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MANIN’S PROOF OF THE MORDELL CONJECTURE
OVER FUNCTION FIELDS

by Robert F. COLEMAN

In the process of translating Manin’s proof of Mordell’s conjecture over
function fields into modern language we found a gap. The arguments in [M]
do not suffice to prove Manin’s Theorem of the Kernel. We were able to fill
this gap by using those arguments to prove a weaker theorem (Theorem 1.4.3
below) and combining this with the function field analogue of Siegel’s
Theorem and Manin’s ideas to complete the proof of Function Field Mordell.
More recently, Chai [C] (see also the Appendix, below) has applied Deligne’s
Theorem on the semi-simplicity of the action of the monodromy group to
deduce Manin’s Theorem of the Kernel as reformulated below from the weaker
theorem mentioned above. I believe that all this is testimony to the power and
depth of Manin’s intuition. We were also able to make Manin’s analytic proof
completely algebraic. Manin has kindly verified that the corrections discussed
herein are necessary and apt (see letter to Izvestia...)

In light of the above and because of the ground braking nature of the work
we believe that Manin’s paper ‘‘Rational Points of Algebraic Curves over
Function Fields’ merits a clear modern treatment. We attempt to give one
below.

I. THE THEOREM OF THE KERNEL

0. REVIEW OF CONNECTIONS AND HYPERCOHOMOLOGY

(See also [D-1].) Let S be smooth connected scheme over a ring K.
Let .75 denote the structure sheaf of S, Qf the sheaf of p-forms on S
over K and d the exterior derivation from Q% to Q%*'. Let %’ be a coherent
sheaf on S. A connection on & over K is a K-linear homomorphism
V: 7 = Q¢® 7 satisfying the Leibnitz rule

We are indebted to Arthur Ogus for many helpful and stimulating discussions.
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V(fs) =df @s+ fV(s).

for f alocal section of _Z% and s a local section of %, We will also say that
(~, V) is a connection on S. There is a K-linear map which we also denote
by V from Q% ® & — Q%' ® 5 characterized by

Vio®s) =do ®s+ (1P Q V(s)

for  a local section of Qg and s a local section of % We say that (%, V)
is integrable if the map Vo V: %= Q% ® ~ is zero. In this case

Aol SL0i L5

is a complex. We let H(~, V) denote the i-th hypercohomology group of
this complex. When K is a field of characteristic zero, integrability also implies
that >’ is locally free.

If (H, Vg) and (G, V) are two connections on S then there are natural
connections Vg ® Vs on H® G and Vg s on Hom 2, (H, G) characterized
by the formulas

Ve ® Veh®g) = Vug(h) @ g+ h ® Ve(g)
Vi,o(r)(h) = Vg(r(h)) — r(Vu(h))

for local sections 4 and g of H and G and a local section 7 of Homj/S(H, G).
We let H = Hom (H, /%) and %H = V4, /%, which Is a connection on H. It
is easy to see that V5 & %H equals Vg s under the natural identification of

Hom 2 (H, G) with G(x)}VI. We will need the following, easy to check,
lemma.

LEMMA 1.0.1. Suppose r € Hom z, (H, QIR G) = QR Hom ., (H, G).
Then

Vi, c(r)(s) = Vg(rs)) + (=1)2r(Vyu(s)) .

Since we will use it frequently in the following we will record here the
Cech definition of hypercohomology. (See also [H-1, Chapter 1 §3].) Suppose
(7", d) is a bounded below complex of Abelian sheaves on a topological
space S. Then we define the hypercohomology of % as follows: First let %
be an ordered open cover of S. We have the Cech complexes

Ci(%, 77 = ® ZI(U)
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where the sum runs over all intersections U of i + 1 distinct elements of .
Let d: Ci(%, 4) — Ci+ (%, S9) be the Cech co-boundary. We also have
boundaries d: Ci(%, &7) —» Ci(w, S +1).

Now let

C (U, &)= @ Cr(u, S 9)

where the sum runs over p + ¢ = n. For ¢ € C*(%, "), we let c79 denote
its p, g-th component. The hyper-coboundary

3:C(U, Y Crr (U, )
is defined as follows: For c € C"(w, %), we set
(Bc)P-7 = der=1a 4 (= 1)P~18cra-1 |

Then the hypercohomology of & with respect to Z,H'(S, &, %), is defined
to be Ker(d)/Image(d) and H (S, &) is defined to be an appropriate limit
of these groups over all ordered covers. In particular, if S is a scheme, &
is a complex of coherent sheaves and % is an affine open cover, then
H'(S, %) is naturally isomorphic to H'(S, &, ¥). If in addition S is affine
H (S, )= H@)).

1. EXTENSIONS OF CONNECTIONS

Let S be smooth connected scheme over a field K of characteristic zero.
Suppose (H, V) and (G, V) are integrable connections on S. The set of
isomorphism classes of integrable extensions of (H, V) by (G, V) forms a
group under Baer sum which we will call Ext(H, G).

PROPOSITION 1.1.1. Ext(H, G) = HI(G®I§(, Ve ®& %{).

Proof. Since Vy is integrable, H is locally free. Let % be an ordered
affine open cover of S such that H(U) is a free _Z5(U)-module for each
U e 7. Suppose we have an extension

0=(G, Vo) 2 (E, V) = (H, Vy) > 0

of connections. Let U e %. Since H(U) is free, there exists an Zs(U)-
module section sy: H(U) = E(U). Now let hy = Vosy — sy V. We claim
that Ay is an _#5(U)-module homomorphism from H(U) into Q3 ® G(U),
i.e. an element of Homﬁg(H,Q§®G)(U). Indeed, for f e Z5(U) and
v e H(U),
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hy(fv) = V(su(fV) = su(Va(fv) = V(fsu) — su(df v+ [V )
=df ® sy) — fV(sy) — (df @ sy) + fsu(Vuv)) = fhyQ) .

Let sy y=sy— sy € Hom . (H, G)(Un V). We claim that ({hu}, {su,v}) is
a hyper one-cocycle for the complex (Q;® Homﬁ)S(H, G), Vi ). First it is
clear that {sy -} is a one-cocycle for the sheaf Homf;s (H, G). Second

V6OSy vy — Sy yoVy = Vo(sy—sy) — (Su—Sy)oVy = hy—hy.
Finally, since
Vo VOSU = VOos,0 Vy+ Vohy = hUO Vg + VGO]’IU = VH,G(hU) .

(using Lemma 1.0.1) V is integrable iff Vy s(h) = 0.
Moreover, suppose {s;} is another collection of sections

sy HWU) = EU), hy, = V'os,—s oV
and sy, = sy — sy. Then ry = sy, — sy € Hom 4, (H, G) and
hgj =h+ Vory— rooVy = h + VgOory — ry© Vg=h+ VH,G(rU) :

And so ({hy},{su,v}) — ({hyt,{sy »}) is the hyper-boundary of {ry}. Thus
we get a natural map from

Ext(H, ) into H'(Hom s, (H, G), Vi) = H(G®H, V6 ® Vi) .

It is easy to see that this map is a homomorphism.

We can make a map back as follows. Given a hyper-cocycle ({4y}, {sy v})
for the complex (Q3® Hom /’S(H’ G), V. ), let E be the sheaf determined
by the condition that E(U) = G(U) @ H(U) with gluing data

(w,0) > W+ sy, v,0)
on Un V. We then put a connection V on E by setting
V(w,0) = (Vow + hy(v), Vo)

for local sections w and v of G and H on U. One can check easily that E is
an extension of H by G and that this construction gives the inverse to the map
above. [J

COROLLARY 1.1.2. Ext(H, %% is a K vector space and hence is
uniquely divisible.

COROLLARY 1.1.3. Suppose S is affine and S’ is a non-empty affine
open of S. Then Ext(H,_0%) injects into Ext(HQ L., 7).
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We note that taking duals yields an isomorphism between Ext(G, H) and
Ext(ﬁ], (V}). Also, upon identifying (G) with G, V§ = V.

LEMMA 1.1.4. The diagram

Ext(H,G) — H{G®H,Ve® Vi)
i )
Ext(G,H) - H'H®®G, Vy® V5)

anti-commutes, where the horizontal arrows are the isomorphisms given by the
proposition and the right vertical arrow is the evident one.

Proof. Since the assertion is local, we may suppose H and G are free.
Suppose (£, V) is an extension of H by G and s: H — E is a section. Then
h=Vocs—soVyis an element of Hom/)S(H, Q;@ G) which represents the
image of the isomorphism class of E in

H'(Hom(H, G), Vi,6) = H(GR® H, V6 ® Vi) .
The image k£ of 4 in Hom/;g(Cv}, Q}g@[x]) is determined by
k(W) () = w(h©) = w((Vos —5° Vi) ()

. . . . V
where v i1s a section of H and w is a section of G.

