differential equation (*) is easy to solve and the corresponding phase
curves on the surface form (for any generic value of k) one of the standard
Poincaré patterns: the node, the focus, the saddle.

The folding mapping defines an involution on the surface (interchanging
the two counterimages of any base point). The essential part of Davydov’s
proof is the proof of the equivalence of all the generic involutions, occurring
in such a situation. Namely one considers the involutions of the plane, whose
curves of fixed points contain the singular point of a vector field, this field
being anti-invariant under the involution at the line of fixed points of the
involution. Those two properties of the involution and the genericity are suffi-
cient for the stability of the involution with respect to a generic vector field:
all the neighbouring involutions with the same properties may be transformed
into a given one by a diffeomorphism which preserves orbits of the vector field.

The study of singularities of implicit equations was one of the 4 problems
in King Oscar II of Sweden’s list of 1985. (One of the other problems was the
3-body problem and the prize-winning paper of Poincaré was his memoire on
the 3-body problem).

The topological structure of the singular points of implicit ordinary dif-
ferential equations was settled by A.V. Phakadze and A.H. Shestakov (1959);
later this subject was studied independently by Thom (1972), L. Dara (1975),
F. Takens (1976). These last three mathematicians have conjectured that (*)
is a topological normal form (this fact was also proved by Phakadze and

Shestakov and then rediscovered by Piliy and Fedorov, 1970, in the context
of plasma physics).

[ S
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The Davydov theorem implies that (*) is even a smooth and analytic normal
form, which goes much further than all the preceding conjectures in this
domain.

It is interesting to note that these mathematical results of contact geometry
have many different interpretations in terms of different branches of
mathematics and physics.

For instance, the same normal form describes the patterns of asymptotic
lines at some points of a parabolic line on a generic surface in Euclidean
3-space.

It provides also the normal forms for the field of characteristics of a generic
partial differential equation of mixed type, (whose type changes from elliptic
to hyperbolic along some line in the plane of the independent variables).

One may also describe the same Davydov theorem in terms of the theory
of relaxation oscillations in systems with two slow and one fast variables. In
this case the contact structure is defined by a vertical (fast) vector field and
by a small (slow) perturbing generic vector field in the 3-space of slow and
fast variables. The Legendre fibration is defined by the (vertical) direction field
of the fast motion. The surface in the contact space is formed by the equilibria
points of the fast motion. It is usually called the slow surface in relaxation
oscillation theory. The characteristics of this surface describe the orbits of the
slow motion (occurring after the relaxation of the fast motion).

One more example of the application of the Davydov theorem is provided
by the theory of Newton’s equation with 1 degree of freedom X = F(x) — kx.

Let us consider the (x, E) coordinate energy plane, E = x2/2 + U(x),
F = —09U/dx.

The projection of the motion to the (x, E)-plane defines a family of curves
in the domain E > U(x). At the points of the potential wells and of the barriers
(of the minima and of the maxima of U) these curve families have singularities.
The type of the singularity depends on the value of the friction coefficient k&
and on the type of the critical point of the energy. But the family is generically
diffeomorphic to the family of integral curves in the (g, ) plane of Davydov’s
theorem.

Thus the general theorems of contact geometry unify many apparently dif-
ferent theories in many branches of mathematics and of physics, making
transparent the common mathematical structures and features of all these
theories. Hence the contact geometry strategy is to translate the intuition and
concrete results of any of the branches of its application to all the other
branches.
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Let us consider a hypersurface in a contact manifold, which has no
characteristic points. Such a hypersurface is foliated (locally fibrated) into
characteristics. The set of characteristics is (at least locally) a manifold whose
dimension is two less than the dimension of the initial contact manifold.

THEOREM. The manifold of characteristics inherits a contact Structure
from the initial contact manifold.

A formal way of proving this theorem is a direct calculation. According
to the preceding formulae, the characteristics of the hypersurface K = 0 are
the orbits of the vector field W = V — K0/9z, where Lya = K,a. Since

ia/azda = O, ia/az(l = 1, we have
Lya = K,a — dK..

The second term vanishes along the hypersurface K = 0. Thus the flow of
the vector field W on the hypersurface K = 0 preserves the field of hyperplanes
a = 0 and hence defines a field of hyperplanes on the space of orbits of this
field.

Another way of proving this theorem is to consider just one particular case,
say the hypersurface, defined in Darboux coordinates by the equation p; = 0.
In this case the characteristic direction is d/0q,. Hence the space of the
characteristics is the coordinate space with Darboux coordinates (z, p, g¢) where

P =L --yqn) Gd =(q2, ..., qy). Thus the form a = dz +pd%q_dp induces

on the manifold of characteristics of the hypersurface p;, = 0 the form

o = dz +w , as was required.

Now the general case can be reduced to this particular case, since all the
hypersurfaces in a contact manifold are locally contactomorphic in
neighbourhoods of their non-characteristic points, which follows from the
general theorem of Givental, described below.

§3. SUBMANIFOLDS

The submanifolds of a Euclidean or a Riemannian manifold have interior
and exterior geometries. For instance, the Gaussian curvature belongs to the
interior geometry of the Riemannian metric on the submanifold, while the
mean curvature depends on its exterior geometry. In both symplectic and con-
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tact geometries the situation is simpler: the local exterior geometry is reduced
to the interior one.

THEOREM (Givental). A submanifold of a contact manifold is locally
defined (up to a contactomorphism) by the restriction of the contact structure
to the submanifold.

The contact structure is here considered locally as the module of differential
1-forms vanishing at the contact hyperplanes (over the algebra of functions).
The restriction is the module of the restrictions of these forms to the
submanifold (over the algebra of functions on the submanifold). Geometrically
this means that we consider the field of intersections of the contact planes with
the tangent planes of the submanifold, taking the multiplicities into account.

The above theorem follows from a similar theorem on contact forms. We
call a contact form transversal to a submanifold if the characteristic directions
of the form are nowhere tangent to the submanifolds.

THEOREM (Givental). Let us consider a homotopy o, of 1-forms defin-
ing (different) contact structures on a manifold. Suppose that they are all
transversal to a given submanifold, and that they coincide on all the tangent
vectors to the submanifold. Then there exists a diffeomorphism of a
neighbourhood of the submanifold, identical on the submanifold and
transforming o, to .

Proof. By a standard homotopy argument the problem is reduced to the
solution of the ‘‘homology equation”’

LVt o = Bt> Bt = - aat/ata

where V, is the unknown vectorfield, vanishing on our submanifold M and p,
is a known 1-form, vanishing on the tangent vectors to M.

Since the smooth dependence of V on ¢ is easily attainable in the construc-
tion that follows, we omit from now on the subscript ¢ to simplify the nota-
tions.

Let V = U + W be the decomposition of the (unknown) vector field into
its horizontal and vertical parts:

Let W, be a vertical vector for which iy,a = 1. Then W = fW,, f = iyoa. By
the homotopy formula Ly = iyd + di, we obtain
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Thus the homology equation has the form

where B vanishes at the tangent vectors of M and both the unknown function
£ and the unknown horizontal field U should vanish on M.

Let 1t be the geodesic projection of the tubular neighbourhood of M onto
M and p be the operator, associating to any k-chain c in this neighbourhood
the k + 1 chain pc formed by the shortest paths of its points x to mx. Then
d(pc) + p(dc) = c — me. Let p': = Q% — Q%-1 be the dual of p on the

differential forms defined by the identity [ o= [p'w. It is clear that
pc c
p'o is a differential form, vanishing at the points of M on every k-vector of

the ambient space. By duality
pldo +dp'o = o — t*o .

