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CONTACT GEOMETRY 235

Let us consider a hypersurface in a contact manifold, which has no
characteristic points. Such a hypersurface is foliated (locally fibrated) into
characteristics. The set of characteristics is (at least locally) a manifold whose
dimension is two less than the dimension of the initial contact manifold.

THEOREM. The manifold of characteristics inherits a contact Structure
from the initial contact manifold.

A formal way of proving this theorem is a direct calculation. According
to the preceding formulae, the characteristics of the hypersurface K = 0 are
the orbits of the vector field W = V — K0/9z, where Lya = K,a. Since

ia/azda = O, ia/az(l = 1, we have
Lya = K,a — dK..

The second term vanishes along the hypersurface K = 0. Thus the flow of
the vector field W on the hypersurface K = 0 preserves the field of hyperplanes
a = 0 and hence defines a field of hyperplanes on the space of orbits of this
field.

Another way of proving this theorem is to consider just one particular case,
say the hypersurface, defined in Darboux coordinates by the equation p; = 0.
In this case the characteristic direction is d/0q,. Hence the space of the
characteristics is the coordinate space with Darboux coordinates (z, p, g¢) where

P =L --yqn) Gd =(q2, ..., qy). Thus the form a = dz +pd%q_dp induces

on the manifold of characteristics of the hypersurface p;, = 0 the form

o = dz +w , as was required.

Now the general case can be reduced to this particular case, since all the
hypersurfaces in a contact manifold are locally contactomorphic in
neighbourhoods of their non-characteristic points, which follows from the
general theorem of Givental, described below.

§3. SUBMANIFOLDS

The submanifolds of a Euclidean or a Riemannian manifold have interior
and exterior geometries. For instance, the Gaussian curvature belongs to the
interior geometry of the Riemannian metric on the submanifold, while the
mean curvature depends on its exterior geometry. In both symplectic and con-
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tact geometries the situation is simpler: the local exterior geometry is reduced
to the interior one.

THEOREM (Givental). A submanifold of a contact manifold is locally
defined (up to a contactomorphism) by the restriction of the contact structure
to the submanifold.

The contact structure is here considered locally as the module of differential
1-forms vanishing at the contact hyperplanes (over the algebra of functions).
The restriction is the module of the restrictions of these forms to the
submanifold (over the algebra of functions on the submanifold). Geometrically
this means that we consider the field of intersections of the contact planes with
the tangent planes of the submanifold, taking the multiplicities into account.

The above theorem follows from a similar theorem on contact forms. We
call a contact form transversal to a submanifold if the characteristic directions
of the form are nowhere tangent to the submanifolds.

THEOREM (Givental). Let us consider a homotopy o, of 1-forms defin-
ing (different) contact structures on a manifold. Suppose that they are all
transversal to a given submanifold, and that they coincide on all the tangent
vectors to the submanifold. Then there exists a diffeomorphism of a
neighbourhood of the submanifold, identical on the submanifold and
transforming o, to .

Proof. By a standard homotopy argument the problem is reduced to the
solution of the ‘‘homology equation”’

LVt o = Bt> Bt = - aat/ata

where V, is the unknown vectorfield, vanishing on our submanifold M and p,
is a known 1-form, vanishing on the tangent vectors to M.

Since the smooth dependence of V on ¢ is easily attainable in the construc-
tion that follows, we omit from now on the subscript ¢ to simplify the nota-
tions.

Let V = U + W be the decomposition of the (unknown) vector field into
its horizontal and vertical parts:

Let W, be a vertical vector for which iy,a = 1. Then W = fW,, f = iyoa. By
the homotopy formula Ly = iyd + di, we obtain
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Thus the homology equation has the form

where B vanishes at the tangent vectors of M and both the unknown function
£ and the unknown horizontal field U should vanish on M.

Let 1t be the geodesic projection of the tubular neighbourhood of M onto
M and p be the operator, associating to any k-chain c in this neighbourhood
the k + 1 chain pc formed by the shortest paths of its points x to mx. Then
d(pc) + p(dc) = c — me. Let p': = Q% — Q%-1 be the dual of p on the

differential forms defined by the identity [ o= [p'w. It is clear that
pc c
p'o is a differential form, vanishing at the points of M on every k-vector of

the ambient space. By duality
pldo +dp'o = o — t*o .