Now (}VE, §V7) is an extension of G by H and the homomorphism ¢
determined by

t(w)(e) = w(e—scm(e))

is a section, where n: E — H is the projection, e is a section of £ and w is a
section of G. Hence, g = Vot — o V¥ is an element of Hom/;:g(cv?, Q; (29) I;f)
which represents the image of the isomorphism class of E in

H'(Hom(G, H), V&.3) .
Now
gW) (V) = (Vor — 1o V%) (w)(e)
where e = s(v) and

Vorw)(e) = d(wle—s(n(e)) - w(V(e)—s(n(V(e))))
= —w(Vos@) —scVy0) = — k(w)(v)
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since n(s(v)) = v and nV(e) = Vy(n(e)). The lemma now follows from
(toVE w)(e) = Viw)(e—s(n(e)) =0. L

Suppose W is an % submodule of H. We let [W] denote the smallest
subconnection of H containing W.

2. THE GAUSS-MANIN CONNECTION

Here we will recall the definition and some basic properties of the Gauss-
Manin connection which we will need in this paper. For more details see [K-O].
If & is a complex, % (k) will denote the complex obtained from & by
setting “i(k) = &1+, For any scheme Y over K will let K[Y] denote
C(.2Y).

Suppose S is a smooth connected affine scheme over K. Suppose f: X — S
1s a smooth morphism, Z is a closed subscheme of X, smooth over S. Suppose
T is either Spec(K) or S. Then we define the subcomplex Q ., , of Q,, by
the exactness of the sequence.

0-Qy7,72Qy,7>Q,,,,—0.

When 7T = Spec(K) we drop it from the notation. It follows that
Qs , = QY,s for i > dimsZ. Note that Qf , = Q%5 ; is the sheaf of ideals
of Z on X. We define H;DR(X/S, Z) to be the i-th hypercohomology group of
the complex Qg ,. We set H. o (X/S) = Hyo(X/S, D). If X is affine, then
H' .(X/S, Z) is the i-th cohomology group of the complex of K[S] modules
[(Qy/s z). If X is affine, K has characteristic zero and U is a dense open
subscheme of X then the natural map from HiDR(X/S, Z) to HjDR (U/S,Un Z)
is an injection.

From the last short exact sequence with 7" =S, we obtain a long exact
sequence

(2.1) o > HSNZ/S) = Hpp(X/S, Z) = Hipp(X/S) = ...

The Gauss-Manin connection V:Hy.(X/S,Z) = Qs ® Hyn(X/S,Z) is
the boundary map in the long exact sequence obtained by taking hyper-
cohomology of the short exact sequence of complexes:

(2.2) 0= f*Qs® Qs (1) = Q5 7/ [*Q5Q Qy(=2) = Qyy5, = O

(which is exact because X and Z are smooth over §). It is an integrable
connection. If K has characteristic zero and f is surjective and has
geometrically connected fibers, then HODR (X/S) = K[S] and the Gauss-Manin
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connection is the trivial connection on this module. Moreover, it is easy to
show that the sequence (2.1) is horizontal with respect to the respective Gauss-
Manin connections.

Suppose now that S is an affine curve over K and Z = <. Then the short
exact sequence (2.2) becomes

0= f*Qs® Qyys(—1) = Qs = Qyys— 0.
Taking cohomology of this sequence yields the Leray long exact sequence

2.3) .o Hog(X/S) S QL @ Hipp(X/S) = Hige (X) = Hip (X/S) =

3. SECTIONS OF A FAMILY AND EXTENSIONS OF CONNECTIONS

Suppose now S is a smooth connected affine curve over a field K of
characteristic zero and f: X — Sis a smooth proper morphism of schemes over
K, with geometrically connected fibers. These assumptions will be in force
throughout the remainder of this paper. Suppose Z is a closed subscheme of
X finite over S. Suppose the normalization n:Z — Z of Z is smooth over S.
After repeated blowing ups at closed points we find a scheme m: X' - X,
which contains Z and is such that the restriction of m to Z is n. Let X
equal the complement in X’ of the singular locus of X'/S. This locus is a closed
subscheme of X’ disjoint from Z. The long exact sequence 2.1 becomes

(3.1) 0 K[S] = K[Z] = H-(Z/8, Z) = HL(X/S) = 0

Let H denote the pullback of H, ()~(/S, 2) by means of the horizontal mono-
morphism from H,(X/S) into H})R()N(/S). We claim that H is independent
of the choice of X. Indeed, there exists a non-empty affine open subscheme S’
of S such that the map from X XS to X' =:X XS is an isomorphism.
If Z'"=27ZxsS’, then Z' is smooth over S’ and it is easy to see that
H® K[S'] = Hpg(X'/S',Z"). Hence H is an extension of the connection
Hpp(X'/S',Z") on S’ to a connection on S. Since such an extension is unique
if it exists, it follows that H is independent of the choice of X and so we set
HlDR(X/S, Z) = H. We obtain from the previous exact sequence, a natural
exact sequence

0= K[S] = K[Z] = H,n(X/S, Z) — H' ,(X/S) = 0 .

For a section s of X/S, we will also use s to denote the induced reduced
closed subscheme s(S) of X when convenient. Now suppose s and ¢ are two
distinct sections of X/S. Let Z = s U ¢. Then Z, the normalization of Z, is
just two disjoint copies of S and so is étale over S. (The sections s and ¢
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induce maps from S to Z which we denote by the same names.) The map
t* —s*:K[Z] — K[S] is horizontal, surjective and its kernel is the image
of K[S] under the map in (3.1). Hence we obtain a horizontal exact sequence

0= K[S] = Hpp(X/S,Z) = Hpp(X/S) = 0

and so an extension of H,(X/S) by the trivial connection. We let E(s, )
denote this extension if s+# ¢ and E(s,s) denote the trivial extension of
H})R(X/S) by K[S]. We call the class of E(s, ) in Ext(HLR(X/S),K[S])
M(s, t) .

PROPOSITION 1.3.1. Suppose r,s,t are sections of X/S. Then
M(r,t) = M(r,s) + M(s, t) .
In particular, M(r,s) = — M(s, r).

Proof. 1If r,s and ¢ are not distinct the proposition is obvious from the
definitions. Therefore suppose that r, s and ¢ are distinct. If 7 is a subset of
{r,s,t} let Z; = UueTu. Either by replacing X by X or by shrinking S and
using Corollary 1.1.3 we may assume that Z, ;,, is étale over S. Let “r
denote the complex Qg , . We set H(T) = Hpg(X/S, Z7). Then from the
exact sequence of complexes

0 - g{r,s,t} = %r,s} ® %S,t} - %s} ~—> O

(where the first map is the diagonal and the last is the difference) we obtain
an exact sequence

0—>H(r,s, t) = H(r,s) @ H(s, t) > H(s)

moreover, H(s) = H}DR(X/S) and the last map is the difference of the maps
from H(r,s) and from H(s, ) to H})R(X/S) (and is, in particular, a
surjection). |
Next from the exact sequence of complexes
00— %r,s,t} - %r,t} - y—) 0

where & is the complex (7. 4/ P00 ..) = (K[S]>0—...) we
obtain an exact sequence

0— K[S] > H(r,s,t) > H(r,t) = 0

Moreover the first map is the composition of the map from K[Z, ; 5] into
H(r,s,t) and the map A from KI[S] into KI[Z ] characterized by
r*h(f) = t*h(f) = 0 and t*h(f) = f. It follows from this that H(r, ) is the
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Baer sum of H(r,s) and H(s, t). Since all the maps discussed above are
horizontal this statement is true on the level of connections as well. This proves
the proposition. [

Suppose X’ is a smooth scheme over S and g: X’ — X is an S-morphism.
Then the natural map g*:H ,,(X/S) = Hr(X/S) induces a natural map
g% Ext(Hpr(X'/S), K[S]) = Ext(H,(X/S),K[S]). By the naturality of all
our constructions we have:

PROPOSITION 1.3.2. Suppose X'/S has geometrically connected fibers
and s and t are two sections of X'/S. Then

M(gos, got) = g*M(s, 1) .
Suppose Xj is a smooth connected scheme over K and X = S X xX,. Then
Q5. dxss) = K[S] ® (Q;(O/K, dxy/x)
and so in particular,
Hpr(X/S) = K[S] ® Hpr(Xo/K)
and the Gauss-Manin connection
Vi Hpp(X/S) = Q5 @ kisyH pr(X/S)
is (d,id). If H = H,(X/S), it follows from this that
Ext(H, K[S]) = H'(H, V) = Homg(H ), (Xo/K), H. o(S/K)) .
Explicitly, this last isomorphism can be described as follows:
if heHom(H QH=0l®H,
then & mod VH goes to the map (o€ H bz (Xo/K)— h(1 ® ®)mod dK[S]).