For @ = B, n*P = 0 since P vanishes on the tangent vectors of M. Hence
B =p'dp + dg, g = p'B. The function g vanishes on M and the form p'dp
vanishes at the points of M on every vector of the ambient space. Now the
homological equation takes the form

iyda + df = p'dp + dg ,

where the unknown f and U should vanish at M. Evaluating the left and the
right hand sides at the vertical vector W,, we find

where h = iy,p'dp +EW0dg is a known function. This equation is easily
solved for f (one integrates along the verticals). The solution f can be chosen
to vanish on M (even on any hypersurface, containing M and transversal to
the verticals, i.e. to the characteristics of the form o). After choosing f we
obtain for U the residual homological equation

lvda - Y,

where the 1-form y = p'dB + d(g—f) is zero at the vertical: iy,y = 0, by the
choice of f. The condition iy,y = 0 implies the solvability of the equation
iyda = vy for U. The horizontal solution U(iyo =0) is unique, since the form
do 1s nondegenerate at the hyperplane oo = 0. Hence the horizontal solution
U is smooth.

Now we use the ambiguity of the choice of f to reduce U to zero at M.
The function f is defined uniquely adding a function which is constant along
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the characteristics and which vanishes at M. At the points of M the value
iw,d(g—f) is zero (since p'dp vanishes on M). Hence d(g—f) coincides at
the points of M with the differential of a function k, constant along the ver-
ticals (k=g —f at some hypersurface, transversal to the verticals and contain-
ing M).

By adding k to f we do not change the value of df at W, and of f at M.
But we change y: now y = p'dB at some hypersurface, containing M and
transversal to W,. Hence y = 0 on every vector of the ambient space at the
points of M. Thus now U = 0 on M, and hence V = 0 on M, as required.

The theorem on the contact structures is an easy corollary of this theorem
on contact forms.

COROLLARY 1. The Darboux theorem.

Proof. M = (point).

COROLLARY 2. All the Legendre manifolds of any given dimension are
locally equal (contactomorphic).

Proof. All zeroes are equal.

COROLLARY 3. All hypersurfaces in a contact manifold are contactomor-
phic in some neighbourhoods of any of its non-characteristic points.

Proof. The restrictions of the contact forms are equivalent, since they are
induced from the natural contact form on the spaces of the characteristics of
the hypersurfaces, and those contact forms are equivalent by the Darboux
theorem.

Thus we obtain the normal forms for the maximally non-degenerate 1-
forms in the even-dimensional spaces: o = dz — ydx for a space of dimension
2n + 2 with coordinates X = (X1, ..., Xn), ¥ = (Y1, +vey Vn), Z, W.

The simplest degenerations of the differential 1-form on a manifold are
classified by J. Martinet [Ma]:

(1+py)dq, + prdq, + ... + pdq, (dim = 2n)

+ dz? + (1+p,)dq, + p,dg, + ... + p,dg, (dim =2n+1)
(1+phdg, + p.dq, + ... + p,dg, (dim = 2n).

Comparing with the Givental theorem, we obtain the




CONTACT GEOMETRY 239

COROLLARY 1. For a generic even dimensional submanifold of a contact
space the nongeneric points form a set of codimension 2, and in a
neighbourhood of the generic points the contact structure is maximally
nondegenerate (reducible to the form, dz = ydx for some coordinates
X, ¥, 2, w, dim{x] = 1).

COROLLARY 2. A generic odd dimensional submanifold in a contact
manifold inherits a contact structure at its generic points. At the points of some
hypersurface the restriction of the contact structure to the manifold is reducible
to one of the two (nonequivalent) forms +dz?> = (1+p))dq, + p.dq; + ...

+ prdqy .

Remark. The above classification of the submanifolds depends on the
classification of the contact structures (= modules of forms) and not on the
forms’ classification.

A differential 1-form in a neighbourhood of its nonzero point is either
locally equivalent to one of the Darboux or Martinet normal forms, discussed
above, or this form is not finitely-determined (is not determined by any finite
segment of its Taylor series up to a diffeomorphism). The simplest example
of such a nonfinitely determined form is the form (1+y3+xy)dy on the
plane. The codimension of the corresponding event is two.

At present the classification of the degeneration of contact structures (not
forms) has acquired the same level of sophistication as the other problems in
singularity theory. In the works of M. Zhitomirskii the list of first degenera-
tions is calculated, including all the simple singularities (a singularity is simple,
if it has a neighbourhood intersecting a finite number of classes of
equivalence). These results of Zhitomirskii, taking into account the Givental
theorem, describe also the submanifolds in the contact space up to a local
diffeomorphism.

Unfortunately, in most applications one needs the classification of
nonsmooth subvarieties of the contact space, for instance, that of unions of
intersecting submanifolds.

Example. Let us consider a hypersurface in a Riemannian space. The
description of this situation in terms of the contact geometry implies the
analysis of a pair of hypersurfaces in the contact space (the symplectic variant
of this theory is developed by Sato, Oshiva and Melrose under the name of
the theory of glancing rays).

Let us denote our closed Riemannian manifold by M, and the given hyper-
surface by OM.
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We shall start from the contact manifold J!(M, R) of 1-jets of functions
on M. Let us consider two hypersurfaces in this space:

SJYM, R) » JYM, R) « 0JYM, R).

The left hypersurface is defined by the Hamilton-Jacobi equation p? = 1. It
is the contact equivalent of the Riemannian metric. The right hypersurface is
formed by the jets of functions on M at the points of dM. It is the contact
equivalent of the hypersurface dM in M.

We shall see that a large part of the Riemannian geometry of the hypersur-
face OM in M may be formulated in terms of these two hypersurfaces in the
contact space. Since the contact geometry of these two hypersurfaces is (more
or less) independent of their origin, we can apply the knowledge of Riemannian
geometry and even the intuition of Euclidean space to the general case of an
arbitrary pair of hypersurfaces Y, Z in a contact space X. Let us first consider
this general situation.

The hypersurfaces Y and Z intersect generically along a submanifold W of
codimension two in X (we suppose that the intersection is transversal). So we
obtain the diagram of inclusions

y2n+1
y2n 72n
\WZn—l/

We shall also suppose that the hypersurfaces Y and Z are not tangent to
the contact planes (that condition is generically satisfied at a neighbourhood
of W since the characteristic points of the hypersurfaces Y and Z are
generically isolated).

Hence each of the two hypersurfaces is foliated into its characteristics.
Locally (and sometimes globally) this foliation is a fibration, that is there exists
a space of characteristics (the base of the fibration). Let us denote the fibra-
tions into characteristics by Y#* — U?*~! and Z?" — V27! (strictly speaking,
U and V are defined only for the germs of Y and Z at a point of W).

Let us consider the composite mappings

(via Y)U> ! « W21 - V2" Yvia Z).
These two mappings of manifolds of equal dimensions may have singularities.

Let us consider the sets of their singular points (points, where the Jacobian
matrix’s determinant vanishes).
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Under some very mild restrictions the sets of critical points of both mapp-
ings coincide. Indeed, let us suppose, that tangent hyperplanes of the hypersur-
faces Y and Z and the contact hyperplane a = 0 form a generic triple of
hyperplanes (at some point 0 of W).

LEMMA. The characteristic of the hypersurface Y is tangent to Z at
the point 0 if and only if the restriction of the contact form of X*'*! to
W?2n-1  degenerates at O.

Proof. Let us denote the intersections of the tangent planes to X, ..., W
at 0 with the contact hyperplane o = 0 by the corresponding lower case letters
x, ..., w. Let & be the characteristic vector of Y at 0. If £ is tangent to Z, it
belongs to w. Since § is skew-orthogonal to y, & is skew-orthogonal to w.
Hence do degenerate at w, as required.

Let do be degenerate at w. Since dimw = 2n — 2 is even, dimKer (da| w)
is at least 2. Let n be a vector, transversal to w in y. Then the equation
da(&,m) = 0 has nontrivial solutions & € Ker(da| w). These solutions & are
skew-orthogonal to n and to w. Hence they are the characteristic vectors of
Y at 0. Thus the characteristic vectors of Y at 0 are tangent to W (and hence
to Z), as was required.