For @ = B, n*P = 0 since P vanishes on the tangent vectors of M. Hence
B =p'dp + dg, g = p'B. The function g vanishes on M and the form p'dp
vanishes at the points of M on every vector of the ambient space. Now the
homological equation takes the form

iyda + df = p'dp + dg ,

where the unknown f and U should vanish at M. Evaluating the left and the
right hand sides at the vertical vector W,, we find

where h = iy,p'dp +EW0dg is a known function. This equation is easily
solved for f (one integrates along the verticals). The solution f can be chosen
to vanish on M (even on any hypersurface, containing M and transversal to
the verticals, i.e. to the characteristics of the form o). After choosing f we
obtain for U the residual homological equation

lvda - Y,

where the 1-form y = p'dB + d(g—f) is zero at the vertical: iy,y = 0, by the
choice of f. The condition iy,y = 0 implies the solvability of the equation
iyda = vy for U. The horizontal solution U(iyo =0) is unique, since the form
do 1s nondegenerate at the hyperplane oo = 0. Hence the horizontal solution
U is smooth.

Now we use the ambiguity of the choice of f to reduce U to zero at M.
The function f is defined uniquely adding a function which is constant along
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the characteristics and which vanishes at M. At the points of M the value
iw,d(g—f) is zero (since p'dp vanishes on M). Hence d(g—f) coincides at
the points of M with the differential of a function k, constant along the ver-
ticals (k=g —f at some hypersurface, transversal to the verticals and contain-
ing M).

By adding k to f we do not change the value of df at W, and of f at M.
But we change y: now y = p'dB at some hypersurface, containing M and
transversal to W,. Hence y = 0 on every vector of the ambient space at the
points of M. Thus now U = 0 on M, and hence V = 0 on M, as required.

The theorem on the contact structures is an easy corollary of this theorem
on contact forms.

COROLLARY 1. The Darboux theorem.

Proof. M = (point).

COROLLARY 2. All the Legendre manifolds of any given dimension are
locally equal (contactomorphic).

Proof. All zeroes are equal.

COROLLARY 3. All hypersurfaces in a contact manifold are contactomor-
phic in some neighbourhoods of any of its non-characteristic points.

Proof. The restrictions of the contact forms are equivalent, since they are
induced from the natural contact form on the spaces of the characteristics of
the hypersurfaces, and those contact forms are equivalent by the Darboux
theorem.

Thus we obtain the normal forms for the maximally non-degenerate 1-
forms in the even-dimensional spaces: o = dz — ydx for a space of dimension
2n + 2 with coordinates X = (X1, ..., Xn), ¥ = (Y1, +vey Vn), Z, W.

The simplest degenerations of the differential 1-form on a manifold are
classified by J. Martinet [Ma]:

(1+py)dq, + prdq, + ... + pdq, (dim = 2n)

+ dz? + (1+p,)dq, + p,dg, + ... + p,dg, (dim =2n+1)
(1+phdg, + p.dq, + ... + p,dg, (dim = 2n).

Comparing with the Givental theorem, we obtain the
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COROLLARY 1. For a generic even dimensional submanifold of a contact
space the nongeneric points form a set of codimension 2, and in a
neighbourhood of the generic points the contact structure is maximally
nondegenerate (reducible to the form, dz = ydx for some coordinates
X, ¥, 2, w, dim{x] = 1).

COROLLARY 2. A generic odd dimensional submanifold in a contact
manifold inherits a contact structure at its generic points. At the points of some
hypersurface the restriction of the contact structure to the manifold is reducible
to one of the two (nonequivalent) forms +dz?> = (1+p))dq, + p.dq; + ...

+ prdqy .

Remark. The above classification of the submanifolds depends on the
classification of the contact structures (= modules of forms) and not on the
forms’ classification.

A differential 1-form in a neighbourhood of its nonzero point is either
locally equivalent to one of the Darboux or Martinet normal forms, discussed
above, or this form is not finitely-determined (is not determined by any finite
segment of its Taylor series up to a diffeomorphism). The simplest example
of such a nonfinitely determined form is the form (1+y3+xy)dy on the
plane. The codimension of the corresponding event is two.

At present the classification of the degeneration of contact structures (not
forms) has acquired the same level of sophistication as the other problems in
singularity theory. In the works of M. Zhitomirskii the list of first degenera-
tions is calculated, including all the simple singularities (a singularity is simple,
if it has a neighbourhood intersecting a finite number of classes of
equivalence). These results of Zhitomirskii, taking into account the Givental
theorem, describe also the submanifolds in the contact space up to a local
diffeomorphism.

Unfortunately, in most applications one needs the classification of
nonsmooth subvarieties of the contact space, for instance, that of unions of
intersecting submanifolds.