PROPOSITION 1.3.3. Suppose X, is a smooth connected scheme
over K and X =S8 xyxX,. Suppose u and v are two morphisms
Jrom S to X, and s = (id,u) and t =(d,v). Then M(s,t) is
V¥ —u* as an element of Homg(Hpz(Xo/K), H. o (S/K)).

Proof. We may suppose that snt=@. Llet Z=2suU £ Suppose
h:Hpp(X/S) = H o (X/S, Z) is a section. Let ({ou},{fv,v}) be a one-hyper-
cocycle for (Q;(O/K,dXO/K) and [®] the image the class of 1 ® H{ou}, {fu.v})
in Hpy(X/S). Then V[] = 0. We wish to compute VA([o]) — A(V]o])
= Vh([o]). We will abuse notation and identify o, with 1 ® oy in QL (U)

and fy,y with 1 ® fy, v in Zx(Un V). Let @y denote the image of Wy in
Q%,s(U). Then A([w]) is the class of
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({COU_ dx/sguts{fuv—(gu— gv)})

for some one-chain {gy} with coefficients in 4’y such that

s*fuv = w* fu v = s*(@gy—gy) and *fuyv=0*fuy=1*gu—28y) .

Let ny = wy — dgy. Now

s*ny — s*ny = s*dfuy v —s*dgu—gv) =0

by the conditions that {gy} must satisfy and the fact that ({wy},{fv v}) is a
hypercocycle. Similarly, #*ny — #*n, = 0. Let 1, and n; be the the elements of
Qfg determined by the cocycles {s*ny} and {7*ny} respectively.

Now to compute VA([w]) we must lift ®, — dx,sgy to a section of Q/IY,Z.
Let e,y and e,y be elements of Zx(U) such that s*e,, = 11*e, y = 0,
t*e, y = 1 and s*e, y = 0. These elements exist since Z is étale over S. Then
Nu — (es,uMs + €, yM,) 1s such a lifting. To compute VA([w]) we must take the
hyper-coboundary of ({ny— (&, vns + e,vM)}, {fu.v — (gu—8&n}). Tt is

({Tls® dxsses,u+ M@ dxsse,ut, (N @ (es,u—ée,v) + @ (e,uv—e, )}, O) .
The class of this hypercocycle is the image of
N -M€Qf in QiR Hpy(X/S,Z)

(recall that we’ve determined a map of K[S] into HLR(X/S, Z)). Hence

Vha([o]) =n, — ;.
The proposition now follows from the fact that

({ns + ds*gu}, {s*gu — s*gv}) = u*({ou}, {fuv})

and

(n, + dt*gu}, {t*gu — t*gv}) = v*({ou}, {furv)) . U

COROLLARY 1.3.4. If, in the above, u and v are constant, then
M(s, t) = 0.

4. ABELIAN SCHEMES

Suppose now that A is an Abelian scheme over S. Let m: A XsA — A be
the addition law and e the zero section. For s, t € A(S), let M(s) = M(e, s) and
s+t =m(s,1).

THEOREM 1.4.1. The map M from A(S) to Ext(H})R(A/S),K[S])
is a homomorphism.
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Proof. Let s and ¢ be elements of A(S). Define the map g: 4 = A by
g =mo(id, tof)(g(x) = x + 1(f(x))). Then g*:H}p(A/S) = Hpp(A/S) is
the identity so that g*M(e,s) = M(e,s) on the one hand and
g*M(e,s) = M(t,s + t) by Proposition 1.3.2 on the other. Hence,

M(s) + M(t) = M(e,s) + M(e, ) = M(t,s + ) + M(e,t) = M(e,s + 1)
by Proposition 1.3.1. [

Let (B, 1) denote the K(S)/K trace of A (see [L-AV]). In particular, B
is an Abelian scheme over K and t:B X spec(K(S)) = Ak is @ homomor-
phism. Since K has characteristic zero T is a closed immersion. Philosophically,
B is the largest constant Abelian subscheme of Aks) defined over over K. The
morphism 1 extends uniquely to an S-morphism T:B X xS — A. It follows
that B(K) maps naturally into A(S). We call the elements s of A (S) such that
ns 1s in the image of B(K), the constant sections of A/S.

PROPOSITION 1.4.2. The kernel of M contains all constant sections
of A/S.

Proof. Let s be a constant section of A/S. Then there exists a positive
integer n such that ns = t1o(¢ X id) where ¢t € B(K). Hence it follows from
the above theorem, Proposition 1.3.2 and Proposition 1.3.4 that
nM(s) = M(ns) = M(T(t X id)) = T*M(t X id) = 0. Since

Ext(H pg(4/5),K[S])

is uniquely divisible, by Corollary 1.1.2, the proposition follows. ]
We wish to prove the conserve of this proposition. I.e. we wish to prove:

THEOREM 1.4.3.  The kernel of M is precisely the group of all constant
sections of A/S.

We will give two proofs of this result. The first is Algebraic. The second
is analytic and is essentially a reformulation of Manin’s proof based on
remarks by Katz [K2] in a letter to Ogus.

5. THE ALGEBRAIC PROOF

a. Differentials with logarithmic singularities

(See [K] §1.0). Suppose X is a smooth scheme over a scheme 7 and Z
is a hypersurface in X whose irreducible components are smooth over 7 and
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cross normally relative to 7. Let W = X — Z and Z the disjoint union of the
irreducible components of Z. Let (Q,,(Log(Z)),d) denote the complex of
differentials on X/T with logarithmic singularities along Z. (When T = K, we
drop 7 from the notation.) When T has characteristic zero, which we will now
assume, the i-th hypercohomology group of this complex is naturally
isomorphic to H jJR(W/ 7). We have a natural short exact sequence of
complexes

. . Res .
0— Q7 Qy(Log(Z)) = Q% ,,(-1)—=0
From which, upon taking cohomology, we obtain the long exact sequence:

(5.1) 0 = Hpp(X/T) = Hpg(W/T) = HYp(Z/T) = Hpp(X/T)
~ Hyp(W/T) = Hpr(Z/T)

In addition, we have a short exact sequence of complexes
0- Q5 ® Q/s(Log(2)) (- 1) = Qx(Log(2)) ~ QY s(Log(2)) = 0 .

The boundary maps in the long exact sequence of hypercohomology obtained
from this short exact sequence are the Gauss-Manin connections
V:H, ,(W/S) = Q¢ ® HY,(W/S). Moreover the long exact sequence (5.1) is
horizontal with respect to all the Gauss-Manin connections.

If D is any divisor on X, let n#(D) denote the cohomology class of D in
H%R(X/T). Recall ([H-DR; 7.7)), if £ is an ordered affine open cover of C
and {fy} is a Cech one-cochain with with coefficients in 7, with respect
to % such that the divisor of fy is the restriction of D to U, then n(D) is
the cohomology class represented by the hyper one-cocycle
(0,{dc,7Log(fu.v)},0), where fu v = fu/ fr(U< V). Suppose now that T is
affine. Then H%R(Z/ 7T) is naturally isomorphic to the group of divisors on X
supported on Z with coefficients in K[77].

LEMMA 1.5.1. Suppose D is a divisor on X supported on Z, then
the image of D in H?DR(X/T) via the appropriate map in (5.1) is equal
to nr(D).

Proof. This is essentially Proposition 7.6 of [H]. We carry out the proof
in order to ‘‘straighten out’’ the sign.

Let £ be an affine open cover of X and {fy}is a Cech one-chain with
coefficients in _#x with respect to % such that the divisor of fy is the
restriction of D to U. Then, dLog(fy) € Qﬁ(/T(Log(Z))(U) and
Res(dLog(fy)) is the image of the image of D in H(Z/T) = Z53(U). It
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follows that the image of D in H 2DR(X/ T) is the class of the hyper-
coboundary of ({dLog(fv)},0) which is n(D) by definition. [

By a properly semi-stable curve over S, we mean a curve over S such that
the irreducible components of the closed fibers are smooth and cross normally.
(The irreducible components do not have to be smooth if the curve is only semi-
stable.)

COROLLARY 1.5.2. Suppose R isasmooth connected curve over a field
K and X is a properly semi-stable curve over R smooth over K.
Suppose U is a non-empty open subset of R and Y = R — U. Then the
kernel of the natural map from H5g(X) into Hpr(Xy) is generated by
{(n(D)} where D runs over the irreducible components of Xy.

Proof. This follows from the lemma and the exact sequence (5.1), since
the closed fibers of C/T are unions of smooth hypersurfaces of C which cross
normally. [

LEMMA 1.5.3. With notation as in the above corollary, if R is affine
and X is smooth over R then the map from H» (X)— Hpe(Xy) is an
injection.