The lemma is thus proved. Since the condition on the restriction of a to
W in the lemma is symmetrical with respect to Y and Z, the lemma implies

COROLLARY. The characteristics of the hypersurface Y are tangent to
W at the same points as the characteristics of the hypersurface Z.

Hence the sets X of the critical points of our mappings of W to U and to
V' coincide. We have thus obtained the following hexagonal commutative
diagram of mappings

e
| >

U2n—l/ \ p2n-1

S
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where X?27+1 U?~1 and V?"~! are equipped with contact structures, and X is
the set of degenerescence of the restriction of the contact structure of X to
W and at the same time the set of critical points of both mappings of W to
U and to V.

The dimensions of the kernels of the derivatives of these mappings can’t
exceed one, since they are the restrictions of the corank 1 projections
Y?2n - U?"-1 and Z?" - V27~1 Hence for the generic hypersurfaces Y and Z
the singularities of the mappings W — U and W — V are, up to diffeomor-
phisms, the standard Whitney singularities.

One may even choose the coordinates in Y and U (or in Z and V) in such
a way, that the hypersurface W in Y will be defined locally by the equation

VP4 u gyt + 4w =0
and the projection Y - U — by the formula

(y> ul 5 swg u2n—1) = (ul 9 vy u2n—1) .

Example 1. k=1, n>1. The mapping W?"-1 — U?”-! has a fold
singularity at the surface X272 where u; = y?, y = 0.

The characteristics # = const. of Y intersect W twice in the neighbourhood
of X, defining on W an involution. The hypersurface £27-2 C W?"-1 is the
set of fixed points of this involution.

Hence at the generic points of X two involutions W — W are defined: one
interchanges the two points of intersection of W with the characteristics of Y,
the other — with the characteristics of Z. Both these involutions have the same
hypersurface ¥ of fixed points.

Example 2. k =2, n>2. The mapping W?'-! — U?'~! has a smooth
hypersurface £2"~2 of critical points, which are the fold points or the cusp
singularities. The cusp singularities form a smooth hypersurface
»2n-3 . ¥2n-2 The set of critical values (the projection of X?-2to U) is a
hypersurface in U with a cuspidal edge (projection of X27-3).

Now let us see what is the meaning of all this ‘‘general nonsense’’ in con-
crete situations.

Example. Let us return to the case of a hypersurface 0M:f(g) = 0 in a
Euclidean space M = R”. In this case X = JI(M,R), Y:p?/2 -1/2 =0 is
the Hamilton-Jacobi equation, Z: f(g) = 0 defines the hypersurface. The
hexagonal diagram takes the form
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g ~_

SJHM, R) L 0J{(M, R)

\w/

ey

J1(0M, R)

JY M, R)

ST*M

exp

SJYOM, R)

Comments. The characteristics of the Hamilton-Jacobi hypersurface
SJY(M, R) are the orbits of the geodesic flow in the space ST*M of the
spherical cotangent bundle, equipped with a parameter (the ‘‘value’ of the
jet), increasing along the geodesic with a velocity equal to one.

Fixing the value of this parameter, say ¢ = 0, we obtain a point of the
characteristic, that is a (cotangent) vector of length one at some point of M,
equipped with the 0 “‘value’’. Thus we identify the space of characteristics with
the space of the spherical cotangent bundle S7T*M (this identification depends
on the choice ¢ = 0).

The projection I associates to a point of M, together with a vector on M
of length 1 at that point and a ‘‘value’’ ¢, the unit tangent vector (on the same
line as the original vector) based at a point at a distance ¢ (in the backward
direction) from the original point.

A characteristic of 3J!(M, R) consists of the 1-jets of all the extensions of
a fixed function on OM to M at some fixed point of OM. The manifold of
characteristics is naturally identified with the manifold J!(0M, R) of the
1-jets of functions on OM, equipped with its natural contact structure.

The projection II: W — J'(0M, R) associates to a 1-jet of a function on
M, having gradient of length one, the 1-jet of its restriction to dM. This projec-
tion has the fold singularities on the surface X, formed by the 1-jets of the
functions on M, whose gradients are of lengths one and are tangential to OM.
The projection II maps the hypersurface ¥ diffeomorphically to the set of
critical values of this projection. This set of critical values consists of the 1-jets

of functions on 0M with gradients of length one. Hence we may identify ¥
with SJ'(0M, R).
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The mapping exp: SJ1(0M, R) — ST*M associates to a 1-jet of a func-
tion on OM, whose gradient has length one and is tangent to dM, a vector of
length one on the same straight line as the given vector, but based at the point
at a distance 7 (in the backward direction).

The singularities of the mapping I represent the ‘‘inflections’’ of oM.

Example. Let n =2, that is OM is a generic plane curve. The mapping I
has a fold singularity at the point [of W, corresponding to the unit tangent
vectors of OM] where the curvature of dM is nonzero, and a cusp singularity
at the [points of W corresponding to the] inflection points.

Let n = 3, that is OM is a generic surface in R3. The mapping I has folds
at the points of W corresponding to the generic unitary tangent vectors, cusps
at the vectors of asymptotic directions, the swallowtail singularity at the
biasymptotic vectors (where the order of tangency of the surface with the
tangent line is 3, which is higher than for an ordinary asymptotic vector). The
biasymptotical directions exist on a generic surface along a curve; at some
special points of this curve there exist triasymptotic directions, the order of
tangency is 4 and in Whitney normal form for the singularity of the mapping
I we have k = 4.

Thus the geometry of a hypersurface in a Euclidean (or in a Riemannian)
space, when translated into the microlocal language of contact geometry, leads
to the problem of classification (up to contactomorphism) of hypersurfaces
with special singularities: of the unions of two smooth and transversal hyper-
surfaces (Y and Z) in a contact manifold X.

The simplest case (k=1) was studied by Melrose. The normal form of the
pair in Darboux coordinates is

g, =0, g, =pi+p,.

This is a formal (or C*?) normal form of a generic pair of hypersurfaces in
a contact space. In the analytical case the normallizing series are, as a rule,
divergent. In the 3-dimensional contact space the normal form of the pair is
(z=q, p*=q) [Me]).

For further results on normal forms in the contact geometry of tangencies
see [A3], [La] and [A6].

The state of art in this domain is at present far from the final death of
the subject: in most cases the results are know only at the formal level of power
series which are usually divergent in the analytical case.
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Example 1. Let us consider the product of a swallowtail surface with a
Euclidean space, defined in an N-space with coordinates A, B, ... by the equa-
tion: 37: x* + Ax2 + Bx + C = (x+1)%... vx. A generic symplectic structure
in a neighbourhood of the origin is formally reducible to the normal form

dAAdD + dCAdB + dEAdF + ...

by a swallowtail preserving diffeomorphic; a generic contact structure — to
the Landis normal form

o = dZ — DdA — CdB — EdF — ... .

These normal forms serve probably in the C* case too, but this is not
proved.

Example 2. Let us consider a quadratic cone surface in a 2n + 1 contact
space with coordinates 4, B, ... given by A2 + B? = C2.

The local reduction of such a surface to a normal form by a contactomor-
phism is important for the study of the transformations of waves, defined by
linear hyperbolical systems, derived from variational principles (see [A8] and
[A9]).

The formal normal forms of the hypersurfaces with conical singularities

in the Darboux coordinates (a = dz + B@—;—q@) are

PP+ q* =2+ (n=1), pi

These normal forms describe an interior transformation of waves of one
kind (say ‘‘longitudinal’’) into waves of other kinds (say, ‘‘transverse’’) in
inhomogeneous anisotropic media. The corresponding effect in homogeneous
media is the Hamilton conical refraction. In the nonhomogeneous case the
geometry of rays is different.