Example. Let us consider a hypersurface in a Riemannian space. The
description of this situation in terms of the contact geometry implies the
analysis of a pair of hypersurfaces in the contact space (the symplectic variant
of this theory is developed by Sato, Oshiva and Melrose under the name of
the theory of glancing rays).

Let us denote our closed Riemannian manifold by M, and the given hyper-
surface by OM.
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We shall start from the contact manifold J!(M, R) of 1-jets of functions
on M. Let us consider two hypersurfaces in this space:

SJYM, R) » JYM, R) « 0JYM, R).

The left hypersurface is defined by the Hamilton-Jacobi equation p? = 1. It
is the contact equivalent of the Riemannian metric. The right hypersurface is
formed by the jets of functions on M at the points of dM. It is the contact
equivalent of the hypersurface dM in M.

We shall see that a large part of the Riemannian geometry of the hypersur-
face OM in M may be formulated in terms of these two hypersurfaces in the
contact space. Since the contact geometry of these two hypersurfaces is (more
or less) independent of their origin, we can apply the knowledge of Riemannian
geometry and even the intuition of Euclidean space to the general case of an
arbitrary pair of hypersurfaces Y, Z in a contact space X. Let us first consider
this general situation.

The hypersurfaces Y and Z intersect generically along a submanifold W of
codimension two in X (we suppose that the intersection is transversal). So we
obtain the diagram of inclusions

y2n+1
y2n 72n
\WZn—l/

We shall also suppose that the hypersurfaces Y and Z are not tangent to
the contact planes (that condition is generically satisfied at a neighbourhood
of W since the characteristic points of the hypersurfaces Y and Z are
generically isolated).

Hence each of the two hypersurfaces is foliated into its characteristics.
Locally (and sometimes globally) this foliation is a fibration, that is there exists
a space of characteristics (the base of the fibration). Let us denote the fibra-
tions into characteristics by Y#* — U?*~! and Z?" — V27! (strictly speaking,
U and V are defined only for the germs of Y and Z at a point of W).

Let us consider the composite mappings

(via Y)U> ! « W21 - V2" Yvia Z).
These two mappings of manifolds of equal dimensions may have singularities.

Let us consider the sets of their singular points (points, where the Jacobian
matrix’s determinant vanishes).
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Under some very mild restrictions the sets of critical points of both mapp-
ings coincide. Indeed, let us suppose, that tangent hyperplanes of the hypersur-
faces Y and Z and the contact hyperplane a = 0 form a generic triple of
hyperplanes (at some point 0 of W).

LEMMA. The characteristic of the hypersurface Y is tangent to Z at
the point 0 if and only if the restriction of the contact form of X*'*! to
W?2n-1  degenerates at O.

Proof. Let us denote the intersections of the tangent planes to X, ..., W
at 0 with the contact hyperplane o = 0 by the corresponding lower case letters
x, ..., w. Let & be the characteristic vector of Y at 0. If £ is tangent to Z, it
belongs to w. Since § is skew-orthogonal to y, & is skew-orthogonal to w.
Hence do degenerate at w, as required.

Let do be degenerate at w. Since dimw = 2n — 2 is even, dimKer (da| w)
is at least 2. Let n be a vector, transversal to w in y. Then the equation
da(&,m) = 0 has nontrivial solutions & € Ker(da| w). These solutions & are
skew-orthogonal to n and to w. Hence they are the characteristic vectors of
Y at 0. Thus the characteristic vectors of Y at 0 are tangent to W (and hence
to Z), as was required.

The lemma is thus proved. Since the condition on the restriction of a to
W in the lemma is symmetrical with respect to Y and Z, the lemma implies

COROLLARY. The characteristics of the hypersurface Y are tangent to
W at the same points as the characteristics of the hypersurface Z.

Hence the sets X of the critical points of our mappings of W to U and to
V' coincide. We have thus obtained the following hexagonal commutative
diagram of mappings

e
| >

U2n—l/ \ p2n-1

S
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where X?27+1 U?~1 and V?"~! are equipped with contact structures, and X is
the set of degenerescence of the restriction of the contact structure of X to
W and at the same time the set of critical points of both mappings of W to
U and to V.

The dimensions of the kernels of the derivatives of these mappings can’t
exceed one, since they are the restrictions of the corank 1 projections
Y?2n - U?"-1 and Z?" - V27~1 Hence for the generic hypersurfaces Y and Z
the singularities of the mappings W — U and W — V are, up to diffeomor-
phisms, the standard Whitney singularities.