Proof. For a closed point x of R, let X, denote the fiber above x. Since
all the fibers of X over S are smooth, it follow from the corollary that the
the kernel of the map HéR(X) - HéR(XU) is generated by {n(X,)} where x
runs over the closed points of Y. Now n(X,) is the pull-back of
n(x) € H?DR(R). As this latter group is zero, this proves the lemma. []

b. End of algebraic proof

First by using the functoriality of M, Proposition 1.3.2, and the fact that
every Abelian variety over S is the quotient of a Jacobian over S we may
assume that A is the Jacobian of a smooth proper curve C over S. By
Proposition 1.1.1 and the long exact sequence (2.3), Ext(H}JR(C/S)v,K[S])
maps naturally into H%R(C). Moreover, since C is a proper smooth
connected curve over S, H,,(C/S) is canonically isomorphic to H }JR(C/S)V.
The fact we need to finish the proof is:

PROPOSITION 1.5.4. Let s and t be two elements of C(S). The
class n(t—s) is equal to the image of M(s,t) in HéR(C).

By the previous lemma and the functoriality of n we may shrink S to sup-
pose that s N ¢t = &. To prove the proposition, we need the next lemma.
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Suppose now that 7= S,Z = s U t and X = C. Then the exact sequence
(5.1) becomes:

(5.2) 0 = Hpp(C/S) = Hpp(W/S) = HY(Z/S) = H2.(C/S) = 0

Furthermore HéR(C/S) 1s canonically isomorphic to K[S] with generator
Ns(s) = ns(¢) and so the kernel of H%R(Z/S) ——>H53R(C/S) 1s a principal
K[S] module with generator D = s — ¢. Using this generator, (5.2) yields an
extension By, of the connection (K[S],d) by (HL(C/S), V).

LEMMA 1.5.5. Identifying H\o(C/S)  with HL.(C/S), the
extension B, Is isomorphic to the dual of E,.

Proof. Regarding the complexes Qg 5, and Qg (Log(Z)) as
subcomplexes of Q5 , the wedge product gives a product from

Q.C/S.Z X Q.C/S(Log(z))
into Q,; which induces a pairing
(,): Hpp(C/S,Z) X Hypp(W/S) = H:(C/S) = K[S] .

This pairing is compatible with the exact sequences

0— HYC, Q) = Hx(C/S, Z) = H'(C,Q%,5) = 0
0= H(C, Qg s(Log(Z)) = Hpr(W/S) = HY(C, £¢) = 0

arising from the Hodge to de Rham spectral sequences for hypercohomology
(which degenerate). In other words, the image of H(C, Q) in Hz(C/S, Z)
is perpendicular to the image of H(C, Q. s(Log(Z)) in H p,(W/S) and if we
identify Q5% , with Z¢(Z) and Qg ,s(Log(Z)) with Q¢ s(—Z) the pairings
induced on H(C, Q,5) X HY(C, #¢) and on

HY(C, Q% ;) X H(C, Q¢,5(Log(2)))

are the natural ones. Since these pairings are non-degenerate, it follows that
the pairing on H})R(C/S, Z) X H}JR(W/S) 1S non-degenerate.

It is also clear that the image of H),(Z/S) = K[Z] in Hx(C/S, Z) is
perpendicular to the image of H,(C/S) in H,,(W/S) and that the pairing
induced on HL.(C/S) X Hp,(C/S) is the natural one.

The lemma will follow from the following claim: Let 1 denote the map from
KI[Z] to Hi,(C/S, Z) and Res the map from H ,(W/S) to K[Z]. Let Tys
denote the trace from K[Z] to K[S]. Suppose ¢ € K[Z] and ® € H,,(W/S).
Then
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(1(c), w) = — Tzss(cRes()) .

Indeed, if s*c =0,¢*c = 1, Resq(w) =1 and Res,(w) = — 1 then
— Ty,5(cRes(w)) = 1.

To prove this claim we may shrink S. Hence, we may assume first that
{U, V(U< V) is an ordered affine open cover of C such that U = C — s and
V = C -1, second that 1(c) is represented by a hypercocycle of the form
0({gv,gv}) where s*gy = s*c and t*gy = t*c and third, since the composi-
tion H(C, Q¢ (Log(Z)) = Hpx(W/S) = K[Z] is surjective, that w is in the
image of H(C, Q¢,s(Log(Z))), i.e., w is represented by a hypercocycle of
the form ({wy,w0y},0) where wy=w=wy on UnV for some
w € H'(C, Q¢,s(Log(Z))). It follows that (i(c),w) as an element of
Hpp(C,Qp ) = Hp,(C/S) is represented by the cocycle {vy y} with
vu v = (g — gu). Since the image of this element in K[S] is

Res,(— gyw) + — Res,(gyw) = — (s*gyRess(w) + t*gyRes,())
= — Tr/s(cRes(w)) .

this establishes the claim and the lemma. [

End of proof of Proposition 1.5.4

Consider the commutative diagram of complexes of sheaves with exact
rows and columns

0 0 0
! ! !

0 - Q;®Qr,(—1) = - - Q6 - 0
! ! !

0 = Qs®Qcs(Log(2)(=1) = Q(Log(C)) = Qp/s(Log(Z) — 0
! ! !

0~  Q®Qys(-2) ~Qy(-1) - Q,(-1) -0
! ! !
0 0 0.

If we take hyper-cohomology of this diagram we obtain a commutative
diagram
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Hpo(C/S) = Q5 ® H pp(C/S)

! !
Hpo(W/S) = QL ® Hpr(W/S)
!
H%R(Z) — HODR(Z/S)
! !

Hpg(C/S) = QL ® Hpp(C/S) = Hap(C) = Hop(C/S)

with exact rows and columns in which the bottom row is part of the Leray
long exact sequence. Let a be the element in H%R(Z) corresponding to the
divisor s — . The image of ¢ in H%R(C) is n(s — ¢) by Lemma 1.5.1. On the
other hand the image of a in H%,(Z/S) is our chosen generator of the kernel
of the map to HéR(C/S). In particular, it is the image of an element b of
Hp,(W/S) and V(b) is the image of an element ¢ of Q;@HIDR(C/S)
whose image in HfDR(C/S) is the same as that of a by an elementary diagram
chase. On the other hand, the image of ¢ in H'(H,,(C/S), V) is the class
corresponding to the extension B, by definition (see Proposition 1.1.1)
which is, after identifying H.,(C/S) with H..(C/S)’, — M(s, 1) by
Lemma 1.5.1 and Lemma 1.5.3. Hence the image of M(s, f) in in H%R(C) 1S
—n(s—1¢) =n(—s) as required. [J

Now we are in a position to prove the Theorem 1.4.3. We will suppose
M(s, t) = 0 which amounts to ns(f — s) = 0 by the Proposition 1.5.1. Recall,
that A is the Jacobian of C/S. Let d denote the divisor class of # —s in |
A(K(C)). We will show that the canonical height of d is zero. We may replace
S by a finite étale cover and complete C to a properly semi-stable curve C
over the completion S of S which is smooth over K. Let D be a Q-rational
divisor on C which is perpendicular (under the intersection pairing) to all the
irreducible components of all the fibers of C/S and whose restriction to C
is t —s. Such a divisor exists by the function field analogue of Theorem 1.3
of [Hr] (see also Theorem 5.1 (i) of [Ch]). It follows that the image of n(D)
in Hy,(C) is n(¢t — s) = 0. Corollary 1.5.2 implies that n(D) is in the span of
{n(Y)} where Y runs over the irreducible component of the closed fibers above
C-C. In particular, D - D = 0 using Theorem 7.8.2 of [H]. On the other
hand, D-D is —2 times the canonical height of d by the function field -
analogue of Theorem 5.1 of [Ch]. It now follows from Theorem 5.4.1 of [L],
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that the image of #—s in J(C) is a constant section which completes the
proof. [

6. THE ANALYTIC PROOF

In this section we will suppose K = C.

a. The Poincaré Lemma

Suppose (&, V) is a sheaf on S%* with integrable connection. Then by the
Poincaré lemma for integrable connections, it follows that the complex of
sheaves

S50l Q@ FI0L,. ® S ...

is a resolution of the sheaf & V. Hence,

PROPOSITION 1.6.1. Hi(%, V) is naturally isomorphic to H(S, &V).

Remark. As in Proposition 1.1.1, H!Y(%, V) 1is isomorphic to
Ext(% ", #sm). We can describe the isomorphism from H!(, V) to
HI(S, & V) explicitly as follows: Let 4 be an element of H!(%, V). Let £
is a covering of S by open disks. Suppose % is an extension of & by .Zun
corresponding to #. Then % is an extension of Z%w» by & For each
U e %, there exists an sy € & (U)” which maps to 1 in _Zs..(U). Then the
image 4 in H'(S, V) is the class of the cocycle {(U, V)= sy — sy}.