Let us consider the case n = 1, that is wave propagations for space-time
of dimension 2. The preceding normal form describes two families of
characteristics in space-time tangent at one point.

The characteristics through this point are formed from the branches of two
smooth (analytic) curves, tangent at that point but having different curvatures.
Let those curves be 12 and 34, then the first family’s singular characteristic
is 14, and that of the second — 32.

The contact of the two characteristics at the origin produces some singular
scattering of the family of characteristics of the first (second) type, which is
smooth (analytic) outside the origin. Let us consider a nonsingular
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characteristic of the first family, starting at a small distance € from the point
1 (where the distances of points 1-4 to the origin are of order 1). The endpoint
of this characteristic, taken at the level of point 4, lies at some distance from
the singular characteristic 14, namely, at a distance ae + be?lne + ... . The
logarithmic term describes the scattering at the origin: in a regular family the
distance would be ag + be? + ... .

In the 3-dimensional physical space (i.e. for space-time of dimension 4)
generic wave fronts (travelling in inhomogeneous media and governed by a
variational principle) acquire singular lines, connecting them with waves of
different kinds and moving with the wave fronts.

It is interesting to note that the case n = 1 is more difficult than n > 1.
The results are at present formal in both cases. They probably hold for the
C> problem both for n = 1 and n > 1. The divergence of the normalizing
series in the analytical problem is proven in the case n = 1, while for n > 1
there exists still some hope that the series converges. The qualitative results,
described above, are independent of the convergence of the series: we need
only finite segments of the series.

§4. LEGENDRE FIBRATIONS AND SINGULARITIES

The simplest examples of Legendre fibrations are the projectivized
cotangent bundles

PT*V" - V"
and the ‘“‘forgetting of derivatives’’ mappings
JYM,R) - J°(M, R)

(in coordinates: (p, q, y) — (g, »)).

Definition. A Legendre fibration is a fibration of a contact manifold with
Legendre fibres.

THEOREM. All the Legendre fibrations of a given dimension are locally
contactomorphic (locally = in a neighbourhood of any point of the total
space).

To prove this theorem it is sufficient to construct a local isomorphism of
an arbitrary Legendre fibration with one of the preceding examples.
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Let us project a contact hyperplane from its contact point in the total space
of the fibration to a base point. The image is a contact element (a hyperplane
in the tangent space to the base of the fibration) since the tangent plane to
the Lagrangian fibre lies in the contact hyperplane.

Thus we have defined a mapping from the space of an arbitrary contact
fibration to the space of the contact elements of its base (that is, to the space
of the projectivized cotangent bundle of the base space).

This mapping transforms fibres into fibres (over the same points). The
nondegeneracy of the initial contact structure implies that this mappping 1s
nondegenerate (it is a local diffeomorphism). And it is easy to see that the
initial contact structure and the natural contact structure of the contact
elements’ space agree.

Thus we have obtained a unique local normal form of any Legendre fibra-
tion. At the same time we have defined a natural projective structure in the
fibres of any Legendre fibration.

This projective structure is a contact analogue of the natural affine struc-
ture of the fibres of Lagrange fibration in symplectic geometry; this affine
structure is the main ingredient of the proof of the Liouville theorem on the
invariant tori of integrable Hamiltonian systems.

The projective structure of the Legendre fibres is even better than the affine
structure of the Lagrange fibres. Indeed, a diffeomorphism of the base of a
Legendre fibration induces a well defined mapping of the fibres (since it acts
on the contact elements of the base).

A diffeomorphism of the base of a Lagrangian fibration can be (locally)
lifted to a fibred symplectomorphism of the total space, but this lifting is not
unique (this ambiguity implies some global annoyances).

According to the above theorem the Legendre singularities (the germs of
the triples L & E — B consisting of a Legendre embedding and of a Legendre
fibration) can be modelled by the Legendre submanifolds of a projectivized
cotangent bundle of any manifold, say — of the projective space. The

Legendre’ singularity is defined by its front, if it is a hypersurface (and they
usually are).

Now it is easy to deduce that all the Legendre singularities are (locally)
equivalent to singularities of Legendre transformations of smooth functions,
or of the dual hypersurfaces of smooth projective hypersurfaces or the
equidistants of smooth hypersurfaces (and so on).

A Legendre singularity is called simple, if all the neighbouring Legendre
singularities belong to a finite set of Legendre equivalence classes.
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A Legendre mapping is Legendre stable if all the neighbouring Legendre
mappings are equivalent to the given one. A similar definition for germs allows
a small shift of the origin of the germ: any neighbouring Legendre mapping
has a Legendre equivalent germ at a neighbouring point.

THEOREM. All the simple and stable analytic Legendre singularities are
classified by the simple Lie algebras of types A, D and E:

A, « A, « Ay « Ay « As « Ag « A, « Ag

N U
U

E, « E, « Eg

Namely, the corresponding fronts are C-diffeomorphic to the corresponding
discriminants (the sets of nonregular orbits of the corresponding Weyl groups).

Example. The Weyl group A, is the group generated by the reflections
of the space CH = {zeC**l:zp+ ...+ z, =0} in the diagonal mirrors
z; = z;. The orbits are the unordered p + l-tuples {zy, ..., 2.}, such that
Zo+ ... +z, =0.

The space of orbits is the space of polynomials

A W A S W

The irregular orbits correspond to polynomials having multiple roots.
For instance, the set of irregular orbits for A, is a semicubical parabola
in the plane formed by the polynomials

{22 4+ Mz + Xy = (24 0%(z—-20)} .
The discriminant for A; is the swallowtail surface

(2% + Mz% + Az 4+ Ay = (z+0)% ..}

THEOREM. The generic Legendre mappings L"— E?+t1 - Bn+l  of
Legendre manifolds of dimension n < 6 are simple and stable at all their
points (and hence are described by the preceding theorem).

The classification of the stable Legendre mappings of any dimension up
to Legendre equivalence is equivalent to the classification of families of func-
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tions up to ‘‘V-equivalence’’ (= fibred diffeomorphisms of the zero level
hypersurfaces).

It is also known that the set of topologically different singularities of
generic Legendre mappings remains finite for any finite 7 (Varchenko, Loo-
jenga). However this topological classification is unknown even for those small
values of # between 6 and 11, for which there exists an explicit classification
up to smooth Legendre equivalence (this classification is described in the last
chapter of volume 1 of the book [AGV]).

In the theory of propagation of waves one encounters, besides the usual
wave fronts, a Legendre singularity of higher dimension — its front is the
graph of the “‘multivalued time function’’, whose level sets are the momentary
fronts.

Let us consider the positions of a moving front in different moments of
time as a hypersurface in space-time. This hypersurface is called the big front.
The big front is a front of a Legendre mapping over space-time. The momen-
tary fronts are its sections by the isochrones (isochrones are the level sets of
the time function in space-time).

To study the perestroikas!) of the momentary wave fronts we need to
reduce the time function to a normal form in a neighbourhood of a singular
point of the big front by a diffeomorphism preserving the big front.

In the case when the big singularity is simple and stable, this can be done
very explicitly, using the technique of the invariant theory of Weyl groups (or
of Coxeter groups).

The main ingredient is the study of vector fields, tangent to the discrimi-
nant. Such vector fields form a module over the algebra of functions. Hence
the knowledge of few particular fields, tangent to the discriminants, permits
one to construct many diffeomorphisms preserving the discriminant. Using
these diffeomorphisms one can reduce the time function in a neighbourhood
of the origin of the space of orbits of a Weyl group to a linear normal form.
The corresponding linear function on the space of orbits is an invariant of
degree 2 (considered as a function on the space of orbits).

For instance, a generic function in a neighbourhood of the most singular
point A = 0 of the generalized swallowtail [A:37:x**!1 4+ Mxt-1+ .+ A,

= (x+1)?...vx] is reducible to the normal form =+X; by a swallowtail
preserving diffeomorphism.