One may even choose the coordinates in Y and U (or in Z and V) in such
a way, that the hypersurface W in Y will be defined locally by the equation

VP4 u gyt + 4w =0
and the projection Y - U — by the formula

(y> ul 5 swg u2n—1) = (ul 9 vy u2n—1) .

Example 1. k=1, n>1. The mapping W?"-1 — U?”-! has a fold
singularity at the surface X272 where u; = y?, y = 0.

The characteristics # = const. of Y intersect W twice in the neighbourhood
of X, defining on W an involution. The hypersurface £27-2 C W?"-1 is the
set of fixed points of this involution.

Hence at the generic points of X two involutions W — W are defined: one
interchanges the two points of intersection of W with the characteristics of Y,
the other — with the characteristics of Z. Both these involutions have the same
hypersurface ¥ of fixed points.

Example 2. k =2, n>2. The mapping W?'-! — U?'~! has a smooth
hypersurface £2"~2 of critical points, which are the fold points or the cusp
singularities. The cusp singularities form a smooth hypersurface
»2n-3 . ¥2n-2 The set of critical values (the projection of X?-2to U) is a
hypersurface in U with a cuspidal edge (projection of X27-3).

Now let us see what is the meaning of all this ‘‘general nonsense’’ in con-
crete situations.

Example. Let us return to the case of a hypersurface 0M:f(g) = 0 in a
Euclidean space M = R”. In this case X = JI(M,R), Y:p?/2 -1/2 =0 is
the Hamilton-Jacobi equation, Z: f(g) = 0 defines the hypersurface. The
hexagonal diagram takes the form
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g ~_

SJHM, R) L 0J{(M, R)

\w/

ey

J1(0M, R)

JY M, R)

ST*M

exp

SJYOM, R)

Comments. The characteristics of the Hamilton-Jacobi hypersurface
SJY(M, R) are the orbits of the geodesic flow in the space ST*M of the
spherical cotangent bundle, equipped with a parameter (the ‘‘value’ of the
jet), increasing along the geodesic with a velocity equal to one.

Fixing the value of this parameter, say ¢ = 0, we obtain a point of the
characteristic, that is a (cotangent) vector of length one at some point of M,
equipped with the 0 “‘value’’. Thus we identify the space of characteristics with
the space of the spherical cotangent bundle S7T*M (this identification depends
on the choice ¢ = 0).

The projection I associates to a point of M, together with a vector on M
of length 1 at that point and a ‘‘value’’ ¢, the unit tangent vector (on the same
line as the original vector) based at a point at a distance ¢ (in the backward
direction) from the original point.

A characteristic of 3J!(M, R) consists of the 1-jets of all the extensions of
a fixed function on OM to M at some fixed point of OM. The manifold of
characteristics is naturally identified with the manifold J!(0M, R) of the
1-jets of functions on OM, equipped with its natural contact structure.

The projection II: W — J'(0M, R) associates to a 1-jet of a function on
M, having gradient of length one, the 1-jet of its restriction to dM. This projec-
tion has the fold singularities on the surface X, formed by the 1-jets of the
functions on M, whose gradients are of lengths one and are tangential to OM.
The projection II maps the hypersurface ¥ diffeomorphically to the set of
critical values of this projection. This set of critical values consists of the 1-jets

of functions on 0M with gradients of length one. Hence we may identify ¥
with SJ'(0M, R).
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The mapping exp: SJ1(0M, R) — ST*M associates to a 1-jet of a func-
tion on OM, whose gradient has length one and is tangent to dM, a vector of
length one on the same straight line as the given vector, but based at the point
at a distance 7 (in the backward direction).

The singularities of the mapping I represent the ‘‘inflections’’ of oM.

Example. Let n =2, that is OM is a generic plane curve. The mapping I
has a fold singularity at the point [of W, corresponding to the unit tangent
vectors of OM] where the curvature of dM is nonzero, and a cusp singularity
at the [points of W corresponding to the] inflection points.

Let n = 3, that is OM is a generic surface in R3. The mapping I has folds
at the points of W corresponding to the generic unitary tangent vectors, cusps
at the vectors of asymptotic directions, the swallowtail singularity at the
biasymptotic vectors (where the order of tangency of the surface with the
tangent line is 3, which is higher than for an ordinary asymptotic vector). The
biasymptotical directions exist on a generic surface along a curve; at some
special points of this curve there exist triasymptotic directions, the order of
tangency is 4 and in Whitney normal form for the singularity of the mapping
I we have k = 4.