Suppose, X is a smooth proper S-scheme and Z is a subscheme of X which
is either empty or finite over S. We will define the Betti homology sheaf
' \(X/S,Z,Z) on S as follows. If Z is smooth over S, we define
W/ (X/S, Z,Z) to be the sheaf associated to the presheaf

U= H(f '), f"(U)nZ1Z),

(this latter group is the Betti homology of f ~!'(U) relative to f~Y(U) N Z).
More generally, let S* be a non-empty affine open subset of S such that
Z' = 7Z xXsS'is étale over S'. Let X' = X XS’ and let 1 denote the inclusion
morphisms X' = X, Z"— Z and S’ = S. We set

HX/S,Z, L) =\ (X'/S',Z',Z) .
This is independent of the choice of S’. We also set

V(X/S,T) = AUX/S, D7) and H\(X/S,Z,C) = &1(X/S,2,2) Q C .
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Suppose s and ¢ are two distinct sections of X/S and Z = s U £. Suppose
S’ is an affine open of S such that Z’ is étale ove S’ in the notation of the
previous paragraph. We have exact sequences

0 A (X/S,Z) > X \(X/S,Z,2) > 1A (Z'/S", L) > Z(X/S,Z)~ 0 .
and
0> H(S/S",Z) > ZN(Z'/S',Z) > Z(X'/S', 1) ,
where the first map is 7, — 55 . From which we derive the short exact sequence
0> Z\(X/S, L) > Z\(X/S,2,2) > L~ 0.

since 147 IS'an = Z. In particular, if U is an open disk in $%', we have an
exact sequence

0> Z1(X/S,2Z)(U) > ' (X/S,Z,Z)(U) > Z— 0

We define the Betti cohomology sheaf <7 1(X/S, Z,C) in the same way
and it is easy to see that &7 1(X/S, Z, C) = Hom (<~ (X/S, Z, C), C). Also, it
is known that if Z is étale over S then &7 1(X/S, Z, C) = R}*(/Z where 7 is
the subsheaf of C whose sections vanish on Z.

Suppose X is proper over S with connected fibers. Let
(L pr(X/8,2), V) = Lsun @ p(Hpp(X/S, Z),V) .
We claim, for Z C X finite over S.
(L pp(X/S,2), V) = (P @ ZNX/S, Z,C),d R id)

This follows from the relative Poincaré lemma above on S’ and hence on all
of S since both sides are integrable connections. Hence,

LEMMA 1.6.2. There is a natural isomorphism
(L (X/S,Z) , V) = (L ® 71(X/S, Z,C),d ® id) .
In particular
Hi(Z \(X/S, Z), V) = H(S, 7,(X/S, Z,C)) .

We conclude, using this, Proposition 1.1.1 and GAGA that

THEOREM 1.6.3. There exists a natural isomorphism

B:Ext(H pp(X/S), Zs) = H' (S, Z1(X/S, C)) .
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b. End of Analytic Proof

Now suppose X is an Abelian scheme over S. We have an exact sequence
of sheaves over So",

0— 2 (X/S,Z) = Z lexam san > X" =0 .

From the corresponding long exact sequence of cohomology groups we obtain
an exact sequence

ey 5or(ST) > XN(S) = H'(S, 7 (X/S, ) .

We may describe §(s) as follows: Suppose e #s. Let Z =eus. Then as
f*(Q;a,,/san) maps into :»?’“}DR(X/S), 7 (X/S, Z, Z) maps into
1 v

f* (Q){an . San) = C\7/ iéXan san

so that the diagram

2 X/S, Z,Z)

TN
.?;(X/S, Z) - _;/ ieAXHH ‘San

'

commutes. Let # be an ordered covering of S by open disks. For each
Ue ? let ype Z(X/S,Z Z)(U) such that y,— 1 under the map
Z (X/S, Z)(U) — Z. Then the image of vy, in X(U) is s(U). Hence §(s) is
represented by the one cocycle {(U, V) =y, — v }.

Now, it follows from this and the remark after Proposition 1.6.1 that
B> M is equal to the composition of & and the natural map

H' (S, % (X/S, Z)) = H' (S, 7 (X/S,C) = H'(S*, 7 ,(X/S,Z)) ® C .

Hence, if s € X9"(S"), M(s) = 0 iff there exists a positive integer n such that
d(ns) = nd(s) = 0. Hence ns is in the image of 7 ieyen san(S) — X (Sm)
and so is an infinitely divisible element of X97(Se"),

Suppose s € X(S). We claim #s is an infinitely divisible element of X(S).
Let m be a positive integer. Let r € X?*(S9") such that mt¢ = ns. There exists
a finite étale Galois covering S of S such that 7 X(S’). If o € Gal(S’/S),
then 7° = 7 because 7°(x) = 7(c ~!(x)) for x € S(C). It follows that ¢ € X(S).
This establishes our claim.

Finally, it follows from the function field Mordell-Weil Theorem [LN] that

the image of ns in X¢5(C(S)) is a constant section X/S. Theorem 1.4.3 now
follows immediately. [
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II. PICARD-FUCHS EQUATIONS

We will give a proof of Mordell’s conjecture for function fields using
Theorem 1.4.3 above. This theorem is weaker than Manin’s Theorem of the
Kernel (Theorem 2.1.0, below). In an appendix, we will give Chai’s demonstra-
tion of Theorem 2.1.0 and show how Manin used it to complete his proof.

1. PICARD-FUCHS DIFFERENTIAL EQUATIONS

Let f: X — S be a smooth proper morphism with geometrically connected
fibers over K. Let wy,s = H(X, Q). Let Z be a subscheme of X finite
over S whose normalization is smooth over S. Then wy, s injects naturally
into both Hp,(X/S) and H},(X/S,Z) such that the obvious diagram
commutes. Let W denote the image of ® =: wy,s in H}JR(X/S).

Let s and ¢ be two sections of X/S, and Z = su ¢. It follows that, if
S # 1, H})R(X/S, Z) 1s an extension of H}JR(X/S) by K[S] with a section on
W. Hence we have an element N(s, 7) in Ext(H ,(X/S), .Z’s, W) which maps
to M(s, t) under the natural forgetful map from Ext(H})R(X/S), s, W) to
Ext(H p(X/S), 2%).

Now let & = : 2 denote the algebra of differential operators on S, i.e.
the free left algebra over K[S] generated by Derg = : Derg,x. Since Derg acts
on the sections of a connection on S so does <. Let PF = : PF(X/S) denote
the kernel of the natural map from & ® x50 (where here K[S] acts on &
on the right) into H}.(X/S). Clearly, PF is a left &/-module. We call the
elements of PF, Picard-Fuchs differential equations. The image of PF, under
the natural map from <& X k510 Into H})R(X/S, Z), lies in the image of
K[S]. We have the commutative diagram:

PF
N

IR w

N

K[S] = Hpp(X/S, Z) = Hpp(X/S)

If w € PF, call its image under the map to K[S] u(s, ¢). It follows from
Proposition 1.3.1 that
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(1.1) w(r,s) + p(s, 1) = nr, )

for r,s,t € X(S).

Suppose A/S is an Abelian scheme over S with origin section e. Then it
follows from Theorem 1.4.1 that if p € PF(A/S), s— u(e, s) is a homo-
morphism from A(S) into K[S].

Manin’s Theorem of the Kernel is:

THEOREM 2.1.0. Suppose se A(S). Then p(e,s)=0 for all
w e PF(A/S) iff s is a constant section.

We will now explain the connection between this theorem and
Theorem 1.4.3. Let w denote the natural map from Ext(H pg(X/S), Zs, W)

to Ext([W], Zs, W).

PROPOSITION 2.1.1. Suppose s,te X(S). Then u(s,t) =0 for all
we PF(X/S) iff woN(st)=0.

Proof. First, [W] is the image of & ® wy,s in Hpr(X/S). Hence, if
(s, t) = 0 for all p € PF(X/S), we can define a horizontal section from [W]
to E(s, ) by sending the image of an element of & ® wy,s in H})R(X/S) to
its image in E(s, ¢). This implies wo N(s, £) = 0. The other direction is just as
easy. LJ

Hence Manin’s Theorem of the Kernel is equivalent to:

THEOREM 2.1.0°. The class woN(e,s)=0 iff s is a constant
section of A/S.

On the other hand, it is easy to see that Theorem 1.4.3 is equivalent to this
statement with wo N(e, t) replaced by N(e, ). Thus Theorem 2.1.0 follows
from Theorem 1.4.3 in the case [W] = H,,(A/S), i.e.

PROPOSITION 2.1.2. Suppose [W] = H})R(A/S) and s € A(S). Then
wie,s) =0 forall nwe PFA/S) iff s is a constant section.