1 . . . . .
‘ ) In Russian the word perestroika was always used in this mathematical sense, for
instance ‘‘Morse surgery’’ is ‘“Morse perestroika’’ in Russian. In past translations from the

1 $¢ 4 .
Rusman_, perestroika’’ of wave fronts was called ‘‘metamorphosis’’, but now I may use the
international word ‘‘perestroika’’.
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One may find in the literature the statement that the local perestroikas of
the wavefronts generated by the general Legendre mappings over space-time
and of the equidistants of the smooth hypersurfaces are the same. It seems
this has never been correctly proved. It is now known (Nay, Tchekanov) that
the corresponding statement for the caustic perestroikas is wrong. The fact that
the moving Lagrange manifold lies in a (moving) hypersurface of the cotangent
bundie space, which is quadratically convex along the fibres, implies some
topological restrictions on the local perestroikas of the caustics.

The contact geometry analogues of these results have not yet been for-
mulated (one of the variants deals with the Legendre submanifolds of a hyper-
surface in the projective cotangent fibration space, which is locally
quadratically convex in the sense of the projective structure of the fibres).

The local classification of generic Legendre singularities is the base of a
global theory of Legendre cobordisms and characteristic classes.

Let us consider the projectivized (or the spherized) cotangent bundle £ (M)
of a manifold M with boundary oM. A Legendre submanifold L of M, which
is transversal to OF, has a ‘‘Legendre boundary’’, which is an immersed
Legendre submanifold of E(0M). It is defined by ‘‘section and projection’’:
first we intersect L with the hypersurface OF, and then we project the intersec-
tion along the characteristics of 0F to the space of characteristics, which is
E(@©M). The projection has dimension dimZ — 1 and is a Legendre
submanifold of E(0OM).

This Legendre boundary construction gives birth to many cobordism
theories since we can consider oriented or non-oriented bases and immersed
Legendre manifolds, formed by cooriented or noncooriented contact elements
or by jets of functions on manifolds with boundary.

Example 1. The group of cobordism classes of (a) oriented, (b)
nonoriented Legendre submanifolds in the space of cooriented contact
elements of the plane is isomorphic to (a) the group of integers, Z, the
generator being an eight-shaped curve with 2 cusps at the top and at the bot-
tom; (b) to the trivial group.

Example 2. The cobordism of the oriented generator to zero shows that
this generator is the Legendre boundary of a Legendre Mobius band over a
halfplane M. This construction defines a Legendre embedding of a Klein bottle
in R3. (See [A2].)

For more details on the Legendre cobordisms and characteristic classes con-
sult the book [Va] by V.A. Vassilyev.
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Example 3 (M. Audin). The classes of nonoriented Legendre cobordisms
in the spaces of 1-jets of functions in the spaces R” form a skew-commutative
graded ring, which is isomorphic to the graded ring Z,[xs, xo, X11, ...] of
polynomials with coefficients in Z, and with arguments x, of odd degrees
k+2" -1,

In the oriented case the ring is isomorphic to the exterior algebra over Z
with generators of degrees 1,5,9,...,4n + 1,... mod torsion.

The proofs are based on the Eliashberg reduction of the problem to the
calculation of the homotogy groups of the Thom spectra of the tautological
bundles over the Lagrangian Grassmannians (the details are in the Eliashberg
paper [El]).

On the other side the classification of Legendre singularities generates a
complex, whose cells are singularity types and whose boundaries are defined
by the adjacency of the singularities. The initial parts of these complexes were
calculated by V.A. Vassilyev (see his book [Va]). The cohomology of these
complexes defines Legendre characteristic classes (the simplest of them is the
Maslov class). These classes can be generated also by the corresponding univer-
sal spaces (the Lagrangian Grassmannians U(n)/O(n)).

But the information on the singularities’ coexistence, compressed in the
Vassilyev complexes of singularities and of multisingularities is not reduced to
the calculation of the characteristic numbers in terms of the singularities.

Example. The number of A; points on a generic closed Legendre surface
immersed in J!'(M?2, R) is always even. The number of intersections of the
strata (A1A4,), (A1A44), (A2A44), (A1A46), (A1 A4,A4,) of the front are (mod 2)
characteristic numbers for the Legendre mappings.

The number of singularities of any given type on the Legendre boundary
is even. For the Legendre boundary of an oriented manifold the numbers of
singularities Eq, (or E; or Eg) counted with some sign convention, are equal
to zero.

For Legendre immersions in the space of 1-jets of functions, Vassilyev has
defined orientation rules, for which # As = 0 (the number of A; singularities
on a closed oriented Legendre 4-manifold is equal to zero), # A, = # Es,
# E; + 34# Ey = 0. The class A5 defines a cohomology class in the Vassilyev
complex, but it is not realizable by a Legendre immersion.

The topology of Legendre immersions and embeddings is far from being
settled.
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§5. LEGENDRE VARIETIES AND THE OBSTACLE PROBLEM

According to a well known principle of A. Weinstein, everything in
symplectic geometry ‘‘is’’ a Lagrangian manifold.

In contact geometry ‘‘everything’’ is a Legendre manifold. But the impor-
tant examples suggest that in many applications smooth ILagrangian
(Legendre) manifolds should be substituted by singular Lagrangian (Legendre)
varieties.

In principle the translation of the general theory to the case of singular
varieties (and even of the ‘‘schemes’ of algebraic geometry) is routine work.
But I believe that a more natural and useful notion of the Lagrangian (Legen-
dre) singular varieties would be a generalization of the classification of the
Givental ‘‘triads’’, presented below, rather than a theory of Legendre ideals
of the hierarchy of degeneracies in the generating families.

Let us consider a medium, containing an obstacle (i.e. a manifold with a
boundary). The fronts are the hypersurfaces, equidistant from a given one. For
instance, if the obstacle is bounded by a plane curve, the fronts are its evolvents
(involutes). Hence the following is a higher-dimensional generalization of the
Huygens’ involute theory.

A smooth front may acquire singularities while travelling through a smooth
medium, but its Legendre manifold remains non-singular. At an obstacle,
however, even the Legendre manifold may become singular. These singular
Legendre varieties are singularly related to the irreducible finite-dimensional
sl,-modules. Namely, the singularities of the Legendre varieties at generic
obstacles are diffeomorphic to those of the varieties of binary forms (or of
polynomials in one variable) admitting roots of high multiplicity.

The simplicity of the final result is rather misleading: the polynomials and
even their degrees are hidden. Even though they are known to exist it is still
difficult to find them from geometrical considerations.

The relation of the obstacle problem to s/(2) modules was discovered in
1981-82 as a result of a series of works featuring geometrical observations
based on the resemblance of bifurcation diagrams, occurring in different
theories, strange cancellations of many terms in long calculations, due to some
properties of the varieties of polynomials with multiple roots, which seems to
be new for the algebraists, and new concepts in symplectic and contact
geometry, namely the “‘triads’’ of Givental, describing families of rays and of
fronts at obstacle points.

Let us consider a smooth hypersurface 0M in Euclidean space M = R”.
Let us consider the length S of the shortest path from a fixed set to a variable
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end point, avoiding the obstacle, bounded by M. The study of singularities
of S as a function of the end point leads to the following problem.

Let us consider a family of geodesics on dM, orthogonal to some hypersur-
face of M. The straight lines, tangent to these geodesics, define an (n— 1)-
parameter family of rays in R”, namely the family of all normals to some
front hypersurface in R”. The problem is to study the singularities of these
fronts.

Example 1. Let the obstacle be bounded by a generic plane curve (n=2).
The fronts are the involutes of the curve. They have singularities of order 3/2
at generic points of the curve (Huygens). A generic curve may have some
inflection points. A calculation shows that the fronts have singularities of
order 5/2 at the points of the inflectional tangent. These singularities are
related to the rather mysterious appearance of A, — of the symmetry group
of a pentagon (at the point of the inflection it is replaced by the symmetry
group H; of an icosahedron, but it is rather difficult to see this icosahedron
in the neighbourhood of the inflection point with the naked eye).