Thus the geometry of a hypersurface in a Euclidean (or in a Riemannian)
space, when translated into the microlocal language of contact geometry, leads
to the problem of classification (up to contactomorphism) of hypersurfaces
with special singularities: of the unions of two smooth and transversal hyper-
surfaces (Y and Z) in a contact manifold X.

The simplest case (k=1) was studied by Melrose. The normal form of the
pair in Darboux coordinates is

g, =0, g, =pi+p,.

This is a formal (or C*?) normal form of a generic pair of hypersurfaces in
a contact space. In the analytical case the normallizing series are, as a rule,
divergent. In the 3-dimensional contact space the normal form of the pair is
(z=q, p*=q) [Me]).

For further results on normal forms in the contact geometry of tangencies
see [A3], [La] and [A6].

The state of art in this domain is at present far from the final death of
the subject: in most cases the results are know only at the formal level of power
series which are usually divergent in the analytical case.
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Example 1. Let us consider the product of a swallowtail surface with a
Euclidean space, defined in an N-space with coordinates A, B, ... by the equa-
tion: 37: x* + Ax2 + Bx + C = (x+1)%... vx. A generic symplectic structure
in a neighbourhood of the origin is formally reducible to the normal form

dAAdD + dCAdB + dEAdF + ...

by a swallowtail preserving diffeomorphic; a generic contact structure — to
the Landis normal form

o = dZ — DdA — CdB — EdF — ... .

These normal forms serve probably in the C* case too, but this is not
proved.

Example 2. Let us consider a quadratic cone surface in a 2n + 1 contact
space with coordinates 4, B, ... given by A2 + B? = C2.

The local reduction of such a surface to a normal form by a contactomor-
phism is important for the study of the transformations of waves, defined by
linear hyperbolical systems, derived from variational principles (see [A8] and
[A9]).

The formal normal forms of the hypersurfaces with conical singularities

in the Darboux coordinates (a = dz + B@—;—q@) are

PP+ q* =2+ (n=1), pi

These normal forms describe an interior transformation of waves of one
kind (say ‘‘longitudinal’’) into waves of other kinds (say, ‘‘transverse’’) in
inhomogeneous anisotropic media. The corresponding effect in homogeneous
media is the Hamilton conical refraction. In the nonhomogeneous case the
geometry of rays is different.

Let us consider the case n = 1, that is wave propagations for space-time
of dimension 2. The preceding normal form describes two families of
characteristics in space-time tangent at one point.

The characteristics through this point are formed from the branches of two
smooth (analytic) curves, tangent at that point but having different curvatures.
Let those curves be 12 and 34, then the first family’s singular characteristic
is 14, and that of the second — 32.

The contact of the two characteristics at the origin produces some singular
scattering of the family of characteristics of the first (second) type, which is
smooth (analytic) outside the origin. Let us consider a nonsingular
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characteristic of the first family, starting at a small distance € from the point
1 (where the distances of points 1-4 to the origin are of order 1). The endpoint
of this characteristic, taken at the level of point 4, lies at some distance from
the singular characteristic 14, namely, at a distance ae + be?lne + ... . The
logarithmic term describes the scattering at the origin: in a regular family the
distance would be ag + be? + ... .

In the 3-dimensional physical space (i.e. for space-time of dimension 4)
generic wave fronts (travelling in inhomogeneous media and governed by a
variational principle) acquire singular lines, connecting them with waves of
different kinds and moving with the wave fronts.

It is interesting to note that the case n = 1 is more difficult than n > 1.
The results are at present formal in both cases. They probably hold for the
C> problem both for n = 1 and n > 1. The divergence of the normalizing
series in the analytical problem is proven in the case n = 1, while for n > 1
there exists still some hope that the series converges. The qualitative results,
described above, are independent of the convergence of the series: we need
only finite segments of the series.

§4. LEGENDRE FIBRATIONS AND SINGULARITIES

The simplest examples of Legendre fibrations are the projectivized
cotangent bundles

PT*V" - V"
and the ‘“‘forgetting of derivatives’’ mappings
JYM,R) - J°(M, R)

(in coordinates: (p, q, y) — (g, »)).

Definition. A Legendre fibration is a fibration of a contact manifold with
Legendre fibres.

THEOREM. All the Legendre fibrations of a given dimension are locally
contactomorphic (locally = in a neighbourhood of any point of the total
space).

To prove this theorem it is sufficient to construct a local isomorphism of
an arbitrary Legendre fibration with one of the preceding examples.
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