Remark. The error in Manin’s proof of Theorem 2.1.0 occurs in §6.2 on
Page 214 of [M]. The displayed equation on line 12 is false. To make this
statement true one must replace r with r°, (in Manin’s notation). In
Appendix 1, we give Chai’s proof that N(e, ) = 0 iff woN(e, t) = 0 which
together with Theorem 1.4.3 implies Theorem 2.1.0. However, we show below,
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that Proposition 2.1.2 is sufficient to prove the function field Mordell
conjecture.

We call the composition
HOX, QL ¢ )= HL(X/S) > QL @ HL (X/S) ~» QL ® H\(X, ) ,

where the maps on either end are natural ones, the Kodaira-Spencer map and
denote it by ky,s. An important special case of the previous proposition is
the one in which xy,s Is an isomorphism, since then

Qi@ W) D kx/sW=Qs® Hpp(X/S)

under the natural map and so, in particular, [W] = H,(X/S). It is well
known that if X is a family of curves over S and the Kodaira-Spencer map
1s zero then X/S is an isoconstant family, i.e., becomes constant after a finite
base extension.

PROPOSITION 2.1.3. Suppose Derg,x is spanned by 0 over KIS].
Suppose Kyx,s IS an isomorphism. There exists a K[S]-linear map from
Wy/s O PF

W € Dx/s ™ Ho,o = - Ho »

characterized by the condition that W, can be written in the form
X +O0RO +1 R w”, where ®' and ®" € wy,5. Moreover PF
is generated over </ by the image of this map.

Proof. The fact that (Qs® W) @ kx/sW = Qi ® Hpp(X/S) implies
that there exist unique elements ®” and " in Wsuch that 32 @ ® + 9 ® ®’
+ 1 ® 0" € PF. The K[S]-linearity follows from the uniqueness and fact that
for any v € wy,s, n € Zo and f € K[S], one may write f0” & v in the form
9" ® fv+ Y d®v; with v; € wy,s. The fact that PF is generated by

0<i<n

these elements is also clear. [

COROLLARY 2.1.4. Suppose Ders,x . is spanned by 0 over KIS].
Suppose ¥,,s is an isomorphism. Then

{s € A(S): po,0(e,5) = 0} = A(S)or -

Proof. This follows immediately from Theorem 2.1.2 since the only
constant sections in this case are torsion.
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2. PICARD-FUCHS COMPUTATIONS

We will need an explicit formula for p(s, #) in some cases. Suppose that
X/S has relative dimension one. Suppose z € K[S] such that Q 35(S) = K|[S]dz
and suppose U is an affine open of X,s € U(S) and v € .Zx(U), such that
s*v = 0 and Q) (V) = _Zx(U)dx,sv. For u € Zx(U) we define d,u and 9,u
by

du = 0,udz + 9,udv

Clearly 9, is a lifting of 8 =:8/8z to a derivation of _Zx(U). For
© = udy,;sv € Qy,(U) we set 9,0 = d,udy,sv (the image of the Lie
derivative of udv with respect to 9, in QQ/S(U)). Since 8 generates < over
K[S] we can and will also make & act on Q},¢(U) using 9.

LEMMA 2.2.1. Suppose o = udx,sv € QQ/S(U) is of the second kind
and [w] is its class in Hp,(X/S). Then

dlw] = [0,0] .

Proof. The element udv is a lifting of wudy, 0 to Q;((U), and
d(udv) = du ndv = d,udz A dv. Since this is the image of dz ® 8, in Q% the
lemma follows. [

COROLLARY 2.2.2. Suppose Y, D;® w; € PF. Then
Z D;w; = dx,sw
for some w e Zx(U).

Suppose ¢ # s is an element of U(S) and Z = s U ¢. Let / denote the map
from K[S] into H,(U/S, Z) associated to the pair (s, ¢). For © € QL,((U)
let [@]z denote the class of w in Hp.(U/S, Z).

LEMMA 2.2.3. Suppose U,s and v are as above, ¢ U(S) and
t*v = 0. Suppose ® = udy,sv € Q;,S(U). Then d*[w]; equals
[0z + (Y 8/ 1(t* (85 ~'u)dr*v))

where i runs from 1 to k.

Proof. By shrinking S we may suppose that ¢*v is invertible. We want
to compute V[w];. First we must lift udy,s0 to section of Q;}Z(U).
Let y = f*(t*v). Then m = uydy-'v is such a lifting and it equals
udv — uwy ~'9,ydz. Then V[w], is the class of
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dn = 0,udzrndv — d(uwwy )Y ady = dzAB,udv + dz Ad(uvy -19,y) .
which is the image of
dZ ® (8z® + dX/S(qu-lazy)) € Q}g@ Q;(/s(U) .

Hence 9[w] is the class of 9,m + dx/s(uvy ~'9,y) in H.(U/S, Z). Since
(t* = s*)(uvy ~1'0,y) = t*ud(f*v) the lemma follows in the case k = 1. Since
92/ =[-8 the lemma follows in general by induction. [

COROLLARY 2.2.4. Suppose U,s,z and v are as above, t e X(S)
which meets U and t*v # 0. Suppose w,w’ and o' are elements
Wy,s. Let ® = udy,sv and o = u'dy,sv on U. Then we have:

(1) Suppose L=0QRQ -1 w e PF,w=udy;sv and 0,0 — '
= dy,sw, with we Zx(U). Then

nis, 1) = t*w — s*w + (¢*u)or*v .

(i) Suppose p=0’QR+0X w0 +1QRQw"” € PF and 03’0+ oo’
+ 0" =dysw with we Zy(U). Then

uis, 1) = t¥((w —s*w, (u’ + 20,u),d,u, u) - (1,x,,x°,3x,))
and where x, = 0t*v.

Proof. First shrink S so that s and ¢ satisfy the hypotheses of the lemma
and then apply it and the definition of u(s, ). [

Suppose g: X — A is a morphism over S from a curve to an Abelian
scheme. Suppose k4,5 is an isomorphism. If n = g*® where ® € w,4,5 we will
set W, = g*l,. This is independent of the choice of w. As an immediate
consequence of the previous corollary we obtain:

COROLLARY 2.2.5. Let U,z,s and v be as above. Set X(S)'
={te X(S):t meets U and t*v+0}. Then there exist maps

V=:V,,:Ty, > K(S)*
and
L=:L,, wx;s— K(X)*
such that L is K-linear and for t e X(S)" and o € g*¥wy,g,

Hols, ) = *(L(w) - V(?)) .
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III. MORDELL’S CONJECTURE

Suppose L is a field of characteristic zero of finite type over a relatively
algebraically closed subfield K.

THEOREM 3.1 (Manin). Suppose C is a curve of genus at least 2
defined over K. Suppose C(L) is infinite, then there exists a curve Cy
defined over K such that CyX L = C and C(K) minus the image of
Co(K) under this isomorphism is finite.

We can translate this into

THEOREM 3.1 (BIS). Suppose S is a variety defined over K and
suppose C — S is a smooth proper curve of genus at least 2 over S.
Suppose C(S) is infinite, then there exists a curve C, defined over K
such that Cy X xS = C and C(S) minus the image of Co(K) under this
isomorphism is finite.

Remarks. First, it is possible to reduce this by standard arguments to the
case in which S is a smooth affine curve over K and so we will suppose this
to be the case. Second, if we can prove that Cy X x X = C for some C,
defined over K, (i.e. that C is a constant family) then this is de Franchis’
theorem which is proven in Lang’s Fundamentals of Diophantine Geometry.
Hence to prove this theorem all we have to do is show that if C(S) is infinite
then C is a constant family of curves.

1. SETS OF BOUNDED HEIGHT

In this section we will either recall or derive the properties of heights needed
in the sequel.

Let f: X — S be a smooth projective morphism of varieties over K a field
of characteristic zero. Corresponding to a projective embedding of X over S,
there exists a function 4:X(S) — R called a logarithmic height. (For a
reference, see ([L-FD] Chapter 3, §3). If the logarithmic height of a subset of
X(S) is bounded with respect to one projective embedding, it is bounded with
respect to all (See [L] Prop. 1.7, Chapt. 4). We will call such a set a set of
bounded height and a set of points which is not of bounded height, a set of
unbounded height. We will need several properties of such sets. If g: X' = X
is a morphism of projective schemes over S which is finite onto its image, then
the inverse image of a set of bounded height in X(S) is a set of bounded height
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in X’(S). Suppose X is an Abelian scheme over S and R is the subgroup of
X (S) consisting of constant sections of X/S. Let s € X(S). Then the set s + R
is a set of bounded height.

LEMMA 3.1.1 (Manin). Suppose E is a finite dimensional K vector
subspace of K(C). Then the set

T={seC(S):3k#0e E suchthat s*k =0}
has bounded height.