Example 2. Let the obstacle be bounded by a generic surface in 3-space.
The fronts are surfaces with cuspidal edges. These edges are of order 3/2 at
generic points of the boundary surface. Our one-parameter family of geodesics
covers a domain in this surface. The geodesic direction may become asymptotic
along some curve in this domain. The rays tangent to the geodesics at the points
of this curve have asymptotic directions. The fronts’ singularities at the points
of an asymptotic ray are edges of order 5/2, unless the ray is ‘‘bi-aymptotic’’
(this may happen at some points of our curve).

The theory described below explains the contact geometry of these com-
plicated singularities and of their higher dimensional counterpart in terms of
the theory of invariants of s/,.

Definition. A contact triad (H, L, ) consists of
(1) a noncharacteristic hypersurface H in a contact manifold,
(ii) a Legendre submanifold L in the same contact manifold,
(ii1) a smooth hypersurface / in L

such that the hypersurface H is tangent to the Legendre manifold L with first
order of tangency at every point of /.

We shall study the germ of a triad at a point 0 of /.

Definition. The Legendre variety, generated by the triad at 0 is the image
of the germ of / at 0 by the projection of H onto its space of characteristics.
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Example. Let us consider the family of geodesics on a hypersurface
OM C M = R", consisting of all geodesics, normal to a surface of codimen-
sion 1 in OM. We shall associate to this family a contact triad.

Let H be the hypersurface of light contact elements of the space-time
R" X R = {gq, t}], defined by df = pdg, p* = 1. This hypersurface is the first
element of the triad.

Let s: OM — R be the time function, defining the family of geodesics on
OM (the geodesics are orthogonal to the surfaces s = const, and (Vs)?2 =1
on 0M). The graph of s is a codimension 2 submanifold of space-time. Let
us consider the set of all space-time contact elements, tangent to this graph.
This set is a Legendre manifold and it will serve as the L of the triad.

THEOREM. The hypersurface H is (first order) tangent to the Legendre
manifold L along a submanifold [ of codimension | in L, consisting
of all contact elements, belonging to L, which contain the normal to 9S X t
in R" X t.

The Legendre variety, generated by this triad, is formed by those contact
elements of R”", which are tangent to the same front for the obstacle
problem with boundary OM (and initial condition s).

The theorem follows almost immediately from the analysis of the
hexagonal diagram in §3. For more details see [AS] and [A6].

We will now construct a series of examples of triads, providing normal
forms for the germs of generic triads at all their points. This implies, for
instance, normal forms of singularities of the Legendre varieties, consisting of
all contact elements tangent to a front for a generic obstacle in a Euclidean
or Riemannian space.

We start with the natural s/,-invariant contact structure of the projective
space of the 0-dimensional hypersurfaces of degree d = 2n — 1 on the projec-
tive line (§1, example 7).

Let us consider maps of the space of polynomials of the form

Xon-1+ @2 Xop—2 + o + @, Xy — pXy—y + . £ py,
where X; = x//j!, with the contact structure a = 0, where
o = pdq —qdp —dp;, P =P2nbn)s 4 = (92554

The group of translations of polynomials along the x-axis acts on the space
of these polynomials and preserves its contact structure. Let v be the cor-
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responding vector field. We define the neutral surface H by the equation
a| v = 0. An explicit calculation gives the equation of the neutral hypersurface

H:K =p, + psds + o + Pun-1 + 42/2 =0

(known essentially to Hilbert).
This formula implies the obvious

LEMMA. The triple H(K=0), L(p=0), [(p=g,=0) is a contact triad.

The Legendre variety X, generated by this triad, consists of those
polynomials

X2n‘-l + q3X2n—3 + ..+ ann - ann—l + .+ (_1)np1 )

where X; = x//j! and p, = — (p4qs+ ...+ Pnqn-1+ q2/2), which have a root
of multiplicity greater than »; the contact structure is defined by the 1-form

A = p”dq” - q’ldp// - dpl ’ p” = (p3> wowy pn) q’/ = (Q33 i) Qn) ¢

The Legendre variety X of dimension m = n — 2 thus defined will be
called the Givental Legendre variety. It lives in a contact space of dimension
2m + 1.

These varieties (and their Lagrangian projections to symplectic spaces, also
studied by Givental) have remarkable properties, both as algebraic varieties
and as contact (or symplectic) space subvarieties.

Let us first describe them as algebraic varieties. We start with the tower
of spaces of polynomials in one variable x, equipped with the projection given
by the derivative D = (n+1)~(d/dx): C" — C"—1,

C' = {x""1 + A x""' + . A4,},

(one may consider as well the tower of the spaces of polynomials
xntl 4+ Aox™ 4+ ... or even Ax"! 4+ Agx" + ..).
Let us consider a root of multiplicity m of a polynomial of degree d.
The number d — m is called the comultiplicity of a root. The spaces of
polynomials are “‘stratified’’ according to the comultiplicities. We denote the
set of polynomials x"*! + 4,x"~! + ... + A4, having a root of comultiplicity
at most m by X,(n) C C". X,(n) is an algebraic variety of dimension m.

Example. X,(2) is the discriminant curve in the plane of cubical

polynomials x* + 4;x + A,, £,(3) is the cusped edge of the swallowtail,
(x*+ Bix2+ Byx + By = (x+1)?...].
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THEOREM. The derivation mapping D:C"— C"~!  preserves the
comultiplicities, provided that the multiplicity is greater than one:
DY, (n)=%2,(n—1) for m< n.

Moreover, this mapping is a diffeomorphism, provided that %, has no
selfintersections, namely for n > 2m.

Example 1. The cusped edge of the swallowtail, X,(3), projects
diffeomorphically on the plane semicubical parabola X, (2).

Example 2. The surface X£,(4) C C* projects onto the usual swallowtail
surface X,(3), but this mapping is not one-to-one, since generic points of the
selfintersection line of the swallowtail surface have two counterimages.

If we start with the generalized swallowtail X, (m + 1) of dimension m in
Cm+1 and go up the storeys of the tower, we obtain a sequence of m-
dimensional varieties and of projections

L2 02mA1) 5 T, (2m) > o 2 (m+ 1)

The sequence stabilizes at the floor of %, (2m) C C?”, where the last

selfintersection disappears and the variety becomes homeomorphic to C”
(A.B. Givental).

Example. The ordinary swallowtail X,(3) is stabilized at the next floor,
where lives the open (or “‘unfurled’’) swallowtail ¥,(4). This surface is stable
(Z,4) = L,5) = ... = Zz(‘”));

The importance of the open swallowtail for variational problems was
discovered in 1981 (see [A3] and [A4]).

Remark. The diffeomorphism X,,2m+1) — X,,(2m) is induced by a sec-
tion of the mapping D: C?"+! — C?” which is a paraboloid. The equation of
this paraboloid was found by Hilbert (1893). It follows from his

LEMMA. Let
XA L+ A, = (x—a)f T a X T gy
Then
2, = (=D liln—i)Ah,.; 1 <i<n.

The next floors also admit parabolic sections. Let us define the operators
G% by the formula

GY[F] = (d°F/dx")/(s—r)!
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where r is fixed and where the factorials of negative numbers are defined by
a truncation at some sufficiently remote place, say

(s—r)! = (s—7r)...(1—=7).
THEOREM. If F = (x—a)"*'(x™"'+...), where r > m, then
>(j—i)GY[F]GY[F] = 0
(summation over i+j=r+m,0<i<m).

This theorem implies the stabilization property.

For further details on the stabilization and on the general theory of
unfurled swallowtails see [G1] and [A6].

For instance, the modules of vector fields, tangent to the unfurled
swallowtails have been studied by Givental, who has proved the

THEOREM. Any germ of a holomorphic vector field, tangent to the
generalized swallowtail X, (m+1) at the origin, is the projection of a germ
of a vector field in C?" tangent to its stabilization X, (2m).

Any polynomial vector field, tangent to X;(n), may be represented as a
sum of a vector field, tangent to the swallowtail ¥,_,(n) and of vector fields
whose projections to C”~1, ..., C¥+1 are vector fields tangent to the projec-
tions Xx(n—1), ..., Ly (k+ 1) of the original variety.

The Givental theory implies that the unfurled swallowtail X, (2m) is a
Lagrangian subvariety of the space of polynomials x?7*! + g, x?"~!' + ...
+ a5, equipped with its natural symplectic structure

X(—1)iljltda; A da;, i+4+j=2m—1.

(This structure is natural in the sense that it is naturally derived from the
sl,-invariant symplectic form on the space of binary forms of odd degree.)

Example. The ordinary (two-dimensional) unfurled swallowtail X,(4)
=[x+ Ax3+ Bx2+ Cx+ D = (x+1)?...] is a Lagrangian subvariety for
the natural symplectic structure

3dA A dD — dB A dC.

The unfurled swallowtails describe the singularities and the perestroikas of
the duals of the projective space curves. Let ¢: R — R3 be a smooth map. We
call (a, b, c) its type, if the first of its derivatives which is nonzero at the origin,
is the a-th one, the first noncolinear with it — the b-th, the first noncoplanar
with them — the c-th.
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The curves of types (ai, ..., a,) in R”, RP”, C” or CP" are defined by a
similar construction of an osculating flag. Any curve of a finite type has an
osculating hyperplane at every point.

Definition. The dual curve ¢¥: R — RP™ of a curve ¢:R — RP” is the
set of osculating hyperplanes of ¢. Of course, ¢ = ¢ and the dual type of
(a1, ...,an) 1s (@n—an_1, ...,a,—ay, a,).

The hierarchy of the smooth (a;=1) curves in R3 starts with

(1,2, 3) —~ (,2,4) <« (1,2,5) (biflattening) «
(ordinary point) (flattening)

(1, 3, 4) (inflection) «—

The codimension of the type is ¢ = Z(a;—i).

The set of all the hyperplanes, containing the tangent line of a projective
curve ¢, forms a developing hypersurface in the dual space, having a cusped
edge ¢v. We call this developing hypersurface the front of ¢. (This is a
particular case of the general definition of the front of a submanifold of
projective space as of fronts of the corresponding Legendre mapping. We start
with any submanifold M in RP”, and construct the Legendre submanifold L
formed by the contact elements of RP”, tangent to M, and we project L to
the dual space RP” along the fibres of the Legendre fibration:

M* L" ! - PT*RP" = PTRP"™ - RP™.

The resulting Legendre mapping L”~! — RP™ is called the frontal map-
ping of M).

Example. Let the curve ¢ have a simplest flattening (1, 2, 4). Then the
curve ¢V has a singularity of type (2, 3, 4) like (22, #3, t*). The tangent lines
sweep out the usual swallowtail which is the front of ¢.

A generic curve in R3 has isolated flattening points but has no more com-
plicated degeneracies. Hence a front of a generic space curve is a surface with
a cusped edge and with isolated swallowtails.

In a 1-parameter family of curves in R? the bi-flattening points become
unavoidable (for some exceptional values of the parameter). The family of
dual curves in a family of dual spaces forms a surface in a 4-space.

THEOREM (0. Shcherback). This surface is locally diffeomorphic to the
ordinary unfurled swallowtail and its decomposition into dual curves is dif-
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feomorphic to the decomposition of the space of polynomials
x5+ Ax3+ Bx2+ Cx + D having a triple root into the ‘‘isochrones’,
defined by the equation A = const.

The inflection points give rise to the surface {x*+ Ax3+ Bx*+ Cx + D
has a multiple root] and to the ‘‘isochrones’’ B = const.

The general theory of Shcherbak is described in his paper [Shl].

For instance, he has proved the following theorems.

1. A front of a curve, dual to a generic smooth space curve (that is, the union
of the tangents of the smooth curve) has at the (1, 2, 4) inflection point of the
original smooth curve a ‘‘folded Whitney umbrella’’, locally diffeomorphic to
the germ of the surface x?y? = z? at the origin.

2. The singularities of the front of a generic smooth curve in RP” are
locally diffeomorphic to the discriminants A, i.e. to the products of
generalized swallowtails and of smooth manifolds. The union of the front of
a curve with the hyperplane, dual to a point of the initial curve, is locally dif-
feomorphic to a discriminant of Lie algebra B,.

3. In typical one-parameter families of curves in RP?” there exist
unavoidably  isolated points of types (1,...,n—1,n+2) and
(I,...,n—=2,n,n+1). The corresponding fronts’ perestroika patterns are

X"+ X" + o+ Ay = (x+82.), A, = const.;
X"TE X"+ o+ Ay = (x+02.), A, = const.

4. Any stable Legendre singularity of corank m is Legendre equivalent to a
germ of a frontal mapping of an m-dimensional submanifold of a projective
space. The frontal mappings of the generic space curves have only A,
singularities. The perestroikas of the Legendre mappings of corank m in the
generic families with finite dimensional parameter spaces are Legendre

equivalent to the perestroikas of the frontal mappings of the m-dimensional
submanifolds of projective spaces.

The latest development of the contact geometry of projective space curves
is due to M. Kazarjan (1985; see his paper [Ka]). In his theory the higher
codimension degenerations are classified by their Young diagrams, and related

to the singularities of the Schubert cell decomposition of a Grassmannian
manifold.!)

h "l.“he‘Schl.lbert cells of flag manifolds are related to Tchebychev systems and to
nonoscillating linear ODE, as was discovered by B.Z. Shapiro (1985).
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The Kazarjan theory introduces some new remarkable bifurcation
diagrams. For instance, the Young diagram (2, 2) corresponds to a union of
two Whitney umbrellas, tangent cubically along two lines. One of the ways
of visualizing this bifurcation diagram is due to Shcherbak. Let us consider
a generic 1-parameter family of projections of a smooth curve to a plane. For
some isolated values of the parameter the projection has a cusp. The cor-
responding perestroika is of type ‘“‘from vy to u’’. The projections may also
be described as the generic sections of a Whitney umbrella by ‘¢ isochrones’’
(parallel planes).

Now let us add to each of these plane curves their inflectional tangents.
These tangents sweep out a surface in 3-space. This surface is the second
Whitney umbrella. The two umbrellas together from the Kazarjan bifurcation
diagram. The general theory of such diagrams and of their applications to dif-
ferent problems of calculus, optics and so on may be found in Kazarjan’s paper
quoted above and in the 2 volumes of the Springer Mathematical
Encyclopaedia, devoted to singularities (the first of these is the volume
“Dynamical systems — 6°°, Moscow VINITI 1988, but we need the second,
VINITI 1989, ““Dynamical systems — 8’’, Encyclopaedia vol. 39).

Let us now return to the obstacle problem. Comparing the explicit formula
defining the Givental Legendre variety and the definition of the unfurled
swallowtails, we obtain )

THEOREM. The Givental Legendre variety of dimension m is dif-
feomorphic to the unfurled swallowtail X,(2m) = X, (o).

Example. The 2-dimensional Givental Legendre variety lives in the con-
tact 4-space of polynomials

xT)TV + q3x°/50 + qux*/4! + p,x3/30 — pax?/2! + ux — py,
where
u = — (q3pa+93/2), o = psdqs + psdqs — q3dps — qudp. — dpy,
and consists of polynomials, which have a root of multiplicity 5 or greater.

It is diffeomorphic to X,(4).