Proof. Without loss of generality we may increase E to suppose that the
rational map g: C — Py(E) given on points by x = (e€ E— e(x)) is birational
onto its image (note: g is actually a morphism on the compliment of the polar
locus of E). It follows that g induces an embedding of the generic fiber of C/S
into Pk, (E ® K(S)). Let A denote the logarithmic height with respect to this
embedding. It follows that if s € C(S), gos is constant or gos has degree
one. In the former case A(s) is zero and the degree of the Zariski closure of
gos(S) in P(F) in the latter.

Now if s € T, and gos is not constant, it follows that the Zariski closure
of gos(S) is a component of a hyperplane section of the Zariski closure of
2(C). Hence, h(s) is less than or equal to the degree of the Zariski closure of
g(C). This proves the lemma. L[]

The key property about heights we will need is:

THEOREM 3.1.2. Suppose C — S is as in the above theorem. If C(S)
contains an infinite set of bounded height then C is a constant family.

(See Corollary 2.2, Chapter 8 of [L-FD].)
Hence all we need prove is that the elements of C(S) have bounded height.

2. LANG-SIEGEL TOWERS

Suppose the genus of C'is at least 1. Suppose 7'is an infinite subset of C(S).

PROPOSITION 3.2.1. There exists a projective system of curves
{Cu} Al n})ymneZsy, and n<m, over K such that
®» G=C,
(i) An.:C,— C, is étale,
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(1)  (hm1) YD) N Cn(S) is infinite,

(iv)  There exists a finite covering S, , of S such that the fiber product
of hmn. with S, , is Galois, Abelian and of positive degree.

Let J denote the Jacobian scheme of C over S. Let a: C — J be an Albanese
morphism. Let p be a prime. Let T denote the closure of a(T) in J(S) ® Z,.
Since a(T) is infinite it follow from the Mordell-Weil Theorem that there exists
ateT— a(T). Let t, € T such that r — a(t,) € p"J(S). Let C, denote the
normalization of the fiber-product of C and J via the map H,:x = p"x + 1,
and 4, ; the natural map from C, to C. It follows that C, is defined over S
and since H,,(J(S)) 2 {t,:m | n} that A, (C,(S)) contains an infinite subset
of T.

All that remains is to exhibit the maps #4,, ,. Clearly, ¢, — ¢, = p"ry, , for
some r, , € J(S). Let H, , denote the map x:p™~"x +r, ,. Then H,
= H, °H, ,. It follows that H,, , pulls back to a morphism #4,, ,: C,, = C,.
It is easy to see that this morphism becomes Abelian after adjoining the
p’”~"-torsion points on J. This proves the proposition. [

Remark. One can also prove the above proposition with the condition
n < m replaced by n | m.

3. COROLLARIES OF THE THEOREM OF THE KERNEL

LEMMA 3.3.1. Suppose g:X' — X is a morphism of smooth proper
schemes with geometrically connected fibers over S. Then if n e PF(X'/S)
and s,t e X(S),(g*n) (s, 1) = n(gos, got).

Proof. This follows easily from Lemma 1.3.2. [J

Suppose J is the Jacobian of C over S and g is an Albanese morphism,
then since g*:Hpp(J/S) > Hpp(C/S) is an isomorphism g*:PF(J/S)
— PF(C/S) is an isomorphism.

LEMMA 3.3.2. Let u be a fixed Picard-Fuchs differential equation on

C/S. Then {u(s,t):s,t e C(S)} lies in a finite dimensional subspace of
K[S] over K.

Proof. Suppose L € PF(J/S) such that g*[ = . The lemma follows
from the Mordell-Weil theorem which together with the Theorem of the kernel
implies that J(S) modulo the kernel of the homomorphism s — [i(e, s) is a
finitely generated Abelian group. [
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LEMMA 3.3.3. Suppose A is an Abelian scheme over S such that
(W45l = H})R(A/S) and g:C — A is a non-constant morphism over S.
Fix seC(S). Then the set T ={teC(S):(g*u)(s,t)=0 for all
w e PF(A/S)} is of bounded height.

Proof. Let A’ denote the smallest Abelian subscheme of A over S
containing g(C). Since the map g*:PF(A/S) = PF(A'/S) is surjective and
[(Wa4ss] = H})R(A/S), it follows from Proposition 2.1.2 that g(7) is contained
in a translation of the group of constant sections of A'/S. Hence, g(7) is a
set of bounded heigt. Finally, since C — g(C) is a finite morphism, it follows
that 7 is a set of bounded height. [

In particular,

COROLLARY 3.3.4. Suppose A is an Abelian scheme over S such that
Kass IS an isomorphism and g:C — A is a non-constant morphism over
S. Fix seC(S). Then the set {te C(S):(g*uy,)(s,t) =0 for all
W € Wy,s} Iis of bounded height.

4. PROOF OF MORDELL’S CONJECTURE

PROPOSITION 3.4.1. Suppose the kernel of the «xc,s has rank at
least 2 over KIS], then the points of C(S) have bounded height.

Proof. Suppose C(S) contains points of arbitrarily large height. Fix
s € C(S). By shrinking S, if necessary, we may suppose that there exists a func-
tion z € K[S] such that Qg = K[S]dz and there exists a finite covering % of
C by affine opens U and functions vy € Z(U) such that s € U(S), and
Q‘C(U) is spanned by dz and dvy. We may also suppose that s*v, = 0 by
replacing vy with vy — (so f)*vy if necessary. For Ue £ ,u € Z-(U) we
define 0y .u and 9y ,u by the equation |

du = 9y ,udz + Oy, ,udvy .
Then 9y . is a lifting of 0 = :0/0z. We set u(¢) = u(s, ¢) for
uw e PF =:PF(C/S)

and ¢t e C(S).
Let ®; and ®, be two independent elements in the kernel of x.,5. It
follows that there exist ®; and ®, € w¢, s such that

Olo;] = [w;] .
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Hence 1, =0 ® w;— 1 ® o/ is in PF. For Ue % let wy,; and uy,; be
elements of _#~(U) such that

Oy, ; — (DI-' = dc/sWu,i s

s*wy ;and ; = uy ;dessvy on U. Let T denote the set of £ € C(S) such that
tnU=% @ and t*vy # 0 for all U in %£. This is the complement of a finite
subset. For t e T

(4.1) wi(@) = t*(wy,1) + 1% (uy,:) 0% (Vy)

for all U € %, by Corollary 2.2.4.
Forte T, Ue ¥ let

hy.: = Uy 01 (f) — uy 1 W2 (F) — (Uy,2Wu,1 — Uy, 1 Wu,2) -

We deduce from (4.1) that t*4y , = 0. On the other hand, by Lemma 3.3.2,
the set of functions 4y, lies in a subspace of _Z-(U) of finite dimension over
K. It follows from Lemma 3.1.1 that Ay, = 0 for all 7 in in a subset 7" of
T of unbounded height. Fix 7, € 77, and set ¢; = : u;(%), then it follows that

uy, (L1 () — 1) — uy 1 (2(t) — 1) = 0

for all r € T'. Now since ®, and m, are independent over K[S], uy,; and uy >
are independent over K(S) and so we must have

wi(f) = ¢

for all t e T'. Let zy,; = u{,,ll-(c,'— wu.1). Let zy; = ul},lf(c,-— wy. ;). Let T
denote the subset of T’ such that r*uy , # 0 and t*uy, # 0 for all U e Z.
This is the complement of a finite subset of 77. For t € T’

(42) Z‘*ZU)[ = 62‘*UU

for all Ue %. This implies that zy, = zy, since T’ is infinite. Set
iu = Zu,1-
Set uy = uy,, and wy = wy ;. On U NV,

dvy = gy vdz + fu vduy
for some gy, € Z¢(U) and fy v € Z-(Un V)*. It follows that
Uy = fu vy, Ou,v&u, v = aV,sz,V and Wy = Wy + Upgu. vy .

Hence

Zv= fuvz, — &uv .
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Hence, we may define a divisor Y which on U is the polar divisor of
zZy. (It is clear that the support of Y is contained in the intersection of
the supports of the divisors of ®; and w,.) Let C'=C—-Y, U’ = Un C’ for
Ue Z, vy = vy lu' etc. Then the above implies that we may define a lifting
9 of d to I'(Derc k) such that on U’,

aUU' = Zy’r .

If Y= J, this implies that ks is zero and hence that C/S is isoconstant.
This contradicts de Franchis’ theorem. Thus Y = .

It follows from (4.2) that t " Y = & for all t € T"'. In particular, Y has
no vertical components. But this contradicts the function field analogue of
Siegel’s theorem [L-IP] since 7" is a set of unbounded height. This completes
the proof of the proposition. [

Remark. In the appendix we will present Manin’s original proof of this
proposition which uses Theorem 2.1.0 and does not use Siegel’s theorem. To
this end, we point out that it follows from (4.2) that

(4.3) £*0x = 9(1*x)
forall xe K[C'] and r e T".