THEOREM. The standard contact triads defining the Givental Legendre
varieties, are stable (as germs of contact triads considered up to contact
equivalence). The germs of generic contact triads are contactoequivalent to the
germs of the standard ones.
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COROLLARY. The Legendre varieties defined by generic contact triads are
locally contactomorphic to the Givental Lagrange varieties.

COROLLARY. The germs of Legendre varieties, formed by contact
elements, tangent to a front in the generic obstacle problem are contact stable
and contact equivalent to the germs of the Givental Legendre varieties (and
hence are diffeomorphic to the germs of the unfurled swallowtails).

Returning to the hexagonal diagrams of §3, we can now find the normal
forms of the Legendre varieties describing the ‘‘multivalued time functions’’.

THEOREM. The I-graph (the set of l-jets) of the time function in a
generic obstacle problem in R™ is locally contactomorphic to the Legendre
variety formed by the polynomials (x—&)™**(x™~'+...) in the space of
polynomials of degree n =2m — 1 :

X"+ a X"+ .+ oa,,

equipped with its natural (sl,-invariant) contact structure Xilj!(— 1)a; da;
=0 (where i+j=n, ay=1).

The time function restriction to this variety is +a; + const, the points
of the same ray correspond to the translations of a polynomial along the x
axes.

COROLLARY. The variety of the contact elements of a generic front in the
obstacle problem in R™ is locally contactomorphic to the Legendre variety.

38 X" + Ao X"+ o+ Ay = (x—E)"(xX™ T mEX™T 2 +..) Vx}

in the space of polynomials of degree n =2m — 1 equipped with the perverse
contact structure

o, = SN (—Di+Dhdh;, O0<i<n—2, i+j=n—2.

Now to derive the singularities of the fronts and of their perestroikas in
the obstacle problem we have to project the above normal forms to the base
of a Legendre fibration (for instance, from the space J! of 1-jets of functions
to the space J° of 0-jets, where the ordinary graph of the time function lives).
This is unfortunately a difficult problem (it is discussed in Givental’s thesis,
and in his paper [G2]).

The classification of the generic front singularities in the obstacle problem
was obtained by O.P. Shcherbak in another way in 1984 (see, for instance,
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Uspekhi Math. Nauk 1984, vol. 39, N 5, p. 2561)). Unfortunately, the final
text of his proofs appeared only after he died in 1985.

I am very grateful to I.G. Shcherbak and to A.B. Givental who have
prepared O.P. Shcherbak’s manuscript ‘“Wave fronts and reflection groups’’
for publication. It has finally appeared in [Sh3].

The main discoveries of Shcherbak in this paper are the local diffeomor-
phisms of the fronts and the graphs of the multivalued time function in the
generic obstacle problem to the discriminants of the noncrystallographic
Coxeter groups H,, H;, H,.

H, is the symmetry group of a pentagon. Its orbit space is C2?, and the
irregular orbits form a discriminant curve with a singularity x? = y°. It was
perhaps known to Huygens and it is written explicitly in the book of
L’Hospital (1696), that this singularity appears at the inflection tangent to a
generic plane curve as a singularity of the involute (that is, of the generic front
in a two-dimensional obstacle problem).

H; is the symmetry group of an icosahedron. The orbit space is C3 and
the discriminant surface has been studied by O.V. Lyashko with the help of
a computer. A.B. Givental (1982) recognized in this picture the graph of the
multivalued time function of the plane obstacle problem, which I had shown
him a year before. Then O.P. Shcherbak proved the Givental conjecture: the
germ of the multivalued time function at the generic inflection point of the
obstacle is locally diffeomorphic to the surface of irregular orbits of H;. One
may find the proofs in the papers [Ly] and [Sh2].

H, is the symmetry group of a convex polyhedron with 120 vertices in R*.
To describe this polyhedron we start from the rotation group of an icosahedron
which contains 60 elements. The double covering S? — SO(3) lifts this group
to a subgroup of 120 elements in S3. Those 120 points of S? form the vertices
of our polyhedron.

In his study of the singularities of the fronts and time function graphs in
the obstacle problem, O.P. Shcherbak has found among other things the
discriminant of H,. Namely it is the singularity of the graph of the
multivalued time function at some ‘‘focal’’ point of a tangent line to a geodesic
of the family of geodesics on the surface of the obstacle (defined by the initial
condition). The tangent line itself is very special: it is an asymptotic line of
the surface in one of its parabolic points (for a generic family of geodesics the
direction of the geodesics changes along the parabolic line of the surface and

1) «“Uspekhi’’ are translated by the London Mathematical Society as ‘‘Russian Math.
Surveys’’. But some pages of the Uspekhi contain news and announcements and hence are
not translated.
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consequently becomes asymptotic at some isolated points of the parabolic line;
these points depend on the family).

The proof depends on a classification of the families of functions with
critical points of only even multiplicity. The simple germs of this type are

T S I (VA DY VA SO Y T S
O -

y
v f W+ qur 3+ L QU+ X)2dU A+ Qroa Xt Qe X F Gk
0

6 X3+t + gy + 4oy + g3
x>+ Y+ gy + @yt gyt das

y
e x> + [+ qix+g)du+ g x + qs
0
The front of the family is the set of parameters ¢, such that 0 is a critical value.

THEOREM. The optical length in the generic obstacle problem in R?
(considered as a family of functions of the initial point depending on the final
point as on a parameter) has only the simple critical points of the preceding
list. Hence the graph of the multivalued time function (‘‘the big front”’) is
locally diffeomorphic to the Cartesian product of the front of one of the
families A,, A,, Ag, Dy, E¢, Dy, Eq, E, with a non-singular manifold.
From A, one obtains the 5/2 singularity H,, from D the icosahedral
discriminant H;. This is the singularity of the front at the generic points of
the surface, where the geodesic has an asymptotic direction.
The discriminant of the group H, is diffeomorphic the front of the family
E}
The paper of Shcherbak contains a lot of information on these and other
Coxeter groups. It is interesting to note that the ‘‘foldings” A, — H,,

D¢ — H;, Ey— H, may be defined by the unusual forms of the Dynkin
diagrams

A4 D6 Eg
a o o vy o/o o @ 0 o o
B o o d o o o o/o o o
5
© © © o 0 o o o o
3 5
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Let us first describe the folding 4, — H,. The reflections, corresponding to
o and to B commute and their product is an element of the A, reflection
group. In the same way y& defines another element, and these two elements
generate a subgroup in A,. This subgroup is a representation of the pentagon
symmetry group H, in A,4. It is reducible and R* is decomposed into a direct
sum of two 2-planes invariant under H,. This construction of an irrational
subspace in the space R* with a lattice A, everything being invariant under
the 5-fold symmetry of H,, allows us to define in R? the quasiperiodic
Penrose tilings having H, symmetry (for the details see [A7]).

The same way the folding D¢ — H; generates a subspace R? C R,
invariant under the action preserving the Dg-lattice of the icosahedral sym-
metry group H;. This way we construct quasicrystals in R3 with the
icosahedral symmetries.

Finally, the construction of H, from Eg defines in R* quasicrystals with
the 120 X 120 symmetries of Hy.

Since the spaces R*, R®, R8 and their lattices A4, D¢, E3 may be inter-
preted as the homology of the corresponding Milnor fibres with R or Z coeffi-
cients, we obtain some special functions, associated to H,, H;, H, (generaliz-
ing the Airy function associated to A,, the Piercy function, associated to A,
and so on, see [VC]).

There exists one more series of noncrystallographical Coxeter groups,
L(p)-

A.B. Givental has discovered a problem in contact geometry, whose solu-
tions are in a one-to-one correspondence with the Coxeter Euclidean reflection
groups. This is the problem of the Legendre classification of the simple stable
Legendre singularities, whose Legendre varieties are diffeomorphic to the
products of curves (or of at most one singular curve with a smooth manifold).
His treatment of the series I,(p) is based on the multiple folding of an
A-diagram (see [G2]).
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