We will now complete the proof of the function field Mordell conjecture.
The argument here is essentially the same as that in Manin’s paper except that
we found it necessary to be more careful about the choice of base points.
Suppose C/S is a curve over S such that C(S) contains points of arbitrarily
large height. Let ({C,},{/. »}) be the projective system as described in §3.2
such that C; = C and C,(S) contains points of arbitrarily large height. From
the previous proposition, we know that the rank of the kernel of the x¢ /5 is
at most one. Since these ranks grow with n, by replacing C with C, for
appropriate n, we may suppose these ranks are all equal. Set h, = A, | .

By shrinking S, we may suppose that there exists a z € K[S] such that dz
spans Qg over k[S]. Let d = 8/0z.

Let J, denote the Jacobian of C, and 4, = J,/h}}J,. It follows that x4 /s
is an isomorphism. We identify w4, ¢ with its image via an Albanese
pullback in ¢, ,s. Recall that in these circumstances we have a Picard-Fuchs
equation W, = : U, attached to ® € w, /5.

Fix an s € C(S). By shrinking S if necessary, we may suppose there is an
affine open U of C such that s € U(S) and there exists an element v of
Z(U) such that Q,4(U) is spanned by dc/sv over Z(U) and, s*v = 0.
Recall, for u € Z(U) we defined d,u and 8,u by
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du = d,udz + 0,udv .

Now suppose # > 1 and S’ is an étale (not necessarily finite) connected
open of S such that C/(S’) contains a point r lying overs s. Let C, = C, X §’
and A/ = A, x S’. We will abuse notation for the moment and let z and v
denote their pullbacks to S’ and C;, respectively. Let 4,: C, = C| denote the
pullback of #,. Let U’ denote the inverse image of U in C;. We set
U, = h,”"(U"). Then since 4/ is unramified, dz and dv span QIC’;(U,T), In
these circumstances we have a K-linear map L, , ,: ® arsst = K(C,)* described
in Corollaries 2.2.4 and 2.2.5.

Let n, S’, r be such that the dimension of the K(C,)-span of the image of
L., ,is maximal over all such triples. Call that dimension R. Now fix m > n
and replace S with an étale open of S’ such that, C,, is Galois over C, with
Galois group G and there exists an r' € C,(S) above r. Let
w=h*,h="h,,and let Y =C, and X = C,,. Our hypotheses imply, in
particular, that X(S) is of unbounded height. Let B = J,,/h*J,. Then, Kp,g
is an isomorphism. The module, wg, s injects naturally into wy,s and we
identify it with its image.

Let Ny, ...,m, be a K(S)-basis for wp,s. Let L =L, jxy,,. As LOA*
= L - our maximality hypothesis implies that L(h*w,4 /s) C L(wa:/s)K(X)
and so there exist elements ®, ..., Wz € W4,/s and elements z;; € K(X) such
that

L(m;) = E zi;L(h*w;) .
Let
T={teXS):tnU,+J,t*w+#0}.

The complement of 7 in X(S) is finite. In particular, in the notation of
Corollary 2.2.5, since Vpu(?) = V, w(h(2)),t € T and L(h*w) = L. ,, (o)
for w € w,4,/5, by Corollary 2.2.5

Wo (r',8) = ), ERZi jWhs o, (F'y 1) = Y t*Zi,choj(r: h(z)) .
for t € T. Let
Fii = w0 0) = X 2,0, (r, A(D)) .
We see that *f;, = 0 and Lemma 3.3.2 implies that the set
{fi:0<i<k,teT)

is contained in a finite dimensional X subspace of K(X). Hence by
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Lemma 3.1.1, using the fact that height is stable under the action of G, the
subset 7 of T consisting of elements ¢ for which there exists a ¢ € G and an
I,0 < i< n, such that f;, # 0 is of bounded height.

Let T, = T — T;. Clearly, T, is stable under G. Moreover, f;, = 0 for all
t € T,. That is,

o', 0) = X zi b (7, h(2))
In particular, p,,(r’,2°) = p, (r’,¢) for f € T, and 6 € G. On the other hand,

o (P 1%) = Wy, (7, 77°) + By, (770, ) = P (75 77°) + a0 (s 1)
by (II, 1.1) and Lemma 3.3.1. It follows that

uw—wc(rla t) = Hm(r',’”'c)

for all w € wp,5,0 € Gal(X/Y) and t e T,. Let t, e T,. By (11, 1.1) we
conclude that P, _oe(f,2) = 0 for all ® € wp,5, 0 € Gal(X/Y) and ¢ € T5.
But {® — ®0°:® € wp/s, 6 € Gal(X/Y)} spans wg,s over K by the definition
of B. Corollary 3.3.4, applied to the morphism X — B, implies 75 is a set of
bounded height. But this implies that X(S) is a set of points of bounded height.
This contradiction completes the proof of Mordell’s conjecture for function
fields. [

APPENDIX: CHAI’S PROOF OF THE THEOREM OF THE KERNEL

In this appendix, we give Chai’s proof of Manin’s Theorem of the Kernel,
Theorem 2.1.0 above and explain how Manin used it to prove the function
field Mordell conjecture. Let notation be as in Section II. As explained in that
Section, the theorem follows from the assertion:

(A1) N(e,s) =0 iff woN(es) =0.

Let H = H.,(4/S). For a subconnection D of H, let D denote the
pullback of H,,(A/S, Z) to D. As (Al) is stable under fiber products and
isogenies (see Proposition 1.3.2), (Al) is a consequence of the following
theorem, taking D = [W].

PROPOSITION Al.l. (Chai). Suppose A/S is irreducible and not
isotrivial. Let D be a non-trivial subconnection of H. Then the
extension H of H of connections splits iff the extension D of D does.
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Proof. The only if direction is clear.

For the other direction, we may, without loss of generality, suppose K = C.
Fix ¢ € S(C). For an integrable connection D on S. Let D, denote the fiber
of D at ¢ and G(D) denote the Zariski closure of the image of the monodromy
group at ¢ of D in Endc(D,). .

Let N(D) denote the kernel of the natural map from G(D) to G(D). The
group G(D) acts naturally by conjugation on N(D). Moreover, since I:] 1s an
extension of H by C, (recall (e, s) determines a basis) on which G(H) acts
trivially and we have a natural G(D)-equivariant pairing ( , ):N(D) x D - C
given by (n, d) = n(d) — d. Hence we have a commutative diagram

N(H) = H*
(A2) ! !
N(D) = D*

where the right arrow is the natural surjection.

Now suppose that the extension Dof D splits. Then N(D) = 0 since G(D)
acts trivially on C. By the Poincaré lemma the map of G(H) modules
H, — H, is defined over Q. It follows from [D-H; Corollaire 4.4.15] that A3
is an irreducible representation. Hence N(H) = 0 or N(H) surjects onto H .
In the latter case, it follows from (A2) that N(D) surjects onto D but this
implies D¥ = (0), a contradiction. Thus N(H) = 0. This implies G(H) acts
on the exact sequence,

0-C—-H,~»H,—~0.

As G(H) 1s semi-simple by [D-H; Corollaire 4.2.9] we see that this sequence
splits as well. This implies that the horizontal sequence

0— Fi—=H—H-0

splits by [D-SR; Proposition 1.3, Theorem 2.23 and Theorem 5.9]. [
By replacing Proposition 2.1.2 by Theorem 2.1.0 in the proof of
Lemma 3.3.3 one obtains:

COROLLARY Al.2. The conclusions of Proposition 2.1.2 and Lemma 3.3.3
are true without the assumption that [W, ] = H}JR(A/S).

Now we give Manin’s proof of Proposition 3.4.1 using Theorem 2.1.0. This

was the only place in [M], where this theorem was needed. This proof does
not use Siegel’s Theorem.
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Let notation be as in Section 3.4. Siegel’s theorem was not used until the
last paragraph of the proof of Proposition 3.4.1. Therefore we may
assume C’ is affine, W(S) contains a set 7’ of unbounded height and we
have a derivation 8 on W such that 7*dx = d(t*x) for all x € K[W].

It follows from Lemma 2.2.3 that for each p € PF, there exists an
x, € K[S] such that

n(t) = t*x,.

Lemma 3.3.2 implies that {u(f) —x,:2 € 7"’} is contained in a finite
dimensional K-linear subspace of K(C). Hence, by Lemma 3.1.1, u(¢) = x,
for all u € PF and all ¢ in the complement 7’ of a finite subset of 7. (We
use here that PF is finitely generated over Z5.) Fix #, € T°”’. Then
w(,?) =0 for all t e T” and all p € PF. This contradicts the above
corollary and thus proves Proposition 3.4.1.